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From numerical experiments, D. E. Knuth conjectured that0 < Dn+4 < Dn for a combinatorial sequence (Dn) de-

fined as the difference Dn = Rn � Ln of two definite hy-

pergeometric sums. The conjecture implies an identity of typeLn = bRnc, involving the floor function. We prove Knuth’s

conjecture by applying Zeilberger’s algorithm as well as clas-

sical hypergeometric machinery.

1. THE CONJECTUREIn a combinatorial study, D. E. Knuth [1994] wasled to consider a nonterminating hypergeometricseries representation of the numbersLn := nXk=0�2kk �; where n � 0:
The (ordinary) generating function of the se-quence tk := �2kk � is 1=p1� 4z, a special instanceof the binomial series, and thus1Xn=0Lnzn = 1(1� z)p1� 4z :Expanding 1=(1�z) as a series in powers of (1�4z)and equating like coe�cients results inLn = 1Xk=0 43(� 13)k�k � 12n �(�4)n:
Let rn;k denote the summand expression, and re-call a bit of hypergeometric notation, for instance,from [Graham et al. 1994]. The rising factorials arede�ned as x�k = x(x + 1) : : : (x + k � 1) for k � 1,x�0 = 1, and the general hypergeometric series as

pFq�a1; : : : ; apb1; : : : ; bq ; z� =Xk�0 a�k1 : : : a�kpb�k1 : : : a�kq zkk! :
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Now, if the series representation of Ln is rewrittenin hypergeometric form,Ln =Xk�0 rn;k = 43�2nn � 2F1� 12 ; 1�n+ 12 ;� 13�;the essential asymptotic information about Ln forn ! 1 becomes explicit. But Knuth observed agood deal more. Assuming n as �xed, we quotefrom [Knuth 1994]: \First the terms rn;k decreaserapidly, until k = b 34n + 12c, after which they in-crease and begin to oscillate wildly|so they looklike they're diverging for sure. But then after k =b 32n + 12c they begin to settle down and soon areconverging like (� 13)k". He added some numericalevaluations; for instance, for n = 10 the partialsum b 34 10+12 cXk=0 r10;k = 250953:29
is quite close to the exact value of L10 = 250953.From those experiments he became convinced ofthe \curious" identitynXk=0�2kk � = � b(3n+2)=4cXk=0 43(� 13)k�k � 12n �(�4)n�:

(1.1)More generally, if Rn denotes the sum inside theoor brackets on the right hand side of (1.1), Knuthproposed the following conjecture:
Conjecture 1.1 (Knuth). For Dn := Rn � Ln,0 < Dn+4 < Dn for all n � 0: (1.2)Indeed, this implies (1.1), because the four initialvalues are less than 1 (D0 = 13 , D1 = 59 , D2 = 79 ,D3 = 127), and0 = bDnc = bRn � Lnc = bRnc � Ln:In view of the preceding derivation one couldguess that there are many more identities involv-ing the oor function like (1.1). But up to nowidentities of this type have not been discussed inthe literature, and no standard tools are available

for their treatment. The object of this note is toshow that the key for the proof of Knuth's con-jecture consists in applying methods belonging todi�erent, sometimes even considered as opposite,paradigms, the Zeilberger algorithm and the clas-sical hypergeometric machinery. For an introduc-tion to both theories see, for instance, [Graham etal. 1994].
2. THE PROOFBecause of the oor function arising in the uppersummation bound of Rn, we consider the problemseparately for each congruence class mod 4. First,for n = 4m, m � 0, let lm = L4m, rm = R4m,and dm = D4m The proof of (1.2) splits into themonotonicity part, dm+1 < dm, and the positivitypart, 0 < dm.
The Monotonicity PartThe Mathematica implementation by Paule andSchorn [1995] of Zeilberger's algorithm is able totreat also de�nite hypergeometric sums where thesummation bounds are integer linear in the recur-rence parameter. Applying the program to lm =P4mk=0 �2kk � and rm =P3mk=0 r4m;k delivers the simpleinhomogeneous recurrenceslm+1�lm = a(m) and rm+1�rm = a(m)�b(m);wherea(m) = 16 (680m3 + 1302m2 + 784m+ 147)� (8m+ 1)!(4m)! (4m+ 4)!andb(m) = 427 (8m+7) ( 13)3m (2m+ 1)! (6m+ 1)!(m+ 1)! (3m)! (4m+ 3)! :The proof of the computer result is human-veri-�able and is also delivered by the program.Combining the recurrences by subtraction yieldsdm � dm+1 = b(m); (2.1)
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which, because of b(m) > 0, proves the monotonic-ity part of (1.2) for n = 4m.The other cases work analogously; see (2.5) be-low.
The Positivity PartApplying the computer program from [Paule andSchorn 1995], monotonicity turned out to be sur-prisingly simple to prove. In this section we demon-strate that recursion (2.1), derived with the help ofthe computer, also provides the key for the proof ofpositivity, i.e., of 0 < dm for all m � 0. But to thisend we have to make extensive use of classical hy-pergeometric machinery. Nevertheless, the Math-ematica package hyp.m developed by C. Kratten-thaler [1996] greatly facilitates the work.From (2.1) and d0 = 13 , for all M � 0 we have

dM = d0 + M�1Xm=0(dm+1 � dm)
= d0 � M�1Xm=0 b(m) > 13 � 1Xm=0 b(m):

Hence positivity is proved once we can show that1Xm=0 b(m) = 13 : (2.2)

The convergence of this series is extremely slow,and all computer algebra systems I have access tofailed on its evaluation.The hypergeometric evaluation proceeds as fol-lows. First one rewrites the series as a hypergeo-metric 5F4, and, because no standard summationformula can be found, one|in view of there beinga top entry 1 and a bottom entry 2|applies con-tiguous relation C16 of Krattenthaler's package,1Xm=0 b(m) = 1481 5F4� 12 ; 56 ; 76 ; 158 ; 178 ; 54 ; 74 ; 2 ; 1�
= 13 � 13 4F3�� 12 ;� 16 ; 16 ; 78� 18 ; 14 ; 34 ; 1�:

This reduces the original problem to showingthat the 4F3 evaluates to zero. Again no stan-dard summation formula can found. But, observ-ing that top entry 78 and bottom entry � 18 di�erexactly by 1, a further reduction is possible by ap-plying contiguous relation C30 of Krattenthaler'spackage,
4F3�� 12 ;� 16 ; 16 ; 78� 18 ; 14 ; 34 ; 1�

= 3F2�� 16 ; 16 ; 1214 ; 34 ; 1�� 49 3F2� 12 ; 56 ; 7654 ; 74 ; 1�: (2.3)

Now the decisive step consists in using an impor-tant but less known cubic transformation of W. N.Bailey [Bailey 1928, Eq. (4.06)], which the authorfound in a paper by I. Gessel and D. Stanton [Ges-sel and Stanton 1982, Eq. (5.6)], namely
3F2� a; a+ 13 ; a+ 23b+ 12 ; 3a� b+ 1 ; 27x24(1� x)3�= (1� x)3a3F2�3a; b; 3a� b+ 122b; 6a� 2b+ 1 ; 4x�: (2.4)

The two 3F2 from (2.3) correspond to the left-handside of (2.4) with x = 14 and (a; b) = (� 16 ;� 14) or( 12 ; 34), respectively. In both cases we have 3a =2b. This means that applying (2.4) reduces each ofthe two 3F2 from (2.3) to a 2F1 with argument 1,which can be evaluated in closed form by usingwell-known Gauss summation
2F1��; � ; 1� = �( � �� �)�()�( � �)�( � �) :For the latter see, for instance, [Graham et al.1994]. From the closed form evaluations it is easilyveri�ed that the di�erence on the right hand sideof (2.3) indeed is zero, which completes the proofof the positivity part of (1.2) for n = 4m. Theother cases work analogously as made explicit inthe following section.
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SummaryIn order to give a complete picture of the situa-tion, let d(i)m := D4m+i. The general version of themonotonicity result, including (2.1), is this:
Proposition 2.1 (Monotonicity). For i 2 f0; 1; 2; 3gand m � 0 we haved(i)m � d(i)m+1 = b(i)(m) (2.5)where b(0)(m) = b(m) andb(1)(m) = 1681 (168m2 + 343m+ 170) � 13�3m� (2m+ 1)! (6m+ 1)!m! (3m)! (4m+ 5)! ;b(2)(m) = 4243 (40m+ 47) � 13�3m� (2m)! (6m+ 5)!m! (3m+ 2)! (4m+ 5)! ;b(3)(m) = 8243 (8m+ 7)(2m+ 3) � 13�3m� (2m+ 1)! (6m+ 5)!m! (3m+ 2)! (4m+ 7)! :This settles monotonicity, i.e., Dn+4 < Dn, for alln � 0; the proof is analogous to that of (2.1).The proof of positivity, i.e., of 0 < Dn (whichequals d(i)m if n = 4m + i), follows analogously tothat of the case i = 0 using this result:
Proposition 2.2 (Positivity). For i 2 f0; 1; 2; 3g,1Xm=0 b(i)(m) = d(i)0 : (2.6)

These evaluations can be obtained by following es-sentially the same steps as in the derivation of thecorresponding result (2.2) for i = 0. For the readerwho is interested in the underlying hypergeometricstructure, we spell out a more conceptual proof of(2.6) in Section 3. It is based on one-parametergeneralizations of the crucial cubic Bailey trans-form evaluation; it also explains a slight subtletythat arises in the case i = 1.Combining monotonicity (2.5) and the positivityresult (2.6) Knuth's conjecture (1.2) is proved forall n � 0.

We conclude this section with a corollary.
Corollary 2.3. For the di�erences d(i)M = R4M+i �L4M+i, with i 2 f0; 1; 2; 3g and M � 0, we have

d(i)M = 1Xm=M b(i)(m) (2.7)

Proof. The monotonicity part (2.5) establishes (2.7)up to a constant; the positivity part (2.6) estab-lishes (2.7) for M = 0. �
3. GENERALIZATIONSIn Section 2 (page 85), we evaluatedPm�0 b(0)(m)to = 13 , using Bailey's transform (2.4). Here westate one-parameter generalizations (Proposition3.2) that, in certain combinations, specialize toevaluations of Pm�0 b(i)(m) for all residues i. Thetwo-parameter generalization (3.3) sheds additionallight on the underlying hypergeometric structure.For base case evaluation we need the followinglemma.
Lemma 3.1. If 3a+ 1 = 2b then

3F2� a; a+ 13 ; a+ 23b+ 12 ; 3a� b+ 2 ; 1� = ( 32)3aa+ 1 : (3.1)

Proof. By contiguous relation C34 from Kratten-thaler's package, the left-hand side of (3.1) equals3a� b+ 12a� b+ 1 3F2� a; a+ 13 ; a+ 23b+ 12 ; 3a� b+ 1; 1�� a2a� b+ 1 3F2� a+ 13 ; a+ 23 ; a+ 1b+ 12 ; 3(a+ 13)� b+ 1; 1�:Now on each of the 3F2's Bailey's transform (2.4)can be applied and the lemma follows by�( 12)�(2b)�(b)�(b+ 12) = 22b�1;
which is a consequence of the factorial duplicationformula, for example [Graham et al. 1994, Exercise5.22]. �
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For � 2 f1; 2g letK�(a; b; c) := 5F4�a; a+ 13 ; a+ 23 ; c+ 1; 1b+ 12 ; 3a� b+ �; c; 2 ; 1�:Then the generalizations involving the extra pa-rameter c read as follows:
Proposition 3.2. (i) If 3a = 2b thenK1(a; b; c)= � ( 32)2a� 1 b(c� 1)(b� 1)c + ( 32)2bc �1 + c� 1(a� 1)(b� 1)�:
(ii) If 3a+ 1 = 2b thenK2(a; b; c) = � ( 32)2a� 1 (b� 12)b(c� 1)(b� 32)(b� 1)c+ ( 32)2b(a� 1)c�a� cb+ 1 + a(c� 1)(a� 23)(b� 1)�:
Proof. The evaluations can be derived by followingthe same steps as in Section 2 (page 85); in thesituation of part (ii) one needs the above lemmafor base case evaluation. �Now positivity can be derived as follows; note thatbecause of (2.5) it su�ces to prove (2.7) forM = 0.
Proof of of Proposition 2.2. The cases i = 2 and i = 3are immediate from the representations1Xm=0 b(2)(m)

= 2 � 3 � 4735 � 5 K1( 56 ; 54 ; 4740) + 22 � 4735 � 5 K2( 12 ; 54 ; 4740);and 1Xm=0 b(3)(m) = 235K1( 76 ; 74 ; 78);which can be veri�ed easily. The i = 1 evalua-tion is more delicate, because b(1)(m) involves thepolynomial factor 168m2+343m+170 which turnsout to be irreducible over the rational number �eld.Nonetheless, a suitable representation can be foundautomatically by using the software mentioned ear-lier [Paule and Schorn 1995]. Calling the procedureGosper[F, m, order] with order = 2 and F =

F (m) = b(1)(m)=(168m2+343m+170) one �nds aquadratic-polynomial multiple f(m) of F (m),f(m) = (72m2 + 139m+ 65) � F (m);such that1Xm=0 b(1)(m) = 2 � 734 K1( 12 ; 34 ; 78) + 1Xm=0 f(m) (3.2)

and that f(m) = g(m+ 1)� g(m), whereg(m) = �9(m+ 1)(4m+ 3)(4m+ 5) � F (m):HenceP1m=0 f(m) telescopes and reduces to�g(0),which equals 29 . Finally, evaluating2 � 734 K1( 12 ; 34 ; 78) + 29 = 59 = d(1)0completes the proof. �
Remark. Case i = 1 can be put in a somehow morenatural hypergeometric context if one climbs upthe \hypergeometric hierarchy" as follows. LetL2(a; b; c; d):= 6F5�a; a+ 13 ; a+ 23 ; c+ 1; d+ 1; 1b+ 12 ; 3a� b+ 2; c; d; 2 ; 1�:Then one can prove (details are left to the reader):
Proposition 3.3. If 3a+ 1 = 2b, thenL2(a; b; c; d) = � ( 32)2a�1 (b� 12)b(c�1)(d�1)(b� 32)(b�1)c d+ ( 32)2bc d r(a; b; c; d); (3.3)wherer(a; b; c; d) = 23 (b� 12)b(c� 1)(d� 1)(a� 1)(b� 32)(b� 1)� 4b3 (a� c)(a� d)(a� 1)(a+ 1) + 3a (b� c)(b� d)(b� 1)(b+ 1) :One easily checks that L2(a; b; c;1) = K2(a; b; c).For i = 1 we have1Xm=0 b(1)(m) = 24 � 7 � c � d34 � 5 L2( 12 ; 54 ; c; d);
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wherec = 343�p3409336 and d = 343 +p3409336 :We also get an alternative and simpler represen-tation for the case i = 2, namely1Xm=0 b(2)(m) = 2 � 4735 L2( 12 ; 54 ; 4740 ; 56):It is clear that several further families of hyper-geometric series evaluations could be found alongsimilar lines. For instance, as pointed out by oneof the referees, Lemma 3.1 can be generalized to3F2� a; a+ 13 ; a+ 23b+ 12 ; 3a� b+ 2;w�= 3a+ 1a+ 1 �1� xy �3a � 2aa+ 1�1� xy �3a+1;where again 3a+ 1 = 2b, but w = 274 � x2=(1� x)3and y = (1 +p1� 4x)=2. The proof is almost thesame as that of Lemma 3.1, which has x = 14 ; theonly di�erence is that instead of Gauss summationone uses the summation formula2F1��; �+ 122�+ 1 ; z� = �1 +p1� z2 ��2�
(3.4)for evaluating the resulting 2F1's. This formulafollows directly from Gauss's quadratic transfor-mation [Graham et al. 1994, Eq. (5.110)].The same referee also indicated that analogouslyexplicit formulae for3F2� a; a+ 13 ; a+ 23(3a+ n)=2; (3a+ n+ 1)=2;w�;where n is an integer, and for an x-generalization ofProposition 3.2 can be found. For instance, Propo-sition 3.2 generalizes as follows:

Proposition 3.4. For � 2 f1; 2g andw = 274 � x2=(1� x)3;letK�(a; b; c;w) := 5F4�a; a+ 13 ; a+ 23 ; c+1; 1b+ 12 ; 3a� b+ �; c; 2 ;w�:

(i) If 3a = 2b and y = 12(1 +p1� 4x), then
K1(a; b; c;w) = � 1w ( 32)2a�1 b(c�1)(b�1)c+ 1w ( 32)2a�1 b(c�1)(b�1)c�1�xy �2b�2+ a�c(a�1)c�1�xy �2b:
(ii) If 3a+ 1 = 2b and y is as above then
K2(a; b; c) = � 1w ( 32)2a�1 (b� 12)b(c�1)(b� 32)(b�1)c+ 1w ( 32)2a�1 (b� 12)(c�1)(b� 32)(b�1)c��3(b�1)�1�xy �2b�3�2(b� 32)�1�xy �2b�2�
+ a�c(a�1)(b+1)c�3b�1�xy �2b�1�2(b� 12)�1�xy �2b�:

Again, the proof is almost the same as that ofProposition 3.2, which has x = 14 ; the only dif-ference is using (3.4) for evaluating the resulting2F1's.We also want to note that independently P. W.Karlsson [Karlsson 1995] derived some evaluationsof type 3F2(a1;a2;a3b1;b2 ; z) at z = 14 from transforma-tions related to Bailey's other cubic transforma-tion [Bailey 1928, Eq. (4.05)], listed also as [Gesseland Stanton 1982, Eq. (5.3)]. There the results arebased on a limit formula [Karlsson 1995, Eq. (1)],but contiguous relations are used in an analogousmanner.
4. CONCLUSIONIn his letter, D. E. Knuth asked whether his conjec-ture can be proved with \mechanical summationmethods". With respect to this question the so-lution presented here succeeds only partially. De-spite the fact that Krattenthaler's package was sig-ni�cantly helpful, it has to be viewed as a collectionof manipulation rules that provides computer as-sistance in classical hypergeometric work. Hence,not only concerning the 5F4 arising in (2.2) and
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(2.6), but also in general, the problem of mechani-cal evaluation of (nonterminating) hypergeometricseries seems to be quite far from being solved.One possible approach is to make algorithmicuse of contiguous relations. With respect to ter-minating cases this has been suggested by G. E.Andrews in connection with his recent work on\Pfa�'s method" [Andrews 1996; a; b]. A �rst in-teresting attempt has been made by N. Takayama[1996].
ACKNOWLEDGEMENTSI would like to thank Don Knuth for valuable com-ments on a preliminary version of this paper. Eval-uation (3.3) was derived following a suggestion ofDick Askey. Helmut Prodinger made me aware ofKarlsson's paper. One of the referees observed that(3.4) can be brought into action.
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