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We briefly discuss the relationship between several character-

izations of the Hasse–Witt invariant of curves in characteristic

p with the goal of computing its value in concrete instances.

We study its asymptotic behaviour when dealing with the geo-

metric fibres of curves of genus � 2 defined over the rationals.

Numerical evidence gathered for several modular curves sup-

ports certain conjectural distribution laws.

1. INTRODUCTIONThroughout, we assume that k is an algebraicallyclosed �eld of characteristic p > 0, and C=k denotesa complete nonsingular curve of genus g > 0. Weknow [Hasse 1934; Hasse and Witt 1936] that thenumber r(C) of maximal independent unrami�edZ=pZ-extensions of the function �eld k(C) satis�esthe inequalities 0 � r(C) � g. It is said that theinteger r = r(C) is the Hasse{Witt invariant of C.If C is elliptic, the only possible values for r are1 or 0. If r = 1, the curve is said to be ordinary;otherwise, it is said to be supersingular. If C=Q isan elliptic curve with complex multiplication, theset of supersingular primes for C has density equalto 12 [Deuring 1941] (compare [de Shalit 1987]). IfC=Q is an elliptic curve that does not have complexmultiplication, the set of supersingular primes hasdensity equal to zero [Serre 1981]. Elkies [1987]proved that this set is in�nite. Lang and Trotter[1976] conjectured thatPC(x) � cpx=log x as x!1;where PC(x) denotes the number of supersingularprimes for C that are � x and c > 0 is a constantdepending on C. It has been proved by Elkies andMurty that PC(x) = O(x3=4) [Elkies 1991].c A K Peters, Ltd.1058-6458/97 $0.50 per page



58 Experimental Mathematics, Vol. 6 (1997), No. 1Let J=k be the jacobian of C=k, and J [p] thekernel of the multiplication by p in J(k). We havethe equality r(C) = dimFp J [p]. Accordingly, forany given abelian variety A=k, we letr(A) := dimFp A[p];and call this integer the Hasse{Witt invariant of A.It then follows that 0 � r(A) � dimA. Ordinaryabelian varieties are those for which r(A) = dimA.If A is isogenous to a product QAi of abelian va-rieties, then r(A) =P r(Ai).The behaviour of the Hasse{Witt invariant forthe geometric �bres of abelian varieties A=Q of di-mension � 2 is less well known. We study its vari-ation with p. If p is a prime of good reduction forA, we let rp(A) := r(A=�Fp), and prove that thereare in�nitely many primes for which rp(A) � 2.However, at present, given an abelian variety A=Qof dimension > 2, it is not known whether the setof primes of ordinary reduction is always in�nite.Let PA(x) denote the number of nonordinaryprimes for A=Q that are � x. Let PA;0(x) denotethe number of primes p � x for which rp(A) = 0.The size of PA(x) and PA;0(x) seems to depend onphenomena of real, complex, and quaternionic mul-tiplication. Cases arising from the Fermat curveswere treated in [Gonz�alez 1997]. In this paper wedeal with cases that arise from modular curves,and formulate a higher-dimensional analogue of theLang and Trotter conjecture.Let � denote a congruence subgroup, f a new-form of weight two for �, and Af=Q the abelianvariety attached to f by Shimura's construction.The set of primes p for which rp(Af ) = 0 andAf =�Fp is not isogenous to a power of a supersin-gular elliptic curve is �nite. Suppose that f doesnot have complex multiplication. Then the set ofprimes p for which rp(Af ) = 0 has density equal tozero. As is well known, Af is isogenous to a powerof a �Q -simple abelian variety Bf of dimension td,where t = 1 or 2, and t = 1 if and only if the en-domorphism algebra Q
End(Bf ) is commutative.Numerical computations performed in the range of

levels up to one hundred and primes p � 104 leadus to conjecture the following asymptotic relations,where cf ; cf;0 are positive constants and cf = cf;0for d = 1:
(i) If d = 1, PAf (x) � cfpx=log x as x!1.
(ii) If d � 2, PAf (x) � cf log log x as x!1.
(iii) If d = 1, PAf;0(x) � cf;0px=log x as x!1.
(iv) If d = 2, PAf;0(x) � cf;0 log log x as x!1.
(v) If d > 2, PAf;0(x) = O(1) for all x � 2.We also construct a probabilistic model that pre-dicts these behaviours.
2. SOME FACTS ON SEMILINEAR ALGEBRAIn this section we consider some facts on semilinearalgebra. We �x an integer n, a power q = pn ofthe characteristic of k, and H, Hi denote k-vectorspaces.
Definition 2.1. An additive mapping F : H1 ! H2is said to be q-linear if it satis�es F (�x) = �qF (x)for all � 2 k and x 2 H1.By Endq(H) we denote the k-vector space of allq-linear operators on H. In the linear case, n = 0,we simply drop the subindex q. For a given matrixM with entries in k, M (qi) will denote the matrixobtained from M by raising each of its entries tothe qi-th power. If we choose a basis of H, thenwe may attach to any q-linear operator F on H amatrix W in the usual way: if x = (xi) denotes avector of H, then Wx(q) yields the coordinates ofthe vector F (x). Note that, for any integer m > 0,Fm is a qm-linear operator with matrix W (m) :=WW (q) � � �W (qm�1).If F 2 Endq(H), the dual operator F 0 is de�nedby (F 0(!)(e))q = !(F (e)), for any form ! in thedual linear space H 0 and any vector e 2 H. ThenF 0 2 Endq�1(H 0) and, if W is the matrix of F inthe basis fe1; : : : ; egg, the matrix W 0 of F 0 in thedual basis is given by W 0 = (W t)(1=q), where W tdenotes the transposed matrix.The q-linear nonlinear operators do not have at-tached eigenvalues or characteristic polynomials.



Bayer and González: On the Hasse–Witt Invariants of Modular Curves 59Each operator F yields a decomposition H = Hs�Hn into invariant subspaces, where F restricted toHs is semisimple and restricted to Hn is nilpotent.We considerr(F ) := dimHs;si(F ) := dimkerF i for 1 � i � g,where g = dimH. The integer r(F ) is called thesemisimple rank of F . The integers si(F ) deter-mine r(F ) and the number and length of the Jor-dan boxes of the Hs; they remain invariant bychanges of basis. In particular,r(F ) = dim imF g = rankW (g) = g � sg(F ):Moreover, r(F ) = dimFq0 HF ; where q0 is the max-imum between q and q�1. Observe that F and F 0have the same invariants.Given F 2 Endq(H), and any basis fe1; : : : ; eggof H, we may consider the linear operator T 2End(H) de�ned by T (ei) = F (ei) for 1 � i � g.Although dimkerF = dimker T , it might happenthat dimkerFm and dimker Tm do not agree. Thefollowing de�nition is useful for our purposes.
Definition 2.2. We say that a linear operator T 2End(H) strongly linealizes a q-linear operator F 2Endq(H) if there exists a basis fe1; : : : ; egg of Hsuch that for any integer j > 0 isT j(ei) = F j(ei) for 1 � i � g:A linear operator T linealizes a q-linear operator Fif some power of T strongly linealizes some (possi-bly di�erent) power of F .Clearly, if F 2 Endq(H) is such that in some basisit has a matrix W with entries in Fq , q > 1, and ifT 2 End(H) is the linear mapping de�ned throughW , then T strongly linealizes F . If T linealizes F ,then the semisimple rank of F equals the sum ofthe multiplicities of the nonzero roots of the char-acteristic polynomial of T , since the dimensions ofthe nilpotent subspaces attached to F and T arethe same.

Proposition 2.3. If k = �Fq and T 2 End(H) is anoperator that linealizes F 2 Endq(H), then the dualoperator T 0 linealizes the dual operator F 0.
3. HASSE–WITT INVARIANT OF ABELIAN VARIETIES

OVER FINITE FIELDSLet A=k be an abelian variety of dimension g. Wedenote by F �A the p-linear operator of H1(A;O) in-duced by the absolute Frobenius FA, and by CA theCartier operator of H0(A;
1), which is p�1-linear.As is well known, r(A) = r(F �A).Let (Â=k;PA) be the dual abelian variety of A,where Â(k) = Pic0(A) and PA is the Poincar�e sheafover A � Â. Let T0(�) denote tangent space atzero. By considering the canonical isomorphism� : T0(Â)! H1(A;O), we get a canonical pairingH1(A;O) �H0(Â;
1)! k; hr; b!i := b!(��1(r))for which the dual operator of the absolute Frobe-nius F �A is the Cartier operator CÂ. Moreover,h �r; b!i = hr; b �(b!)i for any  2 End(A).Until the end of this section, we assume thatA is de�ned over Fq , q = pn, and k = �Fq . Let' 2 EndFq (A) denote the relative Frobenius endo-morphism of A. For each prime l 6= p, let Tl(A) bethe l-adic Tate module, and Vl(A) = Q l 
Zl Tl(A).
Proposition 3.1. (i) The linear operator'� : H1(A;O)! H1(A;O)linealizes the p-linear operator F �A.
(ii) The Hasse{Witt invariant of A is the sum of themultiplicities of the nonzero roots of the mod preduced characteristic polynomial of ' acting onVl(A) .
Proof. The assertion in (i) follows from the fact thatfor any r 2 H1(A;O) there exists an integermr > 0such that if mr j m, then ('�)m(r) = (F �)nm(r).The assertion in (ii) follows from (i) combined withdet('� x Id j Vl(A)) (mod p)= (�1)gxg det('� � x Id j H1(A;O));due to Manin [1961]. �



60 Experimental Mathematics, Vol. 6 (1997), No. 1Consider an Fq -polarization � : A ! Â and thecorresponding Rosati involution in Q
End(A) de-�ned by  7!  0 = ��1 � b � �. Note that the Ver-schiebung '0 lies in EndFq (A). Since 'A � '0A = qand 'A�'̂Â = q, we have that the Verschiebung en-domorphism of A is '̂ bA; that is, '0A = '̂Â. Thus,'Â� and '0�A are dual with respect to the abovepairing. Since the respective Frobenius acting onVl(A); Vl(Â) have the same characteristic polyno-mial, we get
Proposition 3.2. (i) The linear operator'0� : H0(A;
1)! H0(A;
1)linealizes the p�1-linear operator CA. Thus theHasse{Witt invariant of A is the sum of themultiplicities of the nonzero roots of the charac-teristic polynomial of '0� acting on H0(A;
1).
(ii) The characteristic polynomial of '� acting onH1(A;O) equals the characteristic polynomial of'0� acting on H0(A;
1).Let P (x) := det(' � x Id j Vl(A)). As is wellknown, P (x) is a polynomial with integral coef-�cients, independent of l. If �i, 1 � i � 2g, denoteits complex roots, we have j�ij = q1=2, Q2gi=1 �i =qg, and we may �x an ordering of the roots ofP (x) so that �i+g = �i = q=�i for 1 � i � g.Let �i := �i + ��i, 1 � i � g. The polynomialQ(x) := Qgi=1(x� �i) has integral coe�cients andQ(x)2 = det(' + '0 � x Id j Vl(A)). We havedet('�x Id j Vl(A)) � xgQ(x) (mod p): Thus r(A)equals the sum of the multiplicities of the nonzeroroots of Q(x) (mod p), anddet('��x Id jH1(A;O))=det('0��x Id jH0(A;
1))=(�1)gQ(x) (mod p):
4. HASSE–WITT INVARIANTS OF MODULAR CURVESLet N > 1 be an integer and � a subgroup of �0(N)containing �1(N). Denote by X� the complex pro-jective nonsingular curve de�ned by the action of� in the completed upper-half plane H � . If N > 4,the curve X� has a proper and smooth model over

Z[1=N ]. The Hecke and the diamond correspon-dences [Tp] and hpi, for p - N a prime, act on it.The Weil involution w is an automorphism of X�de�ned over Z[1=N ][�], where � is a primitive N -throot of unity.From now on we consider only modular curves ofgenus g > 0. We �x a prime p -N , and a place �p ofQ lying over p. We let J�=SpecZp[�] be the N�eronmodel of the jacobian of X�=SpecZp[�]. We de-note by ~Xp = X�=�Fp , ~Jp = J�=�Fp the correspondinggeometric closed �bres. For any endomorphism  of J�, we let ~ denote its mod �p reduction.Let Tp be the p-th Hecke operator acting onthe space of cusp forms S2(�). Under the iso-morphism S2(�) ! H0(X�;
1) given by f(q) 7!f(q)q�1dq, the Tp operator induced on H0(X�;
1)equals (��)�1[Tp]���. Here q = e2�iz, and � denotesa canonical mapping from the modular curve to itsjacobian.
Proposition 4.1. The endomorphism g[Tp]� of the vec-tor space H0( ~Jp;
1) equals ( ~w�1 � '0 � ~w)�. TheHasse{Witt invariant of eXp is the sum of the mul-tiplicities of the nonzero roots of the mod p reducedcharacteristic polynomial det(Tp � x Id j S2(�)).
Proof. Eichler{Shimura congruence [Shimura 1971]tells usg[Tp] = '+ '0 � fhpi = '+ ~w�1 � '0 � ~w;as equality in End( ~Jp). Since '� = 0 onH0( ~Jp;
1),the �rst statement follows. The rest is a conse-quence of proposition 3.2(ii) combined with the fol-lowing equalities and congruence mod p:det(Tp � x Id j S2(�))= det([Tp]� � x Id j H0(J�;
1))� det(g[Tp]� � x Id j H0( ~J�;
1))= det('0� � x Id j H0( ~J�;
1)): �
Proposition 4.2. Let " denote a modN Dirichletcharacter and f = Pn>0 a(n)qn in S2(�0(N); ") amodular form whose coe�cients belong to the inte-ger ring OE of a number �eld E. Let p be a prime



Bayer and González: On the Hasse–Witt Invariants of Modular Curves 61ideal of OE over p of residue degree equal to �.Then, for each integer m > 0 such that � jm, wehave fTpm( ^f(q)q�1dq) = Cm( ^f(q)q�1dq);where e denotes reduction mod �p.
Proof. We recall that for any curve C=k in char-acteristic p > 0, the Cartier operator C is de-�ned in the following way: given a closed pointx in C and functions t; h 2 Ox such that dt 6= 0,then C(hdt) = h1dt, where hp1 = �dp�1h=dtp�1.The claim of the proposition follows by consider-ing C = ~Xp, x = i1, and t = q. �We see that the Cartier operator and the Heckeoperator ~Tp agree on the mod p reduced parabolicforms of S2(�0(N); ") whose coe�cients lie in Z.In the particular case of the trivial Nebentypuscharacter, S2(�0(N)) has a basis of parabolic formswith integral coe�cients, hence the two operatorsagree on the mod p reduced basis. On the otherhand, since S2(�0(N); ") has a basis of eigenfunc-tions of the Tp-operator with algebraic integral co-e�cients, we get
Corollary 4.3. The Hecke operator g[Tp]�of H0( ~Jp;
1)linealizes the Cartier operator C. If � = �0(N),then g[Tp]� strongly linealizes C.Numerical calculations of Hasse{Witt invariants ofmodular curves will be displayed in Section 9. Theyhave been performed by using proposition 4.1 andthe available tables for the characteristic polyno-mials of the Hecke operators. If X0(N) happensto be hyperelliptic, we may compute a matrix forthe Cartier operator at p - 2N by the method of[Manin 1962], which in turn requires the knowledgeof an equation of the curve. If we use for that pur-pose the equations in [Gonz�alez Rovira 1991], thenthe characteristic polynomial of that matrix equalsthe mod p reduced characteristic polynomial of Tp.This happens because the basis of regular di�eren-tials obtained from those equations corresponds tomodular forms that do have integral Fourier coef-�cients.

5. SOME RESULTS ON DENSITIESFrom now on, A will denote an abelian variety de-�ned over Q and p a prime of good reduction forA. We write ~Ap = A=�Fp , and rp(A) := r( ~Ap). Wesay that p is a prime of ordinary reduction for Aif rp(A) = dimA. If dimA = 1, we already men-tioned the existence of in�nitely many primes ofordinary reduction as well as of supersingular re-duction. In higher dimensions, we �nd the follow-ing result.
Proposition 5.1. Let A=Q be an abelian variety ofdimension g � 2. Then, there exists a set of primeswith positive density for which rp(A) � 2 for all pin this set . In particular , if g = 2, there exists aset of primes of ordinary reduction for A that haspositive density .
Proof. Let us �x a prime l > 4g2 and let p be a primeof good reduction for A such that it splits com-pletely in the �eld Q(A[l]). Since Q(�l) � Q(A[l]),then p � 1 (mod l) and, in particular, p > l andthe points in ~Ap[l] are rational over Fp . Thus, therelative Frobenius 'p acts trivially on ~Ap[l]. Sincep � 1 (mod l), the Verschiebung '0p = p='p alsoacts trivially on ~Ap[l]. If we consider 'p + '0p act-ing on Tl( ~Ap), we have 'p + '0p � 2 Id (mod l). IfQ(x) = xg+Pg�1i=1 cixg�i is the polynomial with in-tegral coe�cients such that Q(x)2 = det('p+'0p�x Id j Vl( ~Ap)) (cf. section 3), thenxg + g�1Xi=1 cixg�i � (x� 2)g(mod l):From this we get c1��2g (mod l) and c2�2g(g�1)(mod l). On the other hand, we know that jc1j �2gp1=2 < p and jc2j � 2g(g � 1)p < lp. For suchprimes p we must have rp(A) > 0, since the con-dition c1 � 0 (mod p) would imply c1 = 0, whichcontradicts the fact that c1 � �2g (mod l). Weclaim that c2 6� 0 (mod p), which already impliesrp(A) > 1. Assume instead that c2 � 0 (mod p),then c2 = 2g(g � 1)p. Since all the roots of thepolynomial Q(x) are real, then all the roots of the



62 Experimental Mathematics, Vol. 6 (1997), No. 1i-th derived polynomials Q(i)(x), for 1 � i � g� 1,are also real. Therefore, the roots of the polyno-mial 2Qg�2)(x)g! = x2 + 2c1g x+ 4pare real, so that c21 � 4g2p. Since jc1j � 2gp1=2, weget jc1j = 2gp1=2, which contradicts the fact thatc1 is an integer. �Another proof, due to Ogus, of the second claim ofthe preceding proposition can be found in [Deligneet al. 1982].Next we work on abelian subvarieties A=Q ofthe jacobian of the modular curve X�=Q . Let f =Pn>0 a(n)qn 2 S2(�) be a newform, E the �eldgenerated by its coe�cients and I the set of Q-embeddings of E into �Q . Let Af=Q denote theabelian subvariety of J� of dimension g = [E : Q ]whose cotangent vector space, Hf , is generatedby ff�g for � running into I (compare [Shimura1971]). Hf has a basis of modular forms withintegral Fourier coe�cients. From what we haveseen, rp(Af ) equals the sum of the multiplicities ofthe nonzero roots of the mod p reduced polynomialdet(Tp � x Id j Hf ). Therefore,rp(Af ) = #f� 2 I j a(p)� 6� 0 (mod �p)g:In particular, Af is ordinary at p if and only ifp - NE=Q(a(p)). If f has complex multiplication[Ribet 1977], it follows that there is a set of primesp with density 1=2 for which rp(Af ) = 0.
Proposition 5.2. Suppose that A=Q is an abelian sub-variety of J� that is invariant under all the Heckeendomorphisms.
(i) For almost all primes p, rp(A) = 0 implies[Tp]jA = 0:
(ii) If [Tp]jA = 0, then ~Ap is �Fp -isogenous to a powerof a supersingular elliptic curve. Hence, the setof primes for which is rp(A) = 0 and ~Ap is not�Fp -isogenous to a power of a supersingular el-liptic curve is �nite.

(iii) If the cotangent space to A does not containany form with complex multiplication, then theset of primes p for which rp(A) = 0 has naturaldensity , in the set of all primes numbers, equalto zero.
Proof. Without loss of generality, we may assumethat A = Af is the variety attached to a newformf 2 S2(�). Let ff1; : : : ; fgg be a basis of newformsand fh1; : : : ; hgg a basis of forms with integral coef-�cients of Hf . Let M = (mij) be the matrix of thechange of basis, so that hj = Pimijfi: Let c de-note an upper bound of the values jmij j, and let Qdenote the set of primes such that mij is p-integral,p - N , and p1=2 > 2gc. If fi = Pn>0 ai(n)qn,hi =Pn>0 ci(n)qn, then we getjcj(p)j = ���Xmijai(p)���� cX jai(p)j < c2gp1=2 < pfor all p 2 Q. Assume now that rp(Af ) = 0. If theentries in the matrix M are p-integral, we musthave ci(p) � 0 (mod p) for 1 � i � g. If p 2 Q, wetherefore get ci(p) = 0. Since detM 6= 0, ai(p) = 0for 1 � i � g. We see that Tp = 0 on Hf . Thisyields statement (i).By Eichler{Shimura, [ ~Tp] = 'p + '0pfhpi = 'p +p='pfhpi: Hence, if we now assume that [Tp]jA = 0,a power of 'p will be equal to the multiplication byan integer. Since ~Ap is de�ned over a �nite �eld, weknow [Tate 1966] that this condition is equivalentto ~Ap being isogenous to a power of a supersingularelliptic curve. This yields statement (ii).For a form f without complex multiplication, itwas proved by Serre [1981] that the number Pf;0(x)of primes p � x such that a(p) = 0 satis�esPf;0(x) = O�(log log log x)1=2(log x)1=2 log log xLi(x)�as x ! 1. From this formula, statement (i), andthe prime number theorem, we get statement (iii).�
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6. FROBENIUS DISTRIBUTIONS: FIRST APPROACHThroughout the remainder of the paper,f =Xn>0 a(n)qn 2 S2(N; ")denotes a newform without complex multiplica-tion, g = dimAf , OE the ring of integers of thenumber �eld E generated by the coe�cients of f ,and I = f�1; : : : ; �gg the set of all Q-embeddingsof E into �Q . We let GQ = Gal( �Q =Q).For each prime l, we know that there exists acontinuous l-adic representation�l : GQ ! GL(2;OE 
 Zl)unrami�ed outside Nl and such thatTr(�l(Frobl;p)) = a(p);det(�l(Frobl;p)) = "(p)pfor all primes p -Nl. Here Frobl;p = Frobl;p(Ml=Q)denotes a Frobenius element and Ml is the Galoisextension of Q cut out by �l. The family �l, for allprimes l, de�nes an homomorphism� : GQ !Yl GL(2;OE 
 Zl):Let T be the set of those pairs (�; �) such that� 2 I and � : GQ ! C � is a continuous characterthat satis�es a(p)� = �(p)a(p) for all p - N . Theset T 6= ? is a group by the law(�;  ) � (�; �) = (� � �; �� : );where ��(g) := �(g)� . If (�; �) 2 T; then � is un-rami�ed outside N and � = �"j with some char-acter � of order 1 or 2 and some integer j. Let� be the subset of the elements � 2 I such that(�; �) 2 T for some �. It turns out that � is anabelian subgroup of the group of automorphismsof E. Let � = T ker� for (�; �) 2 T . Considerthe number �eldsL = �Q� ; F = E�:We will now record some facts concerning these�elds L and F that are needed in the sequel. For

their proofs see [Momose 1981; Ribet 1980; 1985;1992; 1994].
(i) The extension L=Q is abelian and the number�eld F is totally real.
(ii) The mapping T ! � = Gal(E=F ) given by(�; �) 7! � is an isomorphism.
(iii) Replacing each �l by an isomorphic representa-tion, we may suppose that �l(�) is contained inthe subgroup fs 2 GL(2;OF 
Zl) j det s 2 Z�lg,and that it is equal to it for almost all l.
(iv) For each prime p -N , we have a(p)2="(p) 2 F .
(v) The abelian variety Af is isotypical; i. e., Q -isogenous to a product B � � � � �B, where B =Bf is a �Q -simple abelian variety. The endomor-phism algebra Q 
 End(Bf ) is a central divi-sion algebra over F of dimension t2, with t � 2.Moreover, dimBf = td, where d = [F : Q ].The following relationship between the �elds L andF , although elementary, will be basic for predictingthe distribution laws of the a(p)-s values. Note thatif Af is an elliptic curve, then both �elds are equaland coincide with Q .
Main Lemma 6.1. Assume that for a prime p -N , thegeometric �bre ~Af;p is not isogenous to a powerof a supersingular elliptic curve. Let � denote theresidue degree of any prime in L over p. For agiven integer m, the following conditions are equiv-alent :(a) a(p)m 2 OF ,(b) Tr(�l(Frobml;p)) 2 OF 
 Zl for all l 6= p,(c) � jm.
Proof. The hypothesis over ~Af;p implies, as in theproof of 5.2, that Tr(�l(Frobml;p)) 6= 0 for all l 6= p,and m > 0. We �rst show the equivalence of (a)and (b). For a given 2 � 2-matrix s with entriesin an integral domain, and for any m > 0, thefollowing identity is ful�lled:Tr(sm) = [m=2]Xi=0 (�1)i mm�i�m�ii �(det s)i(Tr s)m�2i:



64 Experimental Mathematics, Vol. 6 (1997), No. 1Thus, under the assumption Tr(s) 6= 0, we haveTr(sm)= (Tr s)m [m=2]Xi=0 (�1)i mm�i�m�ii �� det s(Tr s)2�i!:Since Tr(�l(Frobml;p)) 6= 0 for all m > 0, we havea(p)m 2 F if and only if, for each l 6= p, we haveTr(�l(Frobml;p)) 2 OF 
 Zl, due to the fact thata(p)2="(p) 2 F �.We now show that (c) implies (b). Since p - N ,p is unrami�ed in L. For a place �p of �Q over p, letp be its restricion to L. Since Frobl;p(MlL=Q)� =Frobl;p(MlL=L) and by taking into account c), weget Tr(�l(Frob�l;p)m=�) 2 OF 
 Zl.Finally, we show that (a) implies (c). If a(p)m 2F , then for all (�; �) 2 T we have (a(p)m)� =a(p)m. Since a(p) 6= 0, we have �(pm) = 1, sothat �(Frobl;p(MlL=Q)m) = �(pm) = 1. There-fore, Frobl;p(MlL=Q)m 2 Gal(MlL=L) and � jm.�Since Af is isogenous to a power of Bf , we haverp(Af ) = r(Bf =�Fp) dimAf=dimBf :Hence, the Hasse{Witt invariants of Af are deter-mined by those of the geometric �bres of its build-ing block Bf .Throughout the remainder of the paper, P =PL will denote the set of primes p - N that splitcompletely in L. If p 2 PL, we know by 6.1 thata(p) 2 F . In this case we let b(p) := NF=Q(a(p)).By Section 5, Af is nonordinary at p if and onlyif b(p) � 0 (mod p), and rp(Af ) = 0 if and only ifb(p) = 0 for large enough p.In general, jNE=Q(a(p))j � 2gpg=2, but for p 2 PLwe have jb(p)j � 2dpd=2. Moreover, for the primesp =2 PL, the values a(p) are constrained by thecondition a(p)� 2 F . These facts lead us to suspectthat the pair L;F might control the distributionlaw of the nonordinary primes for Af , in that itsorder should be determined, up to a multiplicative

constant, by those primes in PL. Pursuing thisidea, let us de�neN splitf;t (x) := #fp 2 PL j p � x; b(p) = tg:Since the possible values of a(p) such that b(p) � 0(mod p) depend on the residue degree of the primesin F over p, it is clear that the distribution of thenonordinary values b(p) in the interval[�2dpd=2; 2dpd=2]cannot be uniform. Nevertheless, to get a roughidea of its order, let us assume initially that allthe integers lying in [�2dpd=2; 2dpd=2] had the sameprobability of being equal to b(p). In this case,N splitf;0 (x) �Xp�x 12d+1pd=2 ;Xp�xpjt N splitf;t (x) � �Pp�x 1=(4pp) if d = 1,Pp�x 1=p if d > 1,as x!1 and for p running into PL. In particular,for d > 2, we would get only a �nite number ofprimes for which a(p) = 0. Since L=Q is abelian,we haveXp2P; p�x 1ps � 1[L : Q ] Xp�x 1ps for 0 < s � 1:If d > 1, we get as a consequence that the num-ber of nonordinary primes for Af would be asymp-totically equivalent to log log x, up to some mul-tiplicative constant. If d = 1, then F = Q anddimBf � 2. In this case, we see that the asymp-totic behaviour of the nonordinary primes wouldbe that predicted by the results of [Lang and Trot-ter 1976], even if dimBf = 2. The next propositionshows that for d = 1, the condition dimBf = 2 im-plies r(Bf =�Fp) 6= 1, which explains why the valuesrp(Af ) behave in this case like those of the g-thpower of an elliptic curve over Q (cf. Section 9).
Proposition 6.2. If F = Q , all the geometric �bres~Af;p, for p - N , are isogenous to the gth-power ofan elliptic curve.
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Proof. We know already that the claim is true ifa(p) = 0. Assume instead that a(p) 6= 0 and let �denote the residue degree of the primes in L overp. By Eichler{Shimura and 6.1, there exists analgebraic integer �p such thata(p) = �p+��p"(p); �p ��p = p; ��p+���p 2 OF = Z:If Af is nonordinary at p, then there is a primep j p in E such that a(p) � 0 (mod p). Hence,��p+ ���p 2 pZ and p divides �2�p , ��2�p , which impliesthat rp(Af ) = 0 and r(Bf =�Fp) = 0. Since dimBf �2, the geometric �bre Bf =�Fp is isogenous to a powerof a supersingular elliptic curve. Thus, the same istrue for ~Af;p.Assume now that Af is ordinary at p. ThenBf =�Fp is also ordinary. If Bf =�Fp were simple, thenthe algebra Q 
 End(Bf =�Fp) would be a number�eld, but this is impossible if dimBf = 2 since Q
End(Bf =�Fp) contains the noncommutative algebraQ 
 End(Bf ). Since the characteristic polynomialof the relative Frobenius 'p� acting on the Tatemodule of Af =Fp� is a power of x2�(��p+���p)x+p�,we see that the variety ~Af;p is isogenous to a powerof an elliptic curve. �
7. CHEBOTAREV DENSITIES IN GL2-EXTENSIONSFor any number �eld K, we let GK := Gal( �Q =K).Let A=Q be any abelian variety of dimension g, la prime, and�l : GQ ! Aut(Tl(A)) ' GL(2g;Zl)the continuous l-adic representation de�ned by theTate module. Let � be the homomorphism givenby � =Ql �l where the product runs over the set ofall prime numbers. We know [Serre 1985/86] thatthere exists a �nite extension K=Q such that thesubgroup �(GK) is open in the productQl �l(GK).If A = Af , f as above, then �l is equivalent tothe l-adic representation of GQ into GL(2;OE
Zl)attached to f . In this case, we want to prove that�(GL) is open in Ql �l(GL), where the �eld L is,as in Section 6, the abelian extension of Q cut out

by the set of Dirichlet characters that intervene inthe inner twists of f .
Lemma 7.1. Let O be the integer ring of a number�eld . Let G be a closed subgroup ofYl GL(2;O 
Zl):Denote by Gl the image of G under the projectionin GL(2;O 
 Zl). Suppose that(a) the image of G by det :QlGl !Ql(O
Zl)� isopen in det(QlGl), and(b) Gl contains SL(2;O 
Zl) for almost all l.Then G is open in QlGl.
Proof. The assertions for the case O = Z correspondto the main lemma in [Serre 1989, Chapter 4]. Weoutline the required modi�cations in our case.
(i) The group PSL(2; Fl� ) is simple for any primel � 5 and � a positive integer. Every proper sub-group of this group is solvable or isomorphic toone of the following groups: PSL(2; Flm ) for m j �,PGL(2; Flm ) for 2mj�, or the alternating group A5.The last possibility occurs only if l2� � 1 (mod 5)[Huppert 1967].
(ii) No proper subgroup of SL(2; Fl� ) can possiblymap onto PSL(2; Fl� ), since the transvections gen-erate SL(2; Fl� ) and have order l.
(iii) Let X be a closed subgroup of SL(2;O 
 Zl)that maps onto SL(2;O=lO). If l � 5, then X =SL(2;O 
Zl).
(iv) Let G be a closed subgroup of QlGL(2;O
Zl)(at this point, we do not require G to satisfy theconditions of 7.1). Let X = QlGl. Let S be a�nite set of prime numbers, and XS = Ql2S Gl.The image GS of G by the projection X ! XS isopen in XS .
(v) Assume now that a closed subgroup G ofYl GL(2;O 
 Zl)satis�es (b). Let S be a �nite set of prime num-bers so that f2; 3; 5g are in S and, if l 62 S, then
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Zl) contains SL(2;O
Zl). Then G con-tains Ql62S SL(2;O 
 Zl).
(vi) If G is as in (v), then G contains an open sub-group of Ql SL(2;O 
 Zl) \Gl:Suppose now that G satis�es (a) and (b). To�nish the proof we take into account that the kernelof the homomorphism det : QlGl !Ql(O
Zl)� isQl SL(2;O
Zl)\Gl. Hence, by (vi), the kernel ofdetjG is open in ker(det). Since det(G) is an opensubgroup of det(QlGl), we get that G is an opensubgroup of QlGl. �We turn now to the l-adic representations attachedto the newform f . We denote by �l;L the restrictionof �l to GL, and by �L the restriction of � to GL.
Lemma 7.2. The image of �L(GL) under the mapdet :Ql �l;L(GL)! Ql Z�l is open.
Proof. Because GL � ker("), the cyclotomic char-acter is det(�L;l) : GL ! Z�l . The assertion followsas in [Serre 1989, Lemma IV, 3.1]. �Since �l(GL) contains SL(2;OF 
Zl) for almost alll, and from the above lemmas, the next propositionfollows.
Proposition 7.3. The subgroup �(GL) is open in theproduct Ql �l(GL).We recall that F is the center of Q 
 End(Bf ).Consider OF 
 Zl =M�jl O�;where O� denotes the completion of the integer ringOF at a prime ideal � j l. By �� we denote the com-positum of �l;L with the projection onto GL(2;O�).Given an integral ideal m =Q�n� of OF , let�m =Y�jm ��and let tm denote the (modm)-reduction homomor-phism Y�jmGL(2;O�)!Y�jmGL(2;O�=�n�):

For a prime p j p in L not dividing N , we noteFrobp = Frobp(M=L), where M is now the �eldcut out by �L. We denote, for simplicity,a(p) = ��p + ���p ;where � is the residue degree of p, a(p) = �p +��p"(p), and �p ��p = p. Observe thata(p) = Tr(�l;L(Frobp)) for all l 6= p.For each nonzero integral ideal m of OF , and forany element � 2 OF , we de�ne �m(�) asNF=Q(m) limx!1 #fp j NL=Q(p) � x; a(p) � � (modm)g#fp j NL=Q(p) � xg ;where p runs into the set of primes in L that donot divide N . The Chebotarev density theoremguarantees the existence of the limit. Observe thatX�2OF=m �m(�)NF=Q(m) = 1;which tells us that the average value of �m is 1.Proposition 7.3 will be used to establish the uni-form convergence of the sequence f�mg when theindices m run into the �lter of all nonzero idealsof the ring OF . Before that we need the followinglemma:
Lemma 7.4. Let l be a prime number and let m, �denote positive integers such that m divides �. PutG := GL(2; Fl� ), Gm := fs 2 G j det(s) 2 Flm g,and Gm;e := fs 2 Gm j Tr(s) = eg for e 2 Fl� .Then:
(i) #G = l�(l��1)2(l�+1) and #Gm = l�(l��1)�(l� + 1)(lm � 1).
(ii) #Gm;0 = � l2�(lm � 1) if 2m - �,l�(l� + 1)(lm � 1) if 2m j �.
(iii) l�(l� � 1)(lm � 1) � #Gm;e � l�(l� +1)(lm � 1)for all e 2 Fl� .
(iv) #G�;e = l�(l2� � l� � 1) for all e 6= 0.
Theorem 7.5. (i) There exists a bounded function� : OF ! R such that limm �m = � and theconvergence is uniform.
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(ii) There exist both an ideal n 6= (0) of OF andconstants 0 < ~c1 < ~c2 such that for all � 2 OFis ~c1�n(�) � �(�) � ~c2�n(�).
Proof. Since, by 7.3, �(GL) is an open subgroup ofQl(Q�jl ��(GL)), there is a nonzero ideal n of OFsatisfying the following properties:{ if � - n, then��(GL) = fs 2 GL(2;O�) j det s 2 Z�lg:{ �(GL) =Q�-n ��(GL)� �n(GL).{ t�1n (tn�n(GL)) = �n(GL).Let � denote the residue degree of a prime ideal �over l and � - n. By the preceding lemma, we getl�=(l� + 1) � ��(�) � l�=(l� � 1). If � = 1 we get,moreover,��(�) = 8<: l2=(l2 � 1) if � � 0 (mod�),(l3 � l2 � l)=(l3 � l2 � l + 1)if � 6� 0 (mod�).Hence, the in�nite productQ�-n ��(�) is absolutelyconvergent. Let c(�) :=Q�-n ��(�). If n jm, then�m(�) = �n(�) Y�jm;�-n��(�):Thus, limm �m(�) = �n(�)c(�). We denote thislimit by �(�). We consider the constantsc1;� := � 1=(1 + l��) if � > 1,1 if � = 1,c2;� := � 1=(1 � l��) if � > 11=(1 � l�2) if � = 1,~c1 :=Y�-n c1;�;~c2 :=Y�-n c2;�:For each � 2 OF we have c1;� � ��(�) � c2;� and~c1 � c(�) � ~c2. Note that if m � n, then �m(�) � c

for c := NF=Q(n)~c2. The convergence of the se-quence is uniform since, for all m � n, we havej�(�)��m(�)j = �m(�)�����Y�-m ��(�)�1����� � c�����Y�-m c2;��1�����and limm Y�-m c2;� = 1: �
8. A PROBABILISTIC MODEL AND CONJECTURESTo predict more precisely the number of nonordi-nary primes for Af , and of those for which rp(Af )vanishes, which we can �nd up to a given value,we construct a probabilistic model. It generalizesthe one introduced in [Lang and Trotter 1976] forthe elliptic curves de�ned over Q . We keep thenotations of Section 7.Let � be the set of all prime ideals of the integerring of L. Becauselimx!1 #fp 2 � j NL=Q(p) = p � xg#fp 2 � j NL=Q(p) � xg = 1;we can rewrite �m(�) asNF=Q(m) limx!1#fp2PL j p�x; a(p)� � (modm)g#fp2PL j p�xg ;and see that the functions �m are determined bythe primes in PL.Let f�1; : : : ; �dg be the set of all Q-embeddingsof F into �Q . Let � : F ! Rd denote the geometricrepresentation of F , given by �(�) = (�(1); : : : ; �(d))for � in F and �(i) := ��i . We note that if p 2 PL,then a(p)(i) is de�ned and ja(p)(i)j � 2p1=2 with1 � i � d.We now list and comment on our assumptionsconcerning the probabilistic model.
H1. There exists a positive continuous function �1 :Rd ! R with support in [�1; 1]d such that, forany Lebesgue measurable subset X � Rd ,ZX �1= limx!1 #np2PL j p�x; �(a(p))2pp 2Xo#fp2PL j p�xg :



68 Experimental Mathematics, Vol. 6 (1997), No. 1In the case of elliptic curves de�ned over Q , itis conjectured that the measure attached to thedensity function �1 corresponds to the Sato{Tatemeasure (2=�) sin2 �d�, once the set of conjugacyclasses of SU(2) is identi�ed with [�1; 1] (compare[Lang and Trotter 1976; Tate 1965]). For an insightin the general case, consider the Mumford{Tategroup GM(Bf ) and the kernel G1 of the canoni-cal homomorphism of GM(Bf ) in the multiplica-tive group G m . Let K be the maximal compactsubgroup of G1(C ) and ClK the set of its conju-gacy classes. Put in ClK the image of the Haarmeasure of K. It seems reasonable to suspect thatthis measure should provide the measure attachedto �1.
H2. For each p 2 PL and for each nonzero ideal min OF , there exists a constant c(p;m) > 0 suchthat the function gm : PL �OF ! R de�ned bygm(p; �) = c(p;m)�1��(�)2pp� �m(�)satis�esP�2OF gm(p; �)=1 for almost all p2PL.
H3. For each p 2 PL, there exists a constant cp > 0such that the function g : PL�OF ! R de�nedby g(p; �) = cp �1��(�)2pp� �(�)satis�esP�2OF g(p; �) = 1 for almost all p 2 PL.If a(p0) = 0 for some p0 2 PL, then �m(0) > 0 forall m. Thus �(0) > 0. If, moreover, �1(0) > 0,then H2 and H3 follow from H1.The next result yields the asymptotic behaviourof the family of constants introduced in H2, H3.
Theorem 8.1. Assume H1 and H2, and let d;D de-note the degree and the discriminant , respectively ,of F=Q .
(i) For each nonzero ideal m of OF , we havec(p;m) � pjDj2dpd=2 as p!1:

(ii) Assume, moreover , that H3 holds. Then cp =limm c(p;m) andcp � pjDj2dpd=2 as p!1:
Proof. Let feig be the canonical basis of Rd . Fixm and choose a basis fuig of the lattice �(m). LetU be the linear automorphism of Rd de�ned byU(ei) = ui for 1 � i � d. SincejdetU j =pjDjNF=Q(m);we have1 = ZRd �1 =pjDjNF=Q(m)ZRd �1 � U:We approximate the integral by Riemann sums:ZRd �1 � U= limp!1 12dpd=2 X(tn)2Zd�1�U� t12pp; : : : ; td2pp��:Let �0 2 OF . Since �1 and U are uniformly con-tinuous, we getlimp!1 ZRd �1 � ��(�0)p2p + U�= limp!1 12dpd=2 X(tn)2Zd�1��(�0)p2p +U� t12pp; : : : ; td2pp��:Thus,ZRd �1 � U = limp!1 ZRd �1 � ��(�0)p2p + U�= limp!1 12dpd=2 X�2�0+m�1��(�)2pp�:By multiplying the last equality by �m(�0) andsumming over the congruence classes �0 in OF =m,we get limp!1 pjDj2dpd=2 X�2OF �1��(�)2pp��m(�) = 1:We easily see that H2 implies (i).



Bayer and González: On the Hasse–Witt Invariants of Modular Curves 69From H2 and H3, it is clear that limm c(p;m) =cp. By using (i), we get for all mlimp!1���� pjDj2dpd=2 X�2OF �1��(�)2pp��(�)� 1����� limp!1 pjDj2dpd=2 X�2OF �1��(�)2pp� j�(�)� �m(�)j:By thorem 7.5 and applying (i) for m = (1), we getlimp!1 pjDj2dpd=2 X�2OF �1��(�)2pp��(�) = 1:Now (ii) follows from H3. �
Remark. From theorem 8.1, it follows thatlimm gm(p; �) = g(p; �)for almost all p 2 PL. The functions gm(p;�)and g(p;�) can be interpreted as probability dis-tributions of random variables Yp;m and Yp, re-spectively, with target in the adeles of F , so thatlimm ProbfYp;m = �(�)g = ProbfYp = �(�)g. Thatis, the sequence of random variables fYp;mg con-verges in law to Yp.Given a real number x � 2, we de�neP splitf;� (x) = #fp 2 PL j p � x; a(p) = �g:We may assume that the asymptotic distributionof the values a(p), for p 2 PL, is given by the ran-dom variable Yp. Then, up to an additive constant,P splitf;� (x) is asymptotically equivalent toXp2P;p�x g(p; �)as x!1. For � = 0, we getXp2P;p�x g(p; 0) � pj D j2d �1(0)�(0) Xp2P;p�x 1pd=2as x!1.Let n be the ideal of OF as in 7.5. The density ofprimes p such that a(p) 2 nOE is greater than zero,since we are considering l-adic representations thatare odd. Thus, it should be �n(0) > 0, in which

case �(0) > 0. Since Sato{Tate density attains itsmaximum at 0, it should be �1(0)�(0) > 0.Putting all this together, we generalize the Langand Trotter conjecture on the distribution law ofsupersingular primes in the elliptic case in the fol-lowing conjecture:
Conjecture 8.2. Let f 2 S2(N; ") be a newform with-out complex multiplication. Let d = [F : Q ]. LetPAf;0(x) denote the number the primes p � x forwhich rp(Af ) = 0. There exist constants Cf;0 >0; Cf such thatPAf;0(x) � Cf;0Xp�x 1pd=2 + Cf as x!1:
Remark. Conjecture 1 amounts to saying that thereshould exist constants cf;0 > 0 such thatPAf ;0(x) 8<:� cf;0px=log x if d = 1,� cf;0 log log x if d = 2,= O(1) if d > 2.We should emphasize that the function Pf;0 shouldexhibit the same asymptotical behaviour sincePf;0(x) = PAf ;0(x) +O(1);compare 5.2(i).Next we deal with the nonordinary reductions ofAf , which are more di�cult to handle.
Lemma 8.3. Let fpmg be a sequence of prime idealsof OF , with constant residue degree �, such that thesequence of their norms fpmg tends monotonicallyto in�nity . Assume that pm 2 PL for all m, aswell as H1, H2. For each nonzero ideal m of OF ,we haveX�2pm gm(pm; �) 8>>><>>>:� �1(0)�m(0)pjDj=(2dpd=2m )if � > d=2,= O(p�d=2m ) if � = d=2,� 1=p�m if � < d=2,as pm !1.
Proof. Case � > d=2. For any � 2 pm such that�(�) 2 [�2ppm; 2ppm]d, we have NF=Q(�) = kp�m,where k 2 Z and jkj � 2dpd=2��m . If pm is large



70 Experimental Mathematics, Vol. 6 (1997), No. 1enough, the inequality implies k = 0 and � = 0.Thus, X�2pm �1� �(�)2ppm��m(�) = �1(0)�m(0):By 8.1(i), the assertion follows.Case � = d=2. Let 0 6= � 2 pm be chosen so that�(�) 2 [�2ppm; 2ppm]d. There exists an ideal aof OF such that (�) = pma with 1 � NF=Q(a) � 2d.Denoting by s1 the number of ideals a for whichNF=Q(a) � 2d, we see that there are at most s1principal ideals (�) that satisfy � 2 pm and �(�) 2[�2ppm; 2ppm]d. We �x (�). From all generatorsof (�) as a principal ideal, we only consider thosewhose image under � lies in [�2ppm; 2ppm]d. Weshall prove that their number is bounded by a con-stant that does not depend on pm. Indeed, considerj�(i)j = jNF=Q(�(i))jQj 6=i j�(j)j � NF=Q(a)pd=2m2d�1p(d�1)=2m � p1=2m2d�1 :Let � a unit of OF . The conditions j�(i)�(i)j � 2p1=2m ,for 1 � i � d, force j�(i)j � 2d for all i. The set ofunits that satisfy these inequalities is �nite. Let s2denote its number and M an upper bound for thefunction �1. By taking into account � = 0, and ifs := s1s2 + 1, we getX�2pm �1� �(�)2ppm� �Ms;X�2pm �1� �(�)2ppm��m(�) �MsNF=Q(m);since �m(�) � NF=Q(m). By 8.1(i), the assertionfollows.Case � < d=2. Now d=2�� � 1=2 and, in partic-ular, 1=2��=d � 1=(2d). We denote by fe1; : : : ; edga basis of the lattice �(OF ). For x = (xi), y =(yi) 2 Rd , we de�ne xy := (xiyi), so that we havethe rule �(��) = �(�)�(�). Let f�1; : : : ; �d�1g bea system of fundamental units of OF .

We �rst show that for any integer m > 0 there isa basis fu1;m; : : : ; ud;mg of the lattice �(mpm) suchthat0 < k1p�=dm � ju(j)n;mj � k2p�=dm for 1 � n; j � d:Here k1, k2 are constants independent of m, andu(j)n;m := (��1(un;m))(j). Assume �rst that mpm is aprincipal ideal. We may choose a generator �m inmpm such thatlog(j�(j)m j) = log(NF=Q(m)1=dp�=dm )+ d�1Xk=1 �k log(j�(j)k j)where 0 � �k � 1, and 1 � j � n [Hecke 1981].Let c1; c2 > 0 be real numbers that only depend onf�(j)k g and satisfyc1NF=Q(m)1=dp�=dm � j�(j)m j � c2NF=Q(m)1=dp�=dmfor 1 � j � d. It su�ces to de�ne un;m := �(�m)enfor 1 � n � d, and adjust the bounding con-stants k1, k2, accordingly. Fix now an ideal class ofOF and consider all ideals mpm that belong to it.Take an integral ideal a such that all ideals ampmare principal. By applying the preceding result tothem, we get bases of the lattices �(ampm) withbounding constantsNF=Q(a)1=dk1 andNF=Q(a)1=dk2.Here k1 and k2 are the constants obtained before.Let t 2 GL(n;R) be such that t(�(OF )) = �(a).Clearly, t(�(mpm)) = �(ampm). We choose the ba-sis of �(mpm) by applying t�1 to the chosen basisin the principal case. By taking into account the�niteness of the class number, the existence of thebasis fun;mg follows in all the cases.Choose now a system of representatives f�ig, 1 �i � s, of OF =m. Without loss of generality, we mayassume that pm -m, since this is obviously true forpm > NF=Q(m). Thus,X�2pm �1� �(�)2ppm��m(�)= sXi=1 �m(�i) X�2pm�2�i+m �1� �(�)2ppm�:



Bayer and González: On the Hasse–Witt Invariants of Modular Curves 71Let �i;m be chosen so that �i;m � 0 (mod pm) and�i;m � �i (modm). It su�ces to prove thatpjDj2dpd=2��m X�2�i;m+pmm�1� �(�)2ppm� � 1NF=Q(m)as pm ! 1. Afterwards, multiplying by �m(�i;m)and by 8.1(i), the result will follow. Consider thea�ne automorphismUi;m(x1; : : : ; xd) := �(�i;m)2ppm + dXn=1 xnun;mand put Vi;m = U�1i;m([�1; 1]d). Clearly,1 = ZRd �1 =pjDjNF=Q(m)p�m ZRd �1 � Ui;m;ZVi;m1 = 2dpjDjNF=Q(m)p�m :Note vi;m this last expression. For (tn) 2 Zd, weconsider the cubesdYn=1h tn2ppm ; tn + 12ppm i;which satisfyUi;m� dYn=1h tn2ppm ; tn + 12ppm i� \ [�1; 1]d 6= ?;and denote their union byHi;m. Consider now onlythose cubes that have a nonempty intersection withthe boundary of Hi;m. Since 0 � k1p�=dm � ju(j)n;mjfor 1 � n; j � d, their number is O(p(d�1)(1=2��=d)m ).The volume of their union is O(p(d�1)(1=2��=d)�d=2m ).Since (d� 1)(1=2 � �=d)� d=2 � �1=(2d) � �, wegetZHi;m1 = vi;m +O(p�1=(2d)��m )= p��m � 2dpjDjNF=Q(m) +O(p�1=(2d)m )�:By H1, for each " > 0 there exists a � > 0 such thatif x; y 2 Qdn=1[an; bn], with jbn � anj < � for all n,then j�1(x) � �1(y)j < ". Now, by considering

those primes pm such that dk2p�=d�1=2m < �, andsetting Wi;m = �1 � Ui;m, we get����ZRdWi;m� 12dpd=2m X(tn)2ZdWi;m� t12ppm ; : : : ; td2ppm�����<"ZHi;m1:SinceX(tn)2ZdWi;m� t12ppm ; : : : ; td2ppm�= X���i;m2pm�1� �(�)2ppm�;we get����� X�2�i;m+mpm 12dpd=2��m �1� �(�)2ppm�� 1NF=Q(m)pjDj �����< "2dpjDjNF=Q(m) +O(p�1=2dm ):Therefore,limm!1 X�2�i;m+mpm 12dpd=2��m �1� �(�)2ppm�= 1NF=Q(m)pjDj ;which concludes the proof. �We denote by PLF the set of primes p -N that splitcompletely in LF .
Theorem 8.4. Assume H1 and H2, and let d = [F :Q ].
(i) Let m be a nonzero ideal of OF . If d � 2 thenPf�:pjNF=Q(�)g gm(p; �) = O(p�1) as p ! 1, p 2PL. If d > 2 we have1p � Xf�:pjNF=Q(�)g gm(p; �) � dpas p!1, p 2 PLF .
(ii) Furthermore, assume H3. If d � 2 thenXf�:pjNF=Q(�)g g(p; �) = O(p�1)



72 Experimental Mathematics, Vol. 6 (1997), No. 1as p!1, p 2 PL. If d > 2 then~c1p � Xf�:pjNF=Q(�)g g(p; �) � ~c2dpas p ! 1, p 2 PLF , where 0 < ~c1 < ~c2 are theconstants introduced in theorem 7:5.
Proof. Let fp1; : : : ; pipg be the di�erent prime idealsof OF over p 2 PL. We haveXf�:pjNF=Q(�)ggm(p; �) �X�2p1 gm(p; �)+ � � �+ X�2pip gm(p; �):For each prime p 2 PL, let pp j p denote a primeideal for which the sum P�2pp gm(p; �) attains itsmaximum value. ThenX�2pp gm(p; �) � Xf�:pjNF=Q(�)ggm(p; �) � dX�2pp gm(p; �):To get (i), it su�ces to apply 8.3.Let n be an ideal as in 7.5. We have~c1X� gn(p; �) �X� g(p; �) � ~c2X� gn(p; �)as p ! 1, p 2 PL. Here the sum runs over theelements � such that p j NF=Q(�). To get (ii), itsu�ces now to apply (i). �At this point, as a higher-dimensional analogue ofthe Lang and Trotter conjecture, it seems naturalto state the following conjecture:
Conjecture 8.5. We let f 2 S2(N; ") be a new-form without complex multiplication. Assume thatd � 2. Let PAf (x) denote the number the primesp � x for which Af is not ordinary at p. Thereexists a constant cf > 0 such thatPAf (x) � cf log log x as x!1:
9. NUMERICAL EXAMPLESWe give in Table 1 the distribution of the valuesrp(X0(l)) for primes l < 100 and p < 103. It isobtained by using the tables of the characteristicpolynomials of the Hecke operators Tp computedby Wada. The entries in the headed column g give

the genus of X0(l), and n the number of isogenyclasses of Q-de�ned modular elliptic curves of con-ductor l. The entries in columns rp = i give thenumber of primes p < 103 for which rp(X0(l)) = i.The entries in columns rp < g display the wholenumber of nonordinary reductions in the range.We note that if f 2 S2(�0(l)) is a newform, thenAf is absolutely simple and Q
End(Af ) is a com-mutative �eld; thus, d = dimAf .For x = 103, the functions px=log x, log log xtake the values 4:58 and 1:93 respectively. In Ta-ble 1, in all levels for which the frequency of nonor-dinary reductions is � 5, we �nd a Q-de�ned mod-ular elliptic curve of conductor l. If the frequencyis > 10, then there are two isogeny classes of suchcurves. In contrast, in levels with frequency � 3,there are no elliptic modular curves of this conduc-tor.In Table 2, A denotes the abelian variety J0(l)deprived of its modular elliptic factors, for l � 100.In its columns, n denotes the number of isogenyclasses of the Q-simple subvarieties Af = Bf of A,and d their respective dimensions. We list the val-ues PB(103), PB(104), PB;0(103), PB;0(104) when Bruns through the set of isogeny classes of Q-simplesubvarieties of A. The table has been computedfrom the characteristic polynomials of the Heckeoperators Tp, p < 104, supplied to us by Wang.The function log log increases so slowly that it isa time-consuming process to build trust in the con-jectures. Nevertheless, the numerical results sup-port them in the given range. Indeed, if m(x) de-notes the arithmetical mean of the values PB(x)for the 20 subvarieties B in Table 2, we havem(104)m(103) = 33=2024=20 = 1:375;whereas log(log(104))log(log(103)) = 1:149:Note that, in Table 2, we have only �ve subvari-eties B for which is PB;0(104) > 0. For l 6= 97, wehave dimB = 2. The cases correspond to the levels



Bayer and González: On the Hasse–Witt Invariants of Modular Curves 73l g rp = 0 rp = 1 rp = 2 rp = 3 rp = 4 rp = 5 rp = 6 rp = 7 rp < g n11 1 6 161 6 117 1 5 162 5 119 1 7 160 7 123 2 2 0 165 2 029 2 0 0 167 0 031 2 0 0 167 0 037 2 1 10 156 11 241 3 0 0 0 167 0 043 3 1 0 3 163 4 147 4 0 0 0 0 167 0 053 4 0 0 0 6 161 6 159 5 0 0 1 0 0 166 1 061 4 0 0 0 4 163 4 167 5 0 0 0 0 10 157 10 171 6 0 0 0 0 1 2 164 3 073 5 0 0 0 2 6 159 8 179 6 0 0 0 0 0 7 160 7 183 7 0 0 0 0 1 0 9 157 10 189 7 0 0 0 0 0 1 11 155 12 297 7 0 0 0 0 1 0 3 163 4 0
TABLE 1. Distribution of rp(X0(l)) for primes l < 100 and p < 103.A = J0(l)=Ei dimA n d PB(103) PB(104) PB;0(103) PB;0(104)J0(23) 2 1 2 2 3 2 3J0(29) 2 1 2 0 0 0 0J0(31) 2 1 2 0 0 0 0J0(41) 3 1 3 0 0 0 0J0(43)=E43A 2 1 2 2 2 1 1J0(47) 4 1 4 0 1 0 0J0(53)=E53A 3 1 3 1 1 0 0J0(59) 5 1 5 1 1 0 0J0(61)=E61A 3 1 3 0 0 0 0J0(67)=E67A 4 2 2; 2 1; 1 1; 1 0; 0 0; 0J0(71) 6 2 3; 3 2; 2 4; 2 0; 0 0; 0J0(73)=E73B 4 2 2; 2 3; 1 3; 2 1; 0 1; 1J0(79)=E79A 5 1 5 1 1 0 0J0(83)=E83A 6 1 6 2 3 0 0J0(89)=(E89A �E89C) 5 1 5 1 1 0 0J0(97) 7 2 3; 4 2; 2 4; 3 1; 0 1; 0

TABLE 2. Data on the the quotient variety A of J0(l) by its modular elliptic factors, and on the classes ofQ-simple subvarieties of A.



74 Experimental Mathematics, Vol. 6 (1997), No. 1l = 23 and p = 43; 109; 1033; l = 43 and p = 2; andl = 73 and p = 59; 1117. In the twelve remainingcases with dimB > 2, we �nd only a newform fand a prime p for which rp(Af ) = 0. This happensin level l = 97 and p = 7; furthermore, since thecharacteristic polynomial of T7 is x3+7x2+14x+7,we see that a(7) 6= 0.If m0(x) denotes the arithmetical mean of thevalues PB;0(x) for the eight subvarieties B of di-mension 2 in Table 2, we havem0(104)m0(103) = 6=84=8 = 1:5:The growth of m0(x) in the range is reasonablysimilar to that of m(x) and log log x.In Table 3 we show the Hasse{Witt invariantsof AN := J1(N)=J0(N), for N < 31, p < 100.The table is obtained by using the characteristicpolynomials of the Hecke operators Tp calculatedby Lario. Here g denotes the dimension of AN .For N = 20; 21; 24; 28 we have many nonordi-nary primes, since 13 � PAN (100) � 15. Thisis due to the fact that, at these levels, there isa newform generating a rational subspace of di-mension 2 that has complex multiplication. In-deed, letK be one of the imaginary quadratic �eldsQ(i), Q(p�3), Q(p�2), Q(p�7), and let m bethe integral ideal ( 2 + i ), ( 2 +p�3 ), ( 1+p�2 ),( (1=2 +p�7=2)2 ), respectively. The discriminant�D is equal to �4, �3, �8, �7, respectively, andthe norm M of m is 5, 7, 3, 4, respectively. Theinteger ring O of K is a principal ideal domain.Each integral ideal a prime to m has one and onlyone basis za such that za � 1 (modm). This is dueto the fact that two di�erent roots of unity in Ohave di�erent classes mod m and that the set ofclasses modm of roots of unity in O coincides withthe group (O=mO)� ' (Z=MZ)�. Hence, the for-mula  (a) = za de�nes a Gr�ossencharakter modmof K. Thus, there exists a parabolic form of weight2 with complex multiplication for �1(DM). More-over, it is easy to prove that the level of this formis DM = N .

For N = 26; 30, we have 5 � PAN (100) � 8.If N = 26, then J1(26)=J0(26) is Q-isogenous toAf1 �Af2 �A2f3 , where f1, f2 are newforms of level26, and f3 is a newform of level 13. Moreover,each Afi is �Q -isogenous to the square of a simpleabelian variety Bfi of dimension 1. If N = 30,then J1(30)=J0(30) is Q-isogenous to Af1 � Af2 ,where f1, f2 are newforms of level 30. We haveAfi � B2fi for i = 1; 2, F = Q , but dimBf1 = 1,dimBf2 = 2. Observe that the Hasse{Witt invari-ants of J1(26)=J0(26) behave like those of C21�C22�C43, and the Hasse{Witt invariants of J1(30)=J0(30)behave like those of C21�C42; here the Ci denote el-liptic curves over Q .For N = 13; 16; 18, we have 1 � PAN (100) � 2.In these cases, AN = Af � B2f with dimBf = 1.In the remaining cases is PAN (100) = 0, and ANhas no subvarieties Af for which F = Q .
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