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Equivariant polynomial functions with the symmetries of the
n-cube are completely determined in terms of permutations
of exponents. Strategies for random searches of linear combi-
nations of these functions are described and used to generate
interesting examples of attractors. These attractors have sym-
metries that are an admissible subgroup of the symmetries of
the square, cube and 4-cube. A central projection of the 4-cube
with partial inversion is used for the illustrations of attractors in
four dimensions.

INTRODUCTION

There has been much recent work on creating at-
tractors with specified symmetry. This work has
been motivated in part by the desire to under-
stand the bifurcations that occur in physical sys-
tems such as Couette—Taylor flows, which arise in
the fluid between rotating cylinders. Dozens of
types of symmetry have been identified for these
systems; some are described in [Stewart and Gol-
ubitsky 1992]. (Like [Weyl 1952], this reference
contains an engaging introduction to the study of
symmetry in the broad.)

In two dimensions, the finite fixed-point groups
are the cyclic groups C,, and the dihedral groups
D,,, and attractors exist with symmetries of each
of these types. Striking examples can be found in
[Field and Golubitsky 1990; 1992; 1995]. We will
develop the theory and illustrations of attractors
in n-dimensional space that have the symmetry of
the n-cube.

Examples of symmetric attractors in the plane
can be generated by the iteration of maps, usu-
ally polynomials, that are equivariant with respect
to C,. The polynomial invariant functions and
equivariant maps for the point symmetry groups
of some polytopes in various dimensions have been
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studied [Patera et al. 1978; Cox et al. 1992]. The
equivariant maps are often described in terms of
finite generating sets. The article [Brisson et al.
1996] describes the maps equivariant under the ro-
tational symmetries of the three-cube in two ways:
in terms of finite generating sets and in terms of
maps arising from permutations of exponents in
the monomials. In Section 2 we generalize this
to a classification of the equivariant polynomial
maps that have the rotational symmetry of the n-
cube.

Random linear combinations of these maps can
be created in an automated manner, and analyzed
under iteration. Promising examples can be used
to produce images for human perception. This
technique is described in Section 3, and examples
of the results in dimensions up to four are given.
The examples of attractors in four dimensions re-
quire careful projection in order for the symmetries
to be visible; we suggest some good projections and
use them in Figure 4.

Attractors in dimensions higher than two may
have far richer symmetry than those in the plane
because of the larger symmetry groups. For ex-
ample, the symmetries of the three-cube include
independent order-three and order-four turns. Fig-
ure 2 illustrates attractors exhibiting all these sym-
metries, and Figure 4 shows attractors having the
even richer symmetries of the 4-cube.

1. THE SYMMETRY OF THE n-CUBE

The symmetry group of the n-cube is well known.
We will be interested both in the full symmetry
group (which includes reflections in codimension-
one planes) and in the rotational, or orientation-
preserving, symmetry group. One classic discus-
sion of these symmetry groups can be found in
[Coxeter 1973]: The full symmetry group of the
n-cube centered at the origin with edges parallel
to the axes is generated by all permutations of the
axes along with the sign changes along each axis
independently. This yields a group of order 2"n!.
The orientation-preserving symmetry group is half

the size of the full group; it is generated by n — 1
rotations as follows.

Let Rj, denote a 90° rotation in the oriented jk-
plane, leaving all other axes fixed. The action of
R is given by

Ri(cooyzjyen o @pyen) = (cony —Thy oo Ty ..

If we denote the permutation of the axes j and k by
o and a sign change in the j-th coordinate by S;,
then Rj, = 0;1S, = S;0;:. Moreover, R, = S;S,,
R, = Ry; and R}, = 1. We will number our axes
beginning with 0, and distinguish axis 0 when con-
venient. If j,k # 0 we have Rj, = Ry, Ro;Rox. By
composing rotations R;, we can achieve any per-
mutation of the axes, and at least half the choices
of sign codes for that permutation, since any two
coordinates can be negated via R?, = S;S,. There-
fore the orientation-preserving group has size ex-
actly 2" 'n! and is generated by Ry, Rz, ...,
Ron 1.

In particular, the orientation-preserving symime-
try group of the square has 4 elements generated by
a single rotation, that of the cube has 24 elements
generated by two rotations, and that of the 4-cube
has 192 elements generated by three rotations. In
the next section we will completely describe the
polynomial maps that have these symmetries.

2. EQUIVARIANT POLYNOMIAL MAPS

Suppose p is a symmetry of the n-cube. A map F :

R — R" is p-equivariant if F(p(X)) = p(F(X)).
The zero map, the identity map and the map

F({zg, 21,y xn_1)) = (0,20, ...,2> )

are simple examples of maps that are equivariant
for all the rotations and reflections of the n-cube.
In order to construct and classify more intricate
examples, we will introduce the following ideas and
notations. First, if ¢ = (ip,...,7, 1) is a vector

of exponents and X = (zg,...,2,_) i a vector

of real numbers, we define X° = aa} ...z
Notice that if ¢ is any permutation, then X' =

-1

(0X)°" and hence (¢ X)"= X7 7.



A vector of nonnegative integers will be said to
have tail-uniform parity if the first element has par-
ity different from all the others. Thus, (3,2,4,0)
and (2,1, 3) have tail-uniform parity, but (1, 3, 2, 4)
does not. If 7 has tail-uniform parity, we denote by
I = I(?) the parity of the tail: I = 0 if even and
I =1 if odd. Moreover, for a permutation ¢ in the
symmetric group &,,, we denote by s(o) the parity
of 0. The transformation of R* that permutes the
coordinate axes according to ¢ is also denoted by
o; this is the map defined by

> n))-

Thus if ¢ is the transposition o5 followed by the
transposition og;, we have o((3,2,4)) = (4,3,2),
since o(0) =1, o(1) =2, 0(2) = 0.

We are now ready to define the maps that are
the key to classifying the polynomials equivariant
with respect to the symmetry of the n-cube. Let 7
be a vector with tail-uniform parity. Then define

—

H(X) as the vector whose k-th coordinate is

Z (_1)[5(0’))20’(?)7

a(0)=k

U((l‘a(o),l‘g(l), PN ,l‘a(n))) = ((l‘o, L1y

for £k =0,...,n—1; here the sum is over all permu-
tations o € &,, satisfying the specified condition.

As examples with n = 3, consider 7 = (3,2, 4),
for which

H(372,4>(<$7y7z>) =

<x3y2z4+x3y4z27 x4y3z2+x2y3z47 x2y4z3+x4y2z3>
since I = 0, and = (2,1, 3), for which
H(2,1,3>(<$7y7z>) =

<l,2ylz3_l,2y3217 Byl —aly?s xlygzz—x3y1z2>

since I = 1. When 7 has repeated entries, the
terms can combine and even collapse:

H<4,171>(<x7 Y, Z)) = (07 0, 0>7
H<3707070> (<w’ 'CC, y’ Z>) = <6w37 6x37 6y37 6z3>
Theorem 2.1. If ¥’ has tail-uniform parity, the map

H; is equivariant with respect to all orientation-
preserving symmetries of the n-cube.
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Proof. We need only check that H;(Roj()z)) =
Ry;(Hy(X)) for j = 1,2,...,n—1. We do this for
each coordinate separately. Write 7 = 0y; 00 =
0y, © 0, so that s(0) =1 — s(7). The k-th coordi-
nate of Hy(Ry,;X) is therefore

Y (=1(04,8,X)7®

o(0)=k
= 2

7(0)=00; (k)

(=D (=17 (8,X)7.

The sign change caused by S; in (S;X)7 is —(—1)*
if 7(0) = 7, and (—1)! otherwise. Thus, for k = 0,
the sum on the second line of the preceding display
reduces to

~ 3 (O F,
7(0)=j

J

and this is the 0-th coordinate of Ry;(HzX). For
k =7 we get

Z (=) X7

7(0)=0

and for other coordinates, with k£ # 0, 7, we have

Z (=) X7,

7(0)=k

These expressions also match the corresponding co-
ordinates of Ry;(H:X). O

Of course we can build other maps equivariant with
respect to the symmetries of the n-cube by taking
linear combinations of the maps given by Theo-
rem 2.1. Moreover, calculations similar to those in
the preceding proof show that a map H; is equi-
variant with respect to the reflections S; exactly
when I is even.

Theorem 2.2. Let P : R* — R* be a polynomial map
with the orientation-preserving symmetries of the
n-cube. Then P is a linear combination of maps
H;, where ¥ has tail-uniform parity.
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Proof. Let the k-th coordinate of P have the form

2 : s
Q7. )

7

where £k =0,...,n—1. Since P is Rj;-equivariant,
we have

P(R%,X) = R, (PX).
The j-th coordinate of P(Rf—k)z) is

D 088 X) = (—1)7 T a X7,

7

while that of R (PX) is
> —a;X

Equating like terms, we get a;; = —(—1)7"a;.
Thus, either a;; = 0 or #; and %, differ in parity. In
particular, if agy # 0 then #y and 7, differ in parity,
which implies that 7 has tail-uniform parity.

As an aside, notice that if ap; # 0 and n > 2 (so
we can pick distinct nonzero indices j and k), the
above implies that a;; = 0 or 7; and 7}, differ in par-
ity. Since the latter possibility has been excluded,
it must be that a; = 0. Letting other indices play
the role of 0 we see that, when n > 2, a term that
appears in one coordinate cannot appear in any
other.

Next we show that, if any term appears, so do
terms for every permutation of the exponents. In
particular, we claim that if ¢ is any permutation
such that ¢(0) = j then

(o7 = () (—1)"7).

We prove this by induction on the number of trans-
positions required to write the permutation o. If
o = 1 the claim holds, which establishes the base
case. We consider two cases, depending on whether
the last transposition moves j.

Case 1. Suppose 0 = 0,7 where 7(0) = k. By the
induction hypothesis,

(o7 = Qgr(ry(—1)"07).

Now R;i-equivariance implies
P(R]kX) - R]k(PX)
The j-th coordinate of P(R;,X) is

- —1.

> a8 X) = Y a$.X)7

K3

— Z ajajk(?)(SkX)l
= Z ajff;k(f)(_l)?sz

while the j-th coordinate of Rjk(P)z) is —apX'.
Therefore, ajajk(;)(—l)?k = —agy and hence agz;) =
o, (1y(=1)7P5. Now 7(0) = k so —(—1)""% =
(=1)! and also s(c) = 1 — s(7); combining these
facts with the induction hypothesis implies aoy =
@jo(r)(—1)15(7), as required.

Case 2. Suppose 0 = 0,7, where k and m are not
j and 7(0) = j. By the induction hypothesis,

Aoy = a]'-,-(;) (—1)IS(T).

Rym-equivariance implies PRy, X) = Ry (PX).
The j-th coordinate of P(Ry,,X) is

Z aﬁ(akmsm}z)? = Z aﬁ(Sm)_(')U’:nll?

7

= o0 (SnX)’
= Z A jor, () (_1);"1 )Zi‘,

while the j-th coordinate of ka(P)z) is aﬁ)zf.
Therefore, aj,,,, (n(—1)™ = aj; and hence a;,z =
Wjorpr (1)@= Now 7(0) = j so (=1)"On =
(=1)! and again s(o) = s(7) + 1; combining these
facts with the induction hypothesis implies aoy =
@jo(r)(—1)1%(7) as required.

Now we have established the claim. From the
claim we see that for any nonzero term a, ;- there
will be additional nonzero terms for each permu-
tation of 7. These terms can be taken together to
get agz AX). Tt is also clear from the claim that
every nonzero term in any coordinate arises in this



way, hence P is a linear combination of maps of
the form H;, as required. O

Theorem 2.2 gives a generating set for all the equi-
variant polynomial maps with the symmetry of the
n-cube. This generating set is infinite and con-
tains trivial maps, as seen in our examples. It is
known from classical invariant theory that there
are finite generating sets for these families over the
ring of invariant functions; however, we have found
the direct control over exponents in the equivariant
polynomials and the uniformity provided by using
this infinite generating set is quite effective for con-
structing examples with the desired symmetries.

3. EXPERIMENTS

The equivariant polynomial maps H; of the n-cube
have been implemented in the high-level program-
ming language J, which is available both commer-
cially and as freeware. J is described in detail in
[Iverson 1995], while [Reiter 1995] gives an intro-
duction targeted to students of mathematical visu-
alization. We give at the bottom of the page the J
definition of the map builder, called H. While the
code is not easily comprehensible to readers unfa-
miliar with J, it is offered because of its conciseness
and independence on the dimension, and because it
provides a compact, complete executable founda-
tion for an exact description of the maps we iterate
and use in our experiments.

With that definition of H, we can describe our
maps using a notation that is very close to the

H=:2 : 0
p=.(i.'#y.)A.i.#y.
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mathematical notation we have been using. For
example, to define

f == H(10> + 090H<01> - 05H(21> - 065H(32>

we use the J functionf=: 1 H1 0 + 0.90 H 0 1
+ _0.5H 21+ _0.65 H 3 2. This is a polyno-
mial map from R? to itself, since the vectors of
exponents only have two coordinates. As we have
seen, it must have the symmetry of the square. We
can see an example of this by iterating f on (1,2)
and (—2,1), which differ by a 90° rotation. Here
are the results of 100, 101, and 102 iterations:

£7:(100 101 102) 1 2
0.6079127 0.371259
0.3222528 0.864193
0.4268942 0.990321

£7:(100 101 102) _2 1
0.371259 _0.6079127
0.864193 _0.3222528
0.990321 0.4268942

One can see that the iterates of the rotation are the
same as the rotation of the iterates in this case.
Figure 1, left, shows the result of 25 million it-
erated images under this map. For each of 100 ini-
tial conditions we iterated the map 250,000 times
and recorded the images, discarding the first 1000
iterations in each case, so as to remove transient
behavior. These runs took place in parallel. Ex-
periments indicate that the attractor is transitive,
so this initial point averaging creates the same im-
age that 25 million direct iteration steps would.

s=.x.*%_1"(1{y.)*+/0<:0: (#&>)0C."1 p

k=.i.%0"1 p

(+/ . #)"1&k]l/.s)Q((x/ . ")&(0 1]:k1/.p{y.))

)

J-language map builder implementing the creation of equivariant polynomial maps Hz. All elements of the
symmetric group &,, are encoded by p. The coefficients of the terms are given by s. The “keys” used for
organizing the terms into the appropriate coordinates are given by k. Lastly, the resulting map is constructed
as the sum of multiples of the coefficients times the appropriate monomials.
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(About the color coding: in each figure, pixels
visited a low number of times are shown in red,
those visited the most are colored magenta, and
those in between are given hues ranging from red
to magenta around the color wheel. More precisely,
for each figure, a frequency table of the frequen-
cies of hits at each pixel is created, logarithms are
applied, and a cumulative distribution is created,
which is then linearly mapped to the hues. While
at times images can be improved by tuning the
palette, this scheme seems to be quite effective and
is used for Figures 1, 2, and 4.)

The map used for this example uses a perturba-
tion of the parameters produced by a simple ran-
dom production scheme. In particular, we took
linear combinations of four of the H maps where
the coefficients were randomly selected from the in-
terval [—1,1] and the exponents were randomly se-
lected (possibly repeated) tail-uniform vectors with
entries less than 4. The resulting map was dis-
carded if its iterates were not finite or if it pro-
duced a short cyclic behavior within 20,000 itera-
tions. This was repeated until a map passed that
test. Then an image of the iterates was created
and the map was discarded unless there were at
least five columns of pixels with more than two
nonbackground color pixels appearing. The im-
ages produced satisfying those requirements were
stored for later viewing. A run resulting in 100
such images produced several attractive images.

Figure 1, right, was created in a analogous way,
by the iteration of the map

This map was also produced in this run of one hun-
dred random examples; however, no perturbation
of the parameters was used in this case. Both at-
tractors in Figure 1 have the rotational symmetry
of the square, but they are not symmetric with re-
spect to the reflections.

This automatic scheme for generating attractive
examples is surely naive, but it seems to be quite
successful when applied to dimension two. The

reader may want to refer to [Barany et al. 1993],
which describes the use of detectives for determin-
ing symmetry. Also, a simple approach to creating
attractive images of the iteration of classical com-
plex quadratic maps is described in [Sprott and
Pickover 1995].

In dimension three we ran the same scheme, and
projected the attractors (with no attempt at hiding
pixels behind other pixels) in order to obtain the
images to be analyzed. A run of 150 such exam-
ples again led to several interesting maps. Figure
2 shows two of them, selected as the most note-
worthy because they appear to be low-dimensional
(or at least low-volume) attractors and because of
the interesting placement of the “hot spots”. The
attractor on the left has the reflective symmetries
of the cube in addition to the rotational symme-
tries; the hot spots are associated with faces of a
cube. The attractor on the right has only the rota-
tional symmetries, and the hot spots are associated
with the edges of a cube. This attractor appears
to break up into four loops twirling tightly in three
spots each. If these loops were distinct they would
form conjugate attractors. However, they coalesce,
and experimentally the attractor is transitive, so
that the full image is produced upon iterating a
single point.

In practice it is easy to perturb the parameters
for the map of Figure 2, right, to obtain four conju-
gate attractors each having C; symmetry. It is also
possible to perturb the parameters to find three
conjugate attractors with Cy symmetry. Figure 3
shows the results of iterating such a map.

Unlike Figure 2, right, where it is difficult to
visualize the quarter-turn rotational symmetries,
Figure 3 displays these C; symmetries very well.
Also notice that the attractor in Figure 3 breaks
up into components; it is easy to find perturba-
tions of these parameters that result in connected
attractors with Cy symmetry. We see in this ex-
ample that although the map is designed to have
the rotational symmetries of the cube, the com-
puted attractor may only have the symmetries of
a subgroup. In fact, in general some subgroups
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FIGURE 1. Example attractors in two dimensions having the rotational symmetry of the square. On the left
is a thin attractor corresponding to the map H 1) + 0.90H 1) — 0.5H 21y — 0.65H 32y. On the right is a thick
attractor corresponding to the map —1.756 H 10y + 0.256H 39y — 0.6 H (o). See top of page 332 for color key.

FIGURE 2. Example attractors in three dimensions having the rotational symmetry of the cube. Left: map
—0.882H 190y + 0.104H (300 + 0.802H 192y + 0.792H (135, perpendicular projection from the viewpoint (2, 3,1);
this attractor also has reflective symmetries. Right: map 0.66H 100y + 0.132H 300y — 0.962H 302y + 0.78 H 931,
perpendicular projection from the viewpoint (2,1.5,1).
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FIGURE3. Three-dimensional example, with map
065H<100> +0132H<300> —0962H<302> +078H<031> .

may not be admissible as the symmetry group of
an attractor generated by maps equivariant with
respect to a group. The symmetry groups of at-
tractors and restrictions on the subgroups that are
admissible are described in [Melbourne et al. 1993;
Ashwin and Melbourne 1994]. The necessary back-
ground and notation can be found in [Golubitsky
et al. 1985], along with a handy subgroup lattice
diagram for the group of the rotational symmetries
of the cube.

See [Brisson et al. 1996] for several other exam-
ples of attractors having the symmetry of the cube.

Attractors in four and higher dimensions can
easily be constructed using the same ideas that we
used in lower dimensions, but it is far more difficult
to achieve a meaningful projection and interesting
examples are sparser. In four dimensions we have
a good solution to the problem of projecting the
attractor in a meaningful way. One of the most
symmetric ways of viewing the 4-cube in three-
space is to imagine two concentric cubes with cor-
responding vertices connected. This is often called

the central projection of the 4-cube. We use this
projection with a kind of inversion used to fill the
interior as follows. We assume for convenience that
the points of attractor we are visualizing have been
normalized so their coordinates lie between —1 and
1. Consider the point in 4-space as determined by
a point in 3-space, denoted ¥ = (z,y, z), along with
a fourth coordinate, t. When ¢ = 1, we want the
projection to move the unit cube into the space be-
tween the nested cubes with coordinates bounded
by £2 and £3. If we set

—

v

7 max(fe], yl,2l)’

we can move ¢ into the desired space by using
2¢ + ¢v. When t = —1, we want the projection
to move the unit cube into the space between the
nested cubes with coordinates bounded by £1 and
+2. This time we can move ¥ into the desired
space by using 2« — ¥. Notice that the minus sign
causes a reversal of direction that, along with the
translation by 24, gives a kind of inversion. When
t lies between —1 and 1, we take the correspond-
ing combination, that is, 24 4+ ¢4. One can also
use the Euclidean norm to create the “unit” vector
i, but we prefer the maximum norm in order to
preserve squareness of the edges. Of course, this
projection is discontinuous at the origin, but this
is not a problem, since we expect a repelling fixed
point at the origin.

Figure 4 shows images obtained using this pro-
jection. The top part of the figure shows an at-
tractor having hot spots near the 16 vertices of the
4-cube. One can easily see the reflective symme-
try between neighboring vertices of the outer cube.
The reflection between neighboring vertices of the
inner and outer cubes is more difficult to see. The
reflection of three perpendicular vectors at a vertex
of the outer cube which are facing inward become,
under the inversion, three perpendicular vectors at
a vertex of the inner cube which are also facing
inward; this is to be expected because of one ori-
entation reversal from the reflection and one from
the inversion.



The bottom part of the figure shows a relatively
thin attractor, with a double diamond shape near
each face and “butterflies” in between, where the
points of the diamonds get near each other. Since
the attractor does not have reflective symmetry,
the symmetries are more difficult to observe. This
attractor is the only example given here where one
might have doubts about long-term stability. The
computations usually remained finite for the 500
thousand iterations computed for each of the 400
initial conditions used, but there were occasions
when small perturbations of the initial conditions
caused numeric overflow. In fact, the image shows
examples of “dust” far from the main attractor.

Both attractors in Figure 4 were found by ran-
dom searches of hundreds of four dimensional ex-
amples with higher exponents allowed, and both
had parameters tuned. In general, it seems much
harder, as one might expect, to randomly discover
examples of thin, transitive attractors in higher di-
mension.
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