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We describe an elementary method for computing isolated val-
ues of M (x) = > . u(n), where u is the Mébius function.
The complexity of the algorithm is O(22/3 (log log z:)'/?) time
and O(z'/3 (loglog x')?/?) space. Certain values of M () for
@ up to 1016 are listed: for instance, M (10'6) = —3195437.

n<z

1. INTRODUCTION

Mébius [1832] was the first to study the function
p(n), defined for positive integers n by

o u(l)=1,

e 4(n) =0 if n has a squared prime factor;

e u(py...pr) = (=1)* if all the primes py,...,px
are different.

Mertens [1897] introduced the summation function

M(x) =" p(n),
n<e

which is defined for all real > 0. He verified
that |M(z)| < /x for < 10000, and conjectured
that this inequality holds for any . Von Sterneck
[1912] verified this up to 500,000. (The Riemann
Hypothesis implies the weaker conjecture | M (z)| =
O(z'/?*¢) for all € > 0.)

However, Odlyzko and te Riele disproved the
Mertens conjecture when they showed [1985] that

M M

lim inf (z) < —1.009, limsup (z)

z—+00 \/E z— 400 \/E
Pintz [1987] made this result effective, proving that
there exist values of z < exp(3.21x10°*) such that
M(@)| > V.

The first value of z for which |M(z)| > /z is
still unknown, but Dress [1993] has verified that
it exceeds 10'2. He also proposed in his paper a

> 1.06.
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method for computing an isolated value of M (x),
using O(z%/*log"/? ) time and O(z/?) space.

Lagarias and Odlyzko [1987] proposed an ana-
lytic method for computing 7(z) (the number of
primes not greater than x) in O(z'/?**) time and
O(z'/*+) space. They mentioned that their algo-
rithm could be adapted for computing M (z). To
our knowledge, nobody has tried to compute 7 (z)
or M (z) using their method yet.

In this paper we explain another method for
computing an isolated value of M (x) using

O(z*/3(log log x)'/?)

time and O(z'/*(loglog z)?/?) space. Our method
is elementary, and was inspired by [Lehman 1960].
We give a table of certain values of M (x) for x up
to 105, and also some computation times.

2. A COMBINATORIAL IDENTITY

For completeness we recall some classical results
concerning the Mobius function. Our goal is to
obtain Lemma 2.1 below, which is essentially de-
rived from [Lehman 1960, p. 314].

It follows immediately from the definition that
p(n) is a multiplicative function. Next, we have
the Mdbius inversion formula

> ={,
dln

This is obvious for n = 1. For n > 1, we write
n =pi'---p¥ with £ > 1, and obtain

Z p(d) = 1+Z/”(pi)+zu(pipj)+. .
dln p =

o ()3 e

ifn=1,
otherwise.

The inversion formula easily implies, for > 1,
that >° ., M(z/n) = 1. Indeed,

SM(Z) =33 ) =YY () = u).

n<z n<ze d<Z <z d|l

Lemma 2.1. For 1 < u < x we have the combinato-
rial 1dentity

M(z) = M(u) — Z pu(m) Z M(%)

m<u Lnl L
< e >

Proof. We use the Mobius inversion formula, to-
gether with the equality > _ M(%) = 1 with z
replaced by z/m:

>oulm) Y M(==) =" plm) = M(u)

%N(m);M(%) - ;M@) ;mm)
=M (3) = M().

The result follows by writing M(u) — M(z). O

3. OUTLINE OF THE METHOD

Observe that the sum in Lemma 2.1 has more than
x terms, but these terms often have the same value.
This comes from the general fact that, for y > 0,
the sequence (|y/n]), takes at most 2[\/y] + 1
different values:

e the values |y/n] for 1 <n < [\/y],
e the values 0, 1, ..., [\/y] corresponding to n >

IVZIE

We apply this idea to split the sum in Lemma 2.1.
For 1 < u < \/x we have M (z) = M (u)—S,(x,u)—
Sy(x,u), with

Suww) =Y um) Y M(=),
msu x<n<y/E

Sy(x,u) = Z p(m) Z M(%>
m<u VE<n<E

For any y > 0 of the form y = z/m, and any
k < \/y, it is not difficult to compute the number
of values of n with \/y <n <y and |y/n] = k.
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For both S)(z,u) and Sy(x,u) the number of
terms in the sum is at most

> Va/m=0(wu).

m<u

This summation will be done using a table of
values of p(n) for 1 <n < w and a table of values
of M(n) for 1 <n < x/u.

We will see later that it is possible to build these
tables in O((x/u)loglog(z/u)) time. By choosing
u = x/3(log log x)?/%, we get a total time of

O(% log logl‘ + A /Iu) = O(I2/3(10g log 13)1/3).

The tabulation of p(n) for n < u costs O(u)
space, which is acceptable. Unfortunately the tab-
ulation of M would need O(z/u) = O(z*?) space,
which is not available on current computers when
x > 10'®. Hence we have to work by blocks of size
L = u, as we will explain now.

4. TABULATING M BY BLOCKS

We suppose L > u > z'/* and we want to tabulate
M for a <n <b=a+ L. Since we have M(n) =
M(n—1)+ p(n), it suffices to know M (a — 1) and
have a table of u(n) for a < n < b in order to build
a table of M (n) for a < n < b. The additional cost
(from p to M) is O(L) time.

Hence it suffices to be able to tabulate p(n) for
a < n < b. This must be achieved without the help
of a table of primes up to b, which would be too
big. The following algorithm uses only a table of
primes up to /b:

Algorithm 4.1 (Tabulation of 1.).
Input: bounds b > a > 0.
Output: a table ¢(n) of values of u(n) for a < n < b.

1. for each n € [a,b), set t(n) = 1.
2. for each prime number p € [2, \/5], do:
— for each multiple m € [a,b) of p?, set t(m) = 0.
— for each multiple m € [a, b) of p, multiply ¢(m)
by —p.

3. for each n € [a,b) such that t(n) # 0, do:

—if |t(n)| < n, multiply t(n) by —1.

—if t(n) > 0, set t(n) = 1.

—if t(n) < 0, set t(n) = —1.
In order to use this algorithm for tabulating M by
blocks up to z/u, we need a table of the prime
numbers up to \/a% Such a table is easy to

build using Eratosthenes’ sieve, a process that re-
quires O(y/x/u) space. The finished table takes

O(y/z/u/log(x/u)) space, by Chebyshev’s Theo-
rem. Since y/z/u < L, the space cost of tabulating
M by blocks is O(L). For each block a < n < b
the number of operations we do is

O<L+ 3 (1+§+§)> = O(%—I—Lloglogb),

p<Vb

which is O(y/z/u + Lloglog(z/u)).

Hence the total cost for tabulating M by blocks
of size L up to z/u is O((x/u)loglog(z/u)) time
and O(L) space.

5. COMPUTING S, (x,u) AND S,(x, u)

For 1 < a < b we have

x x x
0 < —<b —= —<n< —.
mn mb ma
We suppose we have tabulated M (n) for an in-
terval of size L, namely for a, < n < ajy; with
ar =1+ kL, for some k < z/(uL). The number of
terms of the sum over m and n corresponding to
this block is

3 (o[ [V ]) ([ )

The total number of terms we have to sum is ob-
tained by summing the preceding expression over
k < x/(uL). Reversing the order of summation
shows that the total equals the sum over m < u of

PGP R e (il )

_x_
wl
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n 10 11 12 13 14 15
M(1x10™) —-33722 —87856 62366 599582 875575  —3216373
M(2x10™) 48723  —19075 —308413 127543 2639241 1011871
M(3x10™) 42411 133609 190563  —759205 —2344314 5334755
M((4x10™) —25295 202631 174209  —403700 —3810264 —6036592
M(5x10™) 54591 56804 —435920 —320046 4865646 11792892
M(6x10™) —56841 —43099 268107 1101442 —4004298 —14685733
M(7x10™) 7917 111011 —4252 2877017 —2605256 4195668
M(8x10™) —1428 —268434 —438208 —99222 3425855 6528429
M(9x10™) —5554 10991 290186 1164981 7542952 —12589671

TABLE1. Values of M (k x 10™).

The sequence (|z/(may)]), forms a subdivision
of the interval |u/m,+/x/m| such that the above
sum over k is at most /x/m. Hence the cost
of computing S;(z,u) is O(y/zu) time and O(L)
space.

Turning now to Sy(z,u), we start by defining
Iy, k) = #{n : Jy <n <y, ly/n] =k}. The
computation of [(y, k) clearly needs O(1) time. We
have

So(w,u) = plm) Y M(k)l(%,k)

m<u
=\

=2 M@E) )

x
um) (= k).

m

k< /T m<min(u,z/k?)

This last sum is appropriate for use in a tabulation
of M done by blocks of size L without any addi-
tional cost. Hence the computation of Sy(x,u) can
be achieved in O(y/xu) time and O(L) space.

We therefore get a total time cost of

O((z/u)loglog x + vzu)= O(2**(loglog z)'/?),
by choosing

u = x*/?(log log x)*/°.
The total space cost is O(L) with L > w. In our
program we chose L = 4u. (Our program is writ-
ten in C++, compiled with GNU C/C++, and is
270 lines long. For more information, contact the
second author.)

Tables 1 and 2 show some of the values obtained.

x M(xz)  time (s)
108 212 0.06
107 1037 0.28
108 1928 1.36
10° —222 6.74
1010 —33722 32.74
10t —87856 160.99
10'2 62366 878.37
10%3 599582 4927.23
10" —875575  24048.91
105 —3216373 115614.87
1016 —3195437 555276.59

TABLE2. Values of M (10™) and computation times
on a 64-bit DEC Alpha 3000 Model 300 with 96
Mbytes of memory.
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