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This article is concerned with the large-prime variations of the

multipolynomial quadratic sieve factorization method: the PM-

PQS (one large prime) and the PPMPQS (two). We present the

results of many factorization runs with the PMPQS and PPM-

PQS on SGI workstations and on a Cray C90 vector computer.

Experiments show that for our Cray C90 implementations PPM-

PQS beats PMPQS for numbers of more than 80 digits, and that

this crossover point goes down with the amount of available

central memory.

For PMPQS we give a formula to predict the total running time

based on a short test run. The accuracy of the prediction is

within 10% of the actual running time. For PPMPQS we do

not have such a formula. Yet in order to provide measure-

ments to help determining a good choice of the parameters in

PPMPQS, we factored many numbers. In addition we give an

experimental prediction formula for PPMPQS suitable if one

wishes to factor many large numbers of about the same size.

1. INTRODUCTIONLet n be an odd positive integer to be factored andsuppose that n is not a prime power. If we can �ndtwo integers X and Y such thatX2 � Y 2 mod n; (1.1)then the greatest common divisor of X � Y andn is a nontrivial factor of n if X 6� �Y (mod n).If X and Y are randomly chosen subject to (1.1),then this yields a proper factor of n in at least 50%of the tries. This principle is the basis for the bestknown general factorization methods, namely, themultipolynomial quadratic sieve, or MPQS [Bres-soud 1989; Pomerance 1985; Pomerance et al. 1988;Silverman 1987; te Riele et al. 1989], and the num-ber �eld sieve, or NFS [Lenstra and Lenstra 1993].c
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258 Experimental Mathematics, Vol. 5 (1996), No. 4In this paper we discuss and compare the sin-gle large-prime variation (PMPQS) and the doublelarge-prime variation (PPMPQS) of MPQS. An in-troduction to each of these methods is given start-ing in Section 2. We factor many numbers rangingfrom 66 to 88 decimal digits, mainly with PPM-PQS, on either SGI workstations or a Cray C90vector computer.PPMPQS is known to be faster than PMPQS\by approximately a factor of 2:5 for su�cientlylarge n" [Lenstra and Manasse 1994], but the cross-over point depends heavily on the choice of the pa-rameters in the two methods, the computer, theavailable memory, and the implementation. It isstated further in [Lenstra and Manasse 1994] thatPPMPQS was found to be faster than PMPQS fornumbers of at least 75 decimal digits, and that thespeed-up factor of 2.5 was obtained for numbers ofmore than 90 digits. As a comparison, a 106-digitnumber was factored with PMPQS in about 140mips years, and a 107-digit number with PPM-PQS in about 60 mips years, both with a factorbase size of 65,500. A 116-digit number was fac-tored with PPMPQS in about 400 mips years, witha factor base size of 120,000. No actual results forsmaller numbers were given. Thomas Denny re-ports in his Master's Thesis [1993] various experi-ments with PPMPQS for numbers in the range of75{95 decimal digits. From these experiments it isnot clear where the crossover point for Denny's im-plementation lies. The largest numbers presentlyfactored with PPMPQS are a 120-digit numberdone in about 825 mips years [Denny et al. 1994],and the 129-digit RSA challenge described by Mar-tin Gardner, done in about 5000 mips years witha factor base size of 524,339 [Atkins et al. 1995].A theoretical and practical problem with PPM-PQS is the determination of the optimal param-eters for a number of a given size. Since it onlypays to use PPMPQS for rather large numbers,and since it is di�cult to accurately predict thetotal running time of PPMPQS on the basis of ashort test run (as contrasted with PMPQS), theprecise e�ect of one speci�c choice of the parame-

ters can only be measured accurately by carryingout the complete sieve part of the job. So in orderto �nd the optimal parameter choice for a givennumber, that would minimize the CPU time, onewould have to repeat the complete sieve job for sev-eral (10, say) di�erent choices of the parameters.Of course, this does not make much sense since onesieve job will do to factor the number, so we de-cided to adopt the strategy to factor as many aspossible di�erent numbers in a not too wide dec-imal digits range, thus providing extensive expe-rience with PPMPQS for many di�erent numberson the one hand, and contributing to a table of un-factored numbers [Brent and te Riele 1992] on theother hand. The price to pay for this strategy isthat we can only give an indication of the optimalparameter choice for PPMPQS for numbers in the65{90 decimal digits range.We have implemented PPMPQS on an SGI work-station, and on a Cray vector computer. Somecomparative experiments with PMPQS and PPM-PQS on a Cray C90 indicated that for our imple-mentation on that machine the crossover point liesaround numbers having 80{85 decimal digits. Forseveral di�erent choices of the parameters in PPM-PQS, we have factored eight numbers in the 66{83digit range on an SGI workstation, and more than70 numbers in the 67{88 digit range on a Cray C90vector computer, as a contribution to the table in[Brent and te Riele 1992]. Most of these numberswere already tried before with the elliptic curvemethod (ECM), without success.Section 2 discusses Dixon's algorithm. MPQS isdescribed in Section 3. In Section 4 we treat the ef-�cient generation of the polynomials in MPQS. InSection 5 the single large-prime variation of MPQS(PMPQS) is described. A known theoretical for-mula is worked out that helps to predict the to-tal sieve time on the basis of a short test run. Inthis test run (of a few minutes CPU time, say)the speed is determined by which so-called com-plete and partial relations are generated during thesieve step of the algorithm; this speed is approxi-mately constant during the whole sieve step. The



Boender and te Riele: Factoring Integers with Large-Prime Variations of the Quadratic Sieve 259accuracy of the prediction formula is within 10%of the actual sieve time. In Section 6 the doublelarge-prime variation of MPQS is described, andan experimental prediction formula is given thathas a restricted scope in the sense that it only ap-plies to numbers of roughly the same size, and for a�xed choice of the parameters of the algorithm. Inaddition, for one particular number of 80 decimaldigits, we have determined the optimal choice ofone (of the four) parameters in PPMPQS as anillustration of the fact that this optimum is at-tained for a rather wide range of this parameter.Section 7 covers implementation aspects and dis-cusses our experiments, including a comparison ofour PMPQS- and PPMPQS-implementations for71-, 87-, and 99-digit numbers. The paper closeswith data from 81 factorizations.
2. THE BASIC IDEAThe algorithm described now is due to Dixon, whobased it on the continued fraction method of Mor-rison and Brillhart [1975]. It is not e�cient in prac-tice compared to almost any other method, but itshows clearly the idea behind �nding X and Y . Sowe mention it mainly for didactical reasons.For x 2 Z such that jxj > pn, de�neg(x) :� x2 mod n:(The notation pn means the positive square rootof n.) Suppose that we have a �nite subset J � Zsuch that Qx2J g(x) is a square. Then we can takeX =sYx2J g(x); Y =Yx2J x:A problem is how to determine J .Choose a positive integer B1, let � = �(B1) bethe number of primes� B1, and let fp1; p2; : : : ; p�gbe the set of such primes. Suppose that we havea set T of t > � numbers g(x) only composed ofprimes � B1, that is,g(x) = pe1(x)1 pe2(x)2 : : : pe�(x)� ;

where ei(x) is the exponent of pi in g(x). ThenYx2J g(x) = �Yi=1 pPx2J ei(x)i :This is a square if and only ifXx2J ei(x) � 0 mod 2; for i = 1; 2; : : : ; �:Since jT j = t > �, there exists a nontrivial solutionof this linear system of equations over GF(2). Asolution can be found using Gaussian elimination.This yields at least t� � useful subsets J .
3. THE MULTIPOLYNOMIAL QUADRATIC SIEVEDixon's algorithm does not tell us how to �nd Te�ciently. Building on previous work of Kraitchik[1929], Lehmer and Powers [1931], Morrison andBrillhart [1975], and Schroeppel, Carl Pomerance[1982] introduced the quadratic sieve algorithm. Itworks with the quadratic polynomialg(x) = (x+ bpnc)2 � n;where x runs over the integers in (�n"; n"), so thatg(x) = O(n1=2+"). With this g(x) the set T maybe built up, where some of the numbers g(x) canbe factored completely by a cheap sieve processbecause g(x) is a polynomial (this is much moree�cient than trial division or any other factoringmethod). We could also use a sieve process inDixon's algorithm if we choose random numbers xin an arithmetic progression like x, x+1, x+2, : : : .However, in practice this single polynomial g(x)(or an arithmetic progression in Dixon's algorithm)does not give rise to a su�ciently large set T (witht > � elements) in a reasonable amount of time.The reason for this is that the interval (�n"; n") islarge when n is large and, since g(x) = O(n1=2+")(which is large), most numbers g(x) are not likelyto factor over a set of small primes. P. L. Mont-gomery found an e�cient way to use several poly-nomials (thus introducing a simple way to run thealgorithm in parallel), so that the numbers x canbe taken from much smaller intervals rather than



260 Experimental Mathematics, Vol. 5 (1996), No. 4from one single very large interval. The averagepolynomial values then are smaller than the av-erage value of g and are thus more likely to fac-tor over small primes than the g(x)-values. If allthe numbers in a small interval have been consid-ered, we can pass to a next polynomial and tryagain. We describe here the resulting multipoly-nomial quadratic sieve method. We remark thatDavis and Holdridge [1983] already had a multi-polynomial version before Montgomery came upwith his new idea. In fact, Montgomery's methodis based on that of Davis and Holdridge, but it isslightly more e�cient.Suppose that we have integer numbers x, U(x),V (x), and W (x) such thatU 2(x) � V 2(x)W (x) mod n for all x 2 Z: (3.1)If J � Z is a �nite subset such that Qx2J W (x) isa square, we can takeX =Yx2J V (x)sYx2JW (x); Y =Yx2J U(x):In practice we choose U(x) = a2x + b, V (x) = a,andW (x) = a2x2+2bx+c, with jxj �M (whereMis a parameter we choose beforehand) and wherea, b and c are integers that satisfy the followingconditions [Bressoud 1989, p. 117]:a2 � p2n=M; (3.2)b2 � n = a2c; (3.3)jbj < a2=2: (3.4)In the next section we describe how a, b and c areto be calculated.W (x) plays the role of g(x) in Dixon's algorithm.In order to determine the subset J , we choose anupper bound B1 for the primes. We want to havemany W (x)-values that consist of primes � B1.However, only roughly half of the primes below B1can occur as a prime divisor of W (x). Namely, ifa prime p divides W (x), then p j a2W (x) and thusp j(a2x+b)2�n, which means that n is a quadratic

residue modulo p. This leads to the de�nition ofthe factor base F:F = �prime powers q = pk � B1 : �np � = 1	:(Of course, a prime can divide W (x) more thanonce, so we also have to account for prime powers.)Note that F is independent of the choices of a, band c, so we can use the same factor base for everyproper choice of a, b and c.SinceW (x) is more likely to be divisible by smallprimes than by large primes, it is advantageousthat the factor base contains many small primes.We can construct such a factor base by multiplyingthe number n to be factored by a suitable smallinteger m, called the multiplier, and factoring mnrather than n [Pomerance et al. 1988, p. 391].For a given q 2 F the values of x for which qdivides W (x) can be found as follows. Computethe solution t = tq of the congruence equationt2 � n mod q; for 0 < t � q=2[Riesel 1985, pp. 212 and 287{288]. This has tobe done only once during the algorithm. Now, ifq jW (x0), then q j (a2x0 + b)2 � n and thusx0 � a�2(�tq � b) mod q; (3.5)provided that gcd(a; q) = 1. This is guaranteed bythe choice of a (see Section 4). For each properchoice of a we compute a�2 mod q for all q 2 F.In the next section we describe how these compu-tations can be done. Furthermore, since W (x) isa quadratic polynomial, q divides W (x0 + lq), forl 2 Z. So we can calculate e�ciently the placeswhere an element of F divides the W -values. Thisidea originated from Schroeppel.De�ne the report threshold RT as the average oflog jW (x)j on the interval [�M;M ], which is ap-proximately log( 12Mpn=2). Initialize a sieve arraySI(�M;M) to zero and sieve with each q = pk 2 F,i.e., add log p to SI(x0 + lq) for all l 2 Z such thatx0+ lq is in the interval [�M;M ]. For those num-bers x for which SI(x) � RT, W (x) is a good can-didate for fully factoring over the factor base. In



Boender and te Riele: Factoring Integers with Large-Prime Variations of the Quadratic Sieve 261general, the time spent on sieving takes more than85% of the total computing time.Since sieving with small primes is expensive, it iscustomary not to sieve with the primes and primepowers � QT, where QT is some suitably chosenthreshold value. In order not to lose W (x)-valuesdivisible by such small primes, the report thresholdRT will be lowered by the amount Ppk�QT log p.After the sieve step and the selection of those x forwhich SI(x) � RT, the prime factors of the cor-responding W (x) are found by comparison, for allq 2 F, of x with the two values of x0 in (3.5) (whichare computed and stored after the factor base hasbeen computed). In this way, W (x)-values divis-ible by one or more of the small primes omittedduring the sieving phase are not lost. If QT is suit-ably chosen, this can save a considerable amountof sieve time. This re�nement of MPQS is knownas the small-prime variation.
4. EFFICIENT CALCULATION OF THE POLYNOMIALSChoose integers r and k such that 1 < k < r(typical choices are r = 30 and k = 3, for exam-ple). Generate primes g1; g2; : : : ; gr, the so-calledg-primes, such that (i) gi � (p2n=M)1=(2k), (ii)� ngi � = 1, and (iii) gcd(gi; q) = 1, for i = 1; 2; : : : ; rand for all q 2 F. Leta = gi1gi2 : : : gik ;be the product of k g-primes, with 1 � i1 < i2 <� � � < ik � r. Because of (i), this a satis�es condi-tion (3.2).Let bi be a solution of the congruence equationt2 � n mod g2i ;where i = 1; 2; : : : ; r. Solve the system of congru-ence equations (for a speci�c choice of the signs)x � bi1 mod g2i1 ;x � �bi2 mod g2i2 ;...x � �bik mod g2ik ; (4.1)

by means of the Chinese Remainder Theorem. Letb be the solution of this system of equations. Thenb2 � n mod a2, so that condition (3.3) holds withc = (b2 � n)=a2:If b � a2=2, we replace b by b� a2 in order to sat-isfy condition (3.4). Since there are 2k�1 possiblecombinations of signs in (4.1), the number of poly-nomials that can be calculated with one set of rg-primes and a �xed k is 2k�1�rk�.If a new a has to be chosen, new sieve numbersx0 subject to (3.5) must be computed. Since a =gi1gi2 : : : gik , we can usea�2 mod q = g�2i1 g�2i2 : : : g�2ik mod q:Therefore, with the generation of the g-primes wealso compute and store the numbers g�2i mod q,where i = 1; 2; : : : ; r, for all the prime powers q inthe factor base.For a �xed a, Alford and Pomerance [1995] de-veloped a method to compute iteratively all theother values of b (and thus c) from a given ini-tial value of b (see also [Peralta � 1996]). Theyalso pointed out how the two solutions in the in-terval [0; q) of the congruence equation W (x) �0 mod q can be calculated from the zeros mod q ofa \previous" polynomial. With this improvementwe obtain the self-initializing variation of MPQS.It has the advantage that it can change polynomi-als cheaply, so a shorter sieve interval can be used.We have implemented this variation on an SGIworkstation and on a Cray C90 vector computer.Some speed-up was observed on an SGI worksta-tion when we reduced the length of the sieve inter-val, but other e�ects like an increasing loop over-head in the sieving step interfere with this in theopposite direction.On a vector computer such as the Cray C90,reducing the length of the sieve interval reducesthe vector lengths in the sieving step and, conse-quently, the e�ciency of the vectorization. There-fore, we decided not to use the self-initializing vari-ation of the quadratic sieve in our experiments.
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5. THE LARGE-PRIME VARIATION OF MPQSThe large-prime variation of MPQS incorporatesthe following improvement, which is based on astep in the continued fraction algorithm of Morri-son and Brillhart [1975]. W (x) is allowed to havea factor R > B1 that is not composed of primesfrom the factor base. If the cofactor R (after di-viding out all factor base primes in W (x)) is lessthan or equal to B21 , it must be a prime. In or-der to restrict the amount of disk space needed forstorage of the relations (3.1), we only accept fac-tors R � B2, where B2 is a parameter we choosebeforehand. In practice we choose B2 in such away that B2=B1 is a number between 10 and 100.We have to lower the report threshold by log(B2)in order to �nd these W (x)-values after sieving.If we have found two W (x)-values with the sameR, multiplication of the corresponding relations(3.1) yields a relation of the form (3.1), whereW (x)only consists of prime powers q 2 F (and R ismoved to V (x)).A relation of the form (3.1), where W (x) onlyconsists of primes q 2 F, is called a complete rela-tion. If W (x) has one prime factor R � B2 (andthe others are in F), then the relation is called apartial relation.We wish to compute E, the expected number ofcomplete relations coming from a given number ofr partial relations. LetQ = �primes q : B1 < q � B2; �nq �= 1	:The elements of Q are called large primes. LetPq be the probability that a large prime q occursin a partial relation. Lenstra and Manasse [1994]assume that Pq � q���Xp2Q p�� (5.1)for some positive constant � < 1 that should bedetermined experimentally. They report that � 2[ 23 ; 34 ] gives a reasonable �t with their experimentalresults. Denny [1993, pp. 44{49] takes � = 0:775.

From [Lenstra and Manasse 1994] it follows thatE = r �#Q+Xq2Q(1� Pq)r:We apply the binomial formula of Newton and useapproximation (5.1) to �ndE � rXi=2 (�1)i�ri��Xq2Q q����iXq2Q q��i: (5.2)Since �(t) � t=log t as t!1, we haveXp�x p�u � Z x2 t�u d(t=log t)with p prime, x 2 R�2 , u 2 R>0 . Hence for u > 0we have Xq2Q q�u � 12 Z B2B1 t�u d(t=log t):To compute the last integral we �rst use partialintegration and then substitute s = (1 � u) log t.We getZ B2B1 t�u d(t=log t) = B1�u2 =logB2 �B1�u1 =logB1+ ufEi((1 � u) logB2)� Ei((1� u) logB1)g;where Ei(x) = R x�1(es=s) ds is the exponential in-tegral. Now combine the last three displayed equa-tions for the appropriate choices of u to get an ap-proximation for E. In approximation (5.2) we sumfrom i = 2 to i = 5 and forget about the higher-order terms to get a formula for an approximationof E that we can use in practice (given B1, B2, r,and �).The experiments summarized in Table 1 showthat our approximation works well if � = 0:73.The table shows, for each example run, the numberr of partial relations, the actual number of com-plete relations derived from these partial relations,and the estimated number of complete relations.An approximation of E can be used to predict thecomputing time.



Boender and te Riele: Factoring Integers with Large-Prime Variations of the Quadratic Sieve 263n B1=104 B2=B1 r actual estim.C75 30 20:0 37472 4790 4966C80 10 60:0 15918 1121 1209C80 30 167 68195 4113 4150C84 80 25:0 96138 10894 11148C88 50 100 94651 6605 6736C88 75 100 148403 11455 11211C88 75 100 158214 12830 12657C88 75 100 146983 11051 11008C88 75 100 150327 11498 11488C88 70 100 148016 12116 11827
TABLE 1. For ten composite numbers and boundsB1, B2, we list the number r of partial relations,and the actual and estimated number of completerelations (last two columns). As usual, Cx denotesa composite number with x decimal digits.To determine the best value of �, we wrote aprogram in Maple that, given �, computes the ab-solute value of the di�erence of the actual numberof complete relations and the estimated number ofcomplete relations for each of �fteen test numbers.Then we summed the �fteen absolute values of thedi�erences, thus obtaining for each � a sum of ab-solute values. It turned out that � = 0:73 gave riseto the smallest sum.

6. THE DOUBLE LARGE-PRIME VARIATIONIn the large-prime variation of MPQS we allowW (x) in (3.1) to have a prime factor R with B1 <R � B2. In the double large-prime variation ofMPQS we also letW (x) have a factor R � B22 com-posed of two primes > B1. In this case we call sucha relation a partial-partial relation (pp-relation forshort). Now the problem of �nding combinationsof partial and partial-partial relations that yield acomplete relation can be formulated as �nding cy-cles in an undirected graph: the vertices are thelarge primes and two vertices (primes) are con-nected by an edge if there is a pp-relation in whichboth primes occur. A partial relation is repre-sented by adding 1 as a vertex to the graph. Weconsider this partial relation as a pp-relation whereone of the large primes is 1. So an edge in the graph

corresponds to a partial or partial-partial relationand a cycle corresponds to a set of relations withthe following property: if we multiply these rela-tions, then all the large primes in the product oc-cur to an even power. Hence, for the linear algebrastep this set can be viewed as a complete relation.To avoid dependent relations one only has to �ndthe basic cycles of the graph.The number of complete relations coming fromthe pp-relations is much more di�cult to predictthan that coming from the partial relations. Onehas to know how the number of basic cycles in agraph with given vertices varies when edges areadded more or less randomly. Having a basic cycleis a monotone increasing property [Bollob�as 1985,p. 33] that can appear rather suddenly [Erd}os andR�enyi 1959; 1960; 1961]. An algorithm for �ndingthe basic cycles in a graph can be found in [Paton1969].If R is prime then we require R < B2 in order torestrict the total number of relations (in our expe-rience partial relations with B2 � R < B21 do notcontribute much to the total number of completerelations). If R is composite, its large prime fac-tors can be found, e.g., by using Shanks' SQUFOFalgorithm [Riesel 1985, pp. 191{199]. This algo-rithm has the advantage that most numbers thatoccur during its execution are in absolute value notlarger than 2pR.We want to estimate the time that PPMPQSspends on the sieve step for numbers n of about ddecimal digits, given B1;M , B2, and QT. To thatend, letnf = number of elements in the factor base,nc = number of complete relations,f1 = nc=nf ;n1 = number of partial relations,n2 = number of pp-relations,f2 = n2=n1;Ts = sieve time.During the sieve step, the numbers nc, n1 and n2grow (more or less) linearly with the time, so that



264 Experimental Mathematics, Vol. 5 (1996), No. 4# 33 35 37 44 42 38 48 40 47 34 39 36 46 41 32 43m 109 37 1 109 1 109 5 29 1 1 1 7 43 1 1 41f1 0:243 0:244 0:255 0:269 0:275 0:297 0:301 0:310 0:320 0:325 0:331 0:346 0:348 0:349 0:352 0:363f2 5:98 5:79 4:04 3:68 2:75 2:37 2:13 2:29 1:70 1:64 1:14 0:906 0:961 0:862 0:760 0:798
TABLE 2. Values of f1 and f2 measured for 16 numbers n from Table 7 (identi�ed by the number in the �rstrow). We used d = 86, B1 = 5� 105, M = 1:5� 106, B2=B1 = 20, and QT = 40, with multiplier m.also the fraction f1 grows linearly, and f2 staysmore or less constant (after the sieve step has beenrunning for a short time). We observed that thevalues of the fractions f1 and f2, measured aftercompletion of the sieve step, seem to be connected;see Table 2.The table suggests that f2 is an exponential func-tion of f1, that is, f2 = aebf1for some constants a and b. Based on the table, weestimated a = 315 and b = �16:5. Since log f2 =log a+ bf1, it follows thatnc = 1b (log f2 � log a) � nf :If u is the time needed to generate one completerelation, we obtain the following approximation forthe sieve time Ts:Ts � (0:349 � 0:061 log f2) � u � nf : (6.1)We can estimate u and f2 by letting the programrun for a short while, �ve minutes say. The mea-surements shown in Table 3, pertaining to runs on# m u f2 nf Ts approx.21 19 5:140 s 1:1945 20741 9:8 h 10:0 h22 1 4:518 s 0:7646 20744 9:8 h 9:50 h24 1 3:357 s 1:4378 20930 6:0 h 6:37 h31 1 4:226 s 1:0866 24641 10:0 h 9:94 h48 5 8:785 s 2:1364 20911 15:4 h 15:4 h
TABLE 3. Tests of approximation (6.1). For �vecomposite numbers from Table 7 (identi�ed by thenumber in the �rst column), we measured the ac-tual value of Ts and computed the value predictedby the approximation (last column).

the Cray C90 of several 85- and 86-digit numbers,suggest that the estimate works well.Consequently, approximation (6.1) can be usedto obtain a good estimate of Ts in the PPMPQSalgorithm for numbers of about the same size, and�xed parameters B1, M , B2, and QT. For num-bers in another range, or if we wish to change theparameters, some experiments have to be done todetermine the total sieve time under these new con-ditions, by which the coe�cients in (6.1) can beestimated.In order to test the dependency of Ts on B2, wecarried out on the Cray C90 the complete sieve stepof PPMPQS for the 80-digit number7564 + 12 � 224914177 � 151113908786421917036806943723393;
(6.2)which has the two prime factors68799038786512319388821350925569 and215768091527974049646247615957101365677594246657:We kept B1 = 105, M = 3 � 106, and QT = 50�xed, and tried various values of B2. The statisticsare shown in Table 4.In the partial relations we allowed the large primeR to be less than B21 . (We get these relations free,because R < B21 implies that R is prime.) ForB1 = 105 the number of elements in the factorbase is 4806. The sieving was continued until thetotal number of complete relations, including thosegenerated by the partial relations and the partial-partial relations, surpassed this number. We onlymeasure the total number of complete relations ob-tained so far at selected points in our program, sothe actual total number of complete relations is



Boender and te Riele: Factoring Integers with Large-Prime Variations of the Quadratic Sieve 265B2=B1 Ts nc n1 nc;1 n2 nc;2 total30 8:64 h 1036 129318 1661 29143 2121 481860 7:06 h 871 117532 1249 51929 2739 4859100 6:49 h 775 109506 1025 76324 3070 4870200 6:02 h 685 99474 795 123001 3339 4819400 5:67 h 618 91332 634 193278 3598 4850600 5:71 h 578 87265 568 243015 3698 4844800 5:62 h 563 84926 531 291177 3766 48691000 5:75 h 546 83082 501 333726 3796 48431600 6:19 h 521 79960 464 445526 3860 4845
TABLE 4. Number of relations as a function ofB2, for the factorization of (6.2) with B1 = 105,M = 3 � 106, and QT = 50. The column nc;1 isthe number of complete relations generated by then1 partial relations, and nc;2 is the number of com-plete relations generated by combining the partialrelations (with di�erent large primes) and the n2pp-relations. \Total" is the sum nc + nc;1 + nc;2.usually somewhat larger than the number of ele-ments in the factor base.As we increase B2=B1, the program generatesmore partial-partial relations and less complete andless partial relations in a given amount of sievetime. For 30 � B2=B1 � 400, the gain in completerelations (nc;2) generated by the pp-relations (n2)more than su�ciently compensates for the loss ofcomplete relations directly found by the sieve (nc)and the loss of complete relations (nc;1) generatedby the partial relations (n1). As a result, the totalsieve time Ts goes down. For B2=B1 > 1000, how-ever, the increase in size of the large primes in thepartial and partial-partial relations is responsiblefor a decrease in the number of complete relationsderived from these relations, and also the time thatSQUFOF needs to �nd the two large primes in app-relation increases, so now the resulting totalsieve time increases. Consequently, the minimalsieve time is reached if we choose B2=B1 in the in-terval 400 < B2=B1 < 1000. In that interval thetotal sieve time is only slightly varying. We con-clude that, in order also to minimize the amountof memory for storage of the relations, the optimalchoice of B2=B1 is about 400.

7. IMPLEMENTATION AND EXPERIMENTSFor our PMPQS-experiments we used the imple-mentation described in [te Riele et al. 1989]. Al-most all our subroutines are written in Fortran.We originally implemented the PPMPQS algo-rithm on a supercomputer like the Cray C90 vec-tor computer. We used the same implementationon Silicon Graphics workstations. (We now havewritten a program especially designed for worksta-tions).The sieve operations (i.e., additions of log p toan element of the sieve array) are done in 64-bits
oating-point arithmetic on Cray and in 32-bits onSGI. The maximum speed we obtained (in millionsof sieve operations per second) was 3.3 on the Sil-icon Graphics, 110 on the Cray Y-MP [te Rieleet al. 1991] and 270 on the Cray C90. The maxi-mum speed was 5.7 when we used the workstationversion of our program.We used a package of Winter in order to carryout multiprecision integer arithmetic.The large prime R occurring in the partial rela-tions was accepted if B1 < R < B2 and rejected ifB2 � R < B21 .We have implemented Paton's cycle-�nding al-gorithm [1969] and used it as a preprocessing stepfor the Gaussian elimination step in PPMPQS.An algorithm for just counting (not �nding) thebasic cycles [Lenstra and Manasse 1994, pp. 789{790; Denny 1993, pp. 61{64] was implemented byus as a tool to check during the sieve part of PPM-PQS whether su�ciently many relations (complete,partial, and partial-partial) were collected.The method used to do the Gaussian eliminationmodulo 2 is described in [Parkinson and Wunder-lich 1984]. The elements of the bit-array are packedin words of 64 bits (on the Cray computers) or 32bits (on the Silicon Graphics). This allows the useof the exclusive-or operation with the column vec-tors of the array, which is very e�cient. The totalGaussian elimination step (including �nding basiccycles) accounts for less than 0.6% of the total workof the PPMPQS algorithm.



266 Experimental Mathematics, Vol. 5 (1996), No. 4PMPQS PPMPQSB1 nf B2=B1 M Ts nc n1 nc;1 Ts nc n1 nc;1 n2 nc;2C71 3�105 12979 20 5:0�105 0:58 h 10204 17993 2784 0:55 h 5063 36468 4709 42617 3400C71 6�105 24510 20 5:0�105 0:56 h 20827 23794 3703 0:96 h 10868 68019 8383 70395 5389C71 6�105 24510 40 5:0�105 0:55 h 20312 30399 4209 1:28 h 9817 80017 7390 132290 7412C71 6�105 24510 40 2:5�106 0:29 h 20196 31034 4359 1:21 h 9803 81612 7499 138147 7969C80 105 4806 400 3:0�106 13:4 h 1580 49143 3229 5:67 h 618 91332 634 193278 3598C87 5�105 20838 20 2:5�106 16:4 h 9902 70029 10940 11:9 h 7009 63089 8220 57513 5620
TABLE 5. Comparison of PMPQS and PPMPQS. The C71 and C87 are listed on this page, the C80 in (6.2)on page 264.In order to compare PMPQS with PPMPQS wehave run our implementations of these algorithmson the Cray C90 for the 71-digit numberC71 = (1071 � 1)=9and for the 87-digit cofactorC87 = 1360245925758378639396610479463908049304-23542841197990430220444148923901462079070640121of 7299 + 1. For C71, four experiments with dif-ferent combinations of B1, B2=B1, and M werecarried out where in the second, third and fourthexperiment only one of the three parameters waschanged compared with the previous experiment.The value of QT was kept �xed at 40. For C80 from(6.2), which was treated in the previous sectionwith PPMPQS, we made a comparison run withPMPQS for B1 = 105, M = 3� 106, QT = 50, andB2=B1 = 400 (the optimal choice for PPMPQS).The results are given in Table 5.For C71, the parameter choice B1 = 3 � 105,B2=B1 = 20, and M = 5 � 105 yields a somewhatsmaller sieve time for PPMPQS (0.55 CPU hours)than for PMPQS (0.58), but if we allow more mem-ory use by choosing B1 = 6�105 andM = 2:5�106(and B2=B1 = 40), then PMPQS beats PPMPQS(0.29 vs. 1.21). Increasing the length of the sieveinterval (M from 5 � 105 to 2:5 � 106) particu-larly improves the e�ciency of PMPQS (and, toa lesser extent, of PPMPQS). For C87, with theparameter choice B1 = 5 � 105, B2=B1 = 20, andM = 2:5 � 106, PPMPQS is faster than PMPQS(11.9 vs. 16.4).

We conclude that for our implementations PPM-PQS can beat PMPQS for numbers of more than80 (say) decimal digits, but the crossover pointstrongly depends on the amount of available cen-tral memory. For practical reasons (like through-put) it can be pro�table to reduce the size of asieve job on the Cray C90, so even though sucha computer has a very large central memory, itis still worthwhile to restrict the size of the upperbound on the primes in the factor base and to havean e�cient implementation of a memory-economicmethod like PPMPQS. This is even more impor-tant on workstations, particularly when there areprimary and secondary cache memories (as is usualon workstations).Furthermore, with our PMPQS program we havefactored the 99-digit cofactor1684830849783397621153043603997266025308430041776-92574904043633682183896384221755952112008347771913of the \more wanted" C133 with code 2,914M inthe Cunningham table [Wagsta� 1993]. This C133is the number (2457 + 2229 + 1)=(5 � 71293); PeterMontgomery had found the 34-digit prime factor6196333979234679466021864314534473with ECM, and left the 99-digit composite factor.We decomposed it into the product of the 49- anda 50-digit primes,5845296257595668545524969937697507923682374822769 �28823703291241135239378075616078003806433692452377



Boender and te Riele: Factoring Integers with Large-Prime Variations of the Quadratic Sieve 267with the help of an eight-processor IBM 9076 SP1,and 69 Silicon Graphics workstations (63 at CWIand 6 at Leiden University). The factor base sizewas 56976 with B1 = 1:5 � 106, B2=B1 = 50,M = 2 � 106, and QT = 30. Parallel process-ing with good load balancing was e�ectuated byassigning di�erent polynomials to di�erent work-stations. The total amount of sieve time was about19,500 workstation CPU hours. The physical timefor this factorization was about four weeks. Thismeans that we consumed about 40% of the totalCPU capacity of these workstations during thatperiod (assuming that they all are equally fast: infact, an RS 6000 processor of the IBM SP1 sievedabout twice as fast as an SGI workstation). TheGaussian elimination step was carried out on aCray C90; it required about 0.5 Gbytes of centralmemory, and one hour CPU time.As a comparison with a vector computer [te Rieleet al. 1991], on a Cray Y-MP we factored a 101-digit more wanted Cunningham number with PM-PQS in 475 CPU hours, using B1 = 1300000, with50179 primes in the factor base, B2=B1 = 50, M =4:5� 106, and QT = 40 (our PMPQS implementa-tion runs about twice as fast on the Cray C90 ason the Cray Y-MP).As a comparison with PPMPQS, from the re-sults listed on the right in Table 5 we estimate(based on the assumption that the computing timeof PPMPQS approximately doubles if the size ofthe number increases by three decimal digits) thatwe would roughly need 10,000 CPU hours of anSGI workstation to factor the 99-digit cofactor of2,914M C133, yielding a speed-up factor of about2 compared to PMPQS. If we would take a factor1:64 (see the next paragraph) instead of 2, then thetime would be less than 4000 CPU hours.Tables 6 and 7, on pages 268{271, list the re-sults of our experiments with PPMPQS on eightnumbers in the 66{83 digit range on an SGI work-station, and 73 numbers in the 67{88 digit rangeon a Cray C90 vector computer. Most of thesenumbers �ll gaps in the table found in [Brent andte Riele 1992], and are di�cult to factor, having

been tried before with ECM without success. Thefactorizations of some numbers of the form an � 1that are outside the range covered by that referenceare also given in Table 7.We have varied the parameters B1, B2=B1, andM on di�erent numbers (but not in a very system-atic way) and kept QT = 40 �xed. We observe thatthe average CPU time for numbers in the 67{88digit range varies between 0.4 and 12 CPU hours,so that increasing the number of digits by threegives an increase of the sieve time by a factor ofabout 1:64. This is smaller than the factor of 2that is usually observed for PMPQS.
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268 Experimental Mathematics, Vol. 5 (1996), No. 4# n prime factor(s)1 C66 from 7753 + 1 = P31 �P35 P31 = 85081018164506899756582278434392 C67 from 5888 + 1 = P26 �P41 P26 = 620573383334426274873922573 C67 from 6289 � 1 = P31 �P37 P31 = 39168982657475142560355600798914 C75 from 7087 + 1 = P29 �P46 P29 = 564765376540635511069204295415 C79 from 72118+ 1 = P38 �P42 P38 = 160594909070093212254803474806878324416 C82 from 8471 + 1 = P33 �P50 P33 = 1331841060445706466202340969564237 C82 from 8099 + 1 = P32 �P51 P32 = 119351717982296440256561926438278 C83 from 9287 + 1 = P23 �P61 P23 = 10127992394070979564027
TABLE 6. Parameter choices, timings, and factors for numbers ranging from 66 to 83 decimal digits, factoredwith PPMPQS on a SGI workstation. Key: n = number to be factored (\Cx from y" means a composite factorof y having x decimal digits); d = log10 n; B1 = upper bound for the primes in the factor base; B22 = upperbound for the input R to SQUFOF (yielding a pp-relation); nf = number of primes in the factor base;# n prime factor(s)1 C67 from 8964 + 1 = P24 �P44 P24 = 1533165253087393169340172 C69 from 50122+ 1 = P30 �P40 P30 = 2768321949219942305750989741373 C75 from 10141 + 1 = P32 �P43 P32 = 215872277033288219520305273145074 C75 from 11041 + 1 = P16 �P25 �P35 P16 = 3850561614882023 P25 = 77975982398530740576552195 C75 from 11047 + 1 = P24 �P51 P24 = 7284244142118289292948236 C75 from 35147+ 1 = P35 �P40 P35 = 860524394110991401680708629331438017 C75 from 5359 � 1 = P24 �P51 P24 = 9439701148673622477594438 C78 from 19165+ 1 = P28 �P50 P28 = 24819534190444523082913866019 C78 from 51102+ 1 = P30 �P48 P30 = 45902891022719349477111239428910 C80 from 8658 + 1 = P33 �P47 P33 = 12909495109072315208488480496962111 C80 from 7564 + 1 = P32 �P48 P32 = 6879903878651231938882135092556912 C80 from 5985 � 1 = P36 �P44 P36 = 19205218363419571738281287595933768113 C80 from 76123+ 1 = P28 �P53 P28 = 160247580154635097509486030714 C80 from 8487 � 1 = P40 �P41 P40 = 290404375241336685040063607647451761576915 C81 from 18103� 1 = P35 �P47 P35 = 1593675460493236131151993727576308716 C83 from 8268 + 1 = P40 �P43 P40 = 924185537858056695686259560184340463860917 C83 from 9371 + 1 = P34 �P50 P34 = 187159889169520795280293924847455718 C84 from 8967 � 1 = P41 �P44 P41 = 1734546038685607265716888388635135765150319 C84 from 7491 � 1 = P31 �P54 P31 = 630045464973369109978612017864720 C85 from 69117+ 1 = P42 �P43 P42 = 55377545693000168645964666278400043942189321 C85 from 9891 + 1 = P39 �P47 P39 = 15085602776309799490186140075622394865122 C85 from 8058 + 1 = P42 �P44 P42 = 58740753178054561729269305647493275533296923 C85 from 5664 + 1 = P43 �P43 P43 = 112097122348035909130571264567343475849344124 C85 from 39111� 1 = P32 �P54 P32 = 3866190103786178771734741205040725 C85 from 7795 � 1 = P34 �P52 P34 = 125420004078519756701761112158171126 C86 from 18111+ 1 = P35 �P51 P35 = 5709516982915351613291913933606913927 C86 from 7659 + 1 = P39 �P47 P39 = 47158681507470443124014001967222209248928 C86 from 2097 + 1 = P34 �P52 P34 = 2645332912014287669339495089951567
TABLE 7. Parameter choices, timings, and factorizations for numbers ranging from 67 to 88 decimal digits,



Boender and te Riele: Factoring Integers with Large-Prime Variations of the Quadratic Sieve 269# d B1=105 nf B2=B1 M=105 nc n1 nc;1 n2 nc;2 Ts1 65:56 0:8 3911 11:25 2 1493 9753 1715 4102 710 5:8 h2 66:17 0:8 3908 10 1:5 1452 9433 1766 3697 693 4:8 h3 66:83 0:8 3984 10 2 1214 9952 2139 4238 637 14:2 h4 74:15 3 13045 20 6 4840 37472 4790 26391 3424 55:4 h5 78:76 3 12898 30 5 4444 44583 5104 29653 3355 123 h6 81:54 5 20812 20 5 7992 63176 8471 33614 4351 173 h7 81:70 4:5 18961 20 4:5 6796 55435 7229 38950 4942 198 h8 82:89 5 20861 20 8 7387 62346 8229 40035 5250 273 h[�M;M ] = sieve interval; nc = number of complete relations found immediately; n1 = number of partialrelations; nc;1 = number of complete relations coming from partial relations; n2 = number of pp-relations;nc;2 = number of complete relations coming from pp-relations; Ts = sieve CPU time. The small-prime variationparameter QT is always 40.# d B1=105 nf B2=B1 M=105 nc n1 nc;1 n2 nc;2 Ts1 66:80 2 8881 30 25 2945 27673 2762 31855 3347 0:36 h2 68:74 2:5 11086 20 5 3988 30107 3631 27746 3476 0:46 h3 74:20 3:16 13623 20 6:31 4921 38371 4889 29855 3822 1:22 h4 74:51 3:16 13625 20 6:31 5503 42284 5844 17604 2297 1:16 h5 74:69 1 4790 60 5 1005 17630 1320 29502 2465 2:42 h6 74:83 3 12892 17 25 4697 37137 5388 19447 2820 1:20 h7 74:92 2:5 11086 36 25 3339 35899 3335 43531 4382 1:91 h8 77:37 5 20972 20 25 7152 54706 6444 60361 7393 1:84 h9 77:56 5 20888 30 30 7518 65930 6980 60042 6453 1:41 h10 79:04 5 20597 30 30 6596 61563 6201 76295 7828 2:43 h11 79:17 4 16927 20 1 5619 45717 5584 48399 6279 3:29 h12 79:17 5 20895 20 3 6457 72272 11650 37114 2802 2:68 h13 79:39 3 13001 166:7 3 3739 68195 4113 72708 5157 2:27 h14 79:87 3 13011 166:7 3 3323 64308 3624 91150 6084 3:41 h15 80:86 5 20819 20 6 6925 57619 7050 55281 6877 3:36 h16 82:82 6 24598 20 2:5 8522 68723 8378 59901 7713 4:82 h17 82:91 7 28413 20 2:5 11451 87010 11694 40636 5271 4:38 h18 83:66 8 32104 25 2:5 11419 96138 10894 85260 9807 5:46 h19 83:98 7 27980 25:7 2:5 10594 93766 11327 51233 6070 6:59 h20 84:10 5 20713 20 2:5 6175 51592 5808 76377 8732 5:6 h21 84:35 5 20741 20 2:5 6865 60444 7638 72201 6256 9:8 h22 84:80 5 20744 20 2:5 7809 57576 7457 44022 5481 9:8 h23 84:87 5 20790 20 2:5 7153 61546 7923 43044 5721 8:4 h5 20790 40 2:5 6412 73385 6960 75133 7427 8:4 h24 84:92 5 20930 20 2:5 6434 52315 5865 75217 8614 6:0 h25 84:99 5 20749 20 2:5 7106 58607 7259 53507 6389 6:8 h26 85:02 5 20675 20 2:5 6982 61080 7920 64746 5774 9:8 h27 85:02 5 20792 20 2:5 6679 58782 7268 81258 6853 11: h28 85:05 5 20887 20 2:5 7754 65228 8990 46265 4178 8:4 hfactored with PPMPQS on a Cray C90 vector computer. Key as in Table 6. Continued overleaf.



270 Experimental Mathematics, Vol. 5 (1996), No. 4# n prime factor(s)29 C86 from 9399 � 1 = P31 �P55 P31 = 346673259388800825479161336008130 C86 from 5893 � 1 = P32 �P54 P32 = 7570186504273914315759025036821131 C86 from 5696 + 1 = P39 �P47 P39 = 23255908655740746776290133340793832140932 C86 from 9284 + 1 = P43 �P43 P43 = 246515271565874842883088099482434363901983333 C86 from 6799 � 1 = P34 �P52 P34 = 251520821420628512125495193264146934 C86 from 13138+ 1 = P29 �P57 P29 = 5483663771645023699097181208935 C86 from 5989 � 1 = P31 �P55 P31 = 268994142448834802384864980838936 C86 from 21123+ 1 = P39 �P47 P39 = 38077006353966947431331269152954513271337 C86 from 3881 � 1 = P36 �P50 P36 = 51166207516397076206041753843648432338 C86 from 31117� 1 = P39 �P47 P39 = 25063003337695743323461707311491087176739 C86 from 5096 + 1 = P35 �P51 P35 = 3677411230076538206796116865280089740 C86 from 9695 + 1 = P28 �P58 P28 = 241847699068879601458189083141 C86 from 24130+ 1 = P36 �P50 P36 = 68498992864419400178507592265644684142 C86 from 9353 + 1 = P38 �P49 P38 = 1919269986955025338909597855016782817343 C86 from 9859 + 1 = P32 �P55 P32 = 2903704744820981058947564729229144 C86 from 8065 + 1 = P31 �P55 P31 = 341687167491915869952874280124145 C86 from 827+ 727 = P42 �P44 P42 = 519975935060346660783986052760977025136897P44 = 6575767424035583516762418174195540996983347346 C86 from 2383 � 1 = P38 �P49 P38 = 2773607450326307106295077880599216475947 C86 from 7656 + 1 = P40 �P47 P40 = 486869956881722059289092046096432758652948 C86 from 4767 � 1 = P32 �P55 P32 = 2127096416253808901301498376185149 C86 from 6776 + 1 = P42 �P45 P42 = 31561821602784848683430107844577429025451350 C86 from 3981 + 1 = P37 �P50 P37 = 244300361656666306998927844113351805951 C86 from 2295 � 1 = P34 �P52 P34 = 962435791906840355509151236741426152 C86 from 76117� 1 = P42 �P45 P42 = 60620289710585002552707442194548400553398753 C86 from 9580 + 1 = P38 �P49 P38 = 4508975809979186783163748624475966704154 C87 from 6265 + 1 = P34 �P53 P34 = 143910692290252284248411015544439155 C87 from 7299 + 1 = P28 �P59 P28 = 809754078916899091068658884156 C87 from 9285 � 1 = P32 �P56 P32 = 1428527884435797475243293951357157 C87 from 3095 + 1 = P35 �P52 P35 = 8045191199693444448365372715604093158 C87 from 50100+ 1 = P41 �P46 P41 = 5895147887851307193050088676207739207760159 C87 from 6696 + 1 = P42 �P46 P42 = 15305573224803904178699920783745927027001760 C87 from 19101� 1 = P25 �P62 P25 = 524564764431686318285457161 C87 from 3385 + 1 = P33 �P54 P33 = 24953692198916926106503511225790162 C87 from 6365 + 1 = P42 �P46 P42 = 10841088997442568505957564739184105515545163 C87 from 4299 � 1 = P33 �P55 P33 = 23437309093413719343442610084173964 C87 from 7767 � 1 = P41 �P46 P41 = 7502494324484414937370512624301315571585365 C87 from 8459 � 1 = P35 �P53 P35 = 1177954801912230280832892080832763166 C87 from 26129+ 1 = P31 �P57 P31 = 307681427875762258831762640530967 C87 from 33111� 1 = P38 �P50 P38 = 2145793960589887122443729767297266082968 C87 from 8684 + 1 = P40 �P48 P40 = 103951226908139453915946807265619933133779 C87 from 8565 + 1 = P40 �P48 P40 = 464517662410310114423859346770608978848170 C87 from 4585 + 1 = P36 �P52 P36 = 21813609048506892097506062574002022171 C87 from 8793 + 1 = P35 �P53 P35 = 6523470272315273865772849990259761372 C87 from 4571 + 1 = P27 �P61 P27 = 69229816187403473081388160373 C88 from 19168+ 1 = P42 �P47 P42 = 261688712348581672325146786097393313497473



Boender and te Riele: Factoring Integers with Large-Prime Variations of the Quadratic Sieve 271# d B1=105 nf B2=B1 M=105 nc n1 nc;1 n2 nc;2 Ts29 85:11 5 20810 20 2:5 4923 43182 4064 280566 11857 8:4 h30 85:11 5 20841 20 2:5 5615 50651 5434 182705 9822 10:7 h31 85:12 6 24641 20 2:5 8518 67320 9253 73153 6953 10:0 h32 85:12 5 20651 20 1:5 7269 64239 8799 48843 4625 9:5 h33 85:14 5 20812 20 1:5 5064 43981 4223 263194 11614 10:7 h34 85:21 5 20709 20 1:5 6722 56788 6924 92891 7136 8:27 h35 85:26 5 20859 20 1:5 5101 44412 4378 256996 11412 11:0 h36 85:26 5 20768 20 1:5 7186 63721 8449 57739 5154 12:4 h37 85:31 5 20812 20 1:5 5297 45852 4584 185169 10967 7:45 h38 85:31 5 20576 20 1:5 6107 55044 6362 130553 8115 13:1 h39 85:33 5 20709 20 1:5 6859 60552 7686 68840 6177 11:5 h40 85:35 5 20923 20 1:5 6480 55476 6546 127090 7903 10:7 h41 85:37 5 20672 20 1:5 7221 62980 8435 54345 5029 9:65 h42 85:42 5 20672 20 1:5 5695 50790 5707 139604 9308 10:4 h43 85:49 5 20772 20 1:5 7530 63927 8600 51034 4656 11:9 h44 85:52 5 20634 20 1:5 5556 50383 5456 185347 9653 13:7 h45 85:53 5 20711 20 2:5 5054 43759 4078 270308 11587 11:4 h46 85:59 5 20797 20 1:5 7244 63668 8524 61191 5044 12:6 h47 85:70 5 20712 20 1:5 6637 56910 6862 96694 7226 10:3 h48 85:72 5 20911 20 1:5 6311 56349 6710 120384 7895 15:4 h49 85:73 6 26392 2 3 16159 24514 9487 3153 749 13:8 h50 85:92 6 26363 2 3 16376 24473 9358 7417 631 12:1 h51 85:93 3 13041 20 1:5 4117 39602 5212 39395 3713 17:4 h52 85:95 3 13011 20 2:5 4255 40517 5390 24478 3366 20:6 h53 85:98 5 20756 2:4 2:5 10516 22044 7450 6610 2795 15:7 h54 86:04 5 20840 20 2:5 7153 62231 8139 63273 5557 14:0 h55 86:13 5 20838 20 2:5 7009 63089 8220 57513 5620 11:9 h56 86:16 5 20787 22 2:5 7367 63987 8559 54708 4900 10:8 h57 86:18 5 20688 20 2:5 7447 64778 8836 47154 4419 10:7 h58 86:22 5 20852 20 2:5 6202 54180 6282 144069 8376 11:6 h59 86:22 5 20947 20 2:5 7522 63620 8412 52191 5091 9:35 h60 86:27 5 20978 40 2:5 6773 79489 8184 75416 6035 14:2 h61 86:29 5 20797 40 2:5 6387 72868 6909 116000 7520 11:1 h62 86:38 5 20754 40 2:5 6881 76861 7638 86915 6253 6:72 h63 86:43 5 20920 40 2:5 7177 76854 7706 82085 6054 8:81 h64 86:45 5 20631 40 2:5 6329 74485 7262 92362 7046 14:6 h65 86:63 5 20902 80 2:5 5806 85167 6249 148784 8876 13:8 h66 86:64 6 24404 100 3 7564 124510 9691 89594 7355 13:2 h67 86:69 6 24573 100 3 7803 122935 9614 89375 7369 14:1 h68 86:70 6 24495 100 3 6571 105037 7010 149698 11272 12:1 h69 86:73 6 24538 100 3 7635 120888 9389 99930 7811 11:5 h70 86:75 6 24374 100 3 7827 126178 9899 80444 6862 14:7 h71 86:82 6 24615 100 3 6532 121187 9864 167590 8507 11:8 h72 86:96 6 24658 100 3 7762 116023 8546 126334 8798 7:66 h73 87:54 5 20604 100 1 6101 94651 6605 108893 8048 12:1 h
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