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The elliptic logarithm method for the determination of all inte-

gral solutions of a given elliptic equation is discussed for equa-

tions with associated elliptic curve of moderately large rank.

Major attention is given to the question of optimizing the choice

of Mordell–Weil basis for the curves in question. A speculative

argument suggests that for any curve of rank larger then 8 the

calculations involved are unlikely to be feasible. The arguments

are illustrated by examples of curves of rank 5, 6, 7, and 8, taken

from the literature.

1. INTRODUCTIONThe history of the elliptic diophantine equation islike a giant tree, old but very much alive, and fromits many branches rich fruits can be picked. Notonly is its size impressive, but also its age commandsrespect as the origins of the elliptic equation reachas far back as Diophantus of Alexandria. Indeed,the so-called \ascent" principle|a method, basedon simple geometric and algebraic considerations,by which new rational solutions can be constructedfrom those already known|can be traced to Dio-phantus' Arithmetica. From there, via Fermat's fa-mous \descent", the trail leads up to the celebratedMordell{Weil �nite basis theorem on which moderndevelopments �rmly rest. A fascinating account ofthe early history of this equation runs as a �nely wo-ven thread through Weil's history of number theory[1984]. See also [Ba�smakova 1974; Scriba 1984] andthe references cited there.In this century Mordell initiated the search for in-tegral solutions of elliptic equations. By Siegel's fa-mous theorem [1929], at most �nitely many integral
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136 Experimental Mathematics, Vol. 8 (1999), No. 2solutions exist for any given elliptic equation, andbecause his result is ine�ective the determination ofall such solutions becomes a real challenge. For in-dividual equations, the established approaches werealmost always purely algebraic with the occasionalgeometric touch. But since Baker's famous workon linear forms in logarithms of algebraic numbersmade Siegel's theorem e�ective, powerful diophan-tine approximation techniques took a prominent po-sition in the ranks of successful solution methods.Looking back over the history of the elliptic equa-tion, one cannot help but be impressed by the greatvariety of methods and techniques that have beensuccessfully employed to solve individual equations.Despite this, research in the �eld never stopped, andwhat is more, new life was breathed into it only re-cently by a new method which was developed simul-taneously and independently by several researchers[Stroeker and Tzanakis 1994; Gebel, Peth}o, and Zim-mer 1994; Smart 1994]. This approach, which weshall henceforth refer to as the elliptic logarithmmethod|Ellog for short| is a harmonious blendof algebraic, analytic and geometric ideas. For morehistorical comments we refer the reader to [Stroekerand Tzanakis 1994]. Quite recently the Ellogmethodhas been generalized to number �elds in [Smart andStephens 1997].In the next section we shall give a brief descrip-tion of its fundamental characteristics. In contrastto many earlier methods, Ellog is generally applica-ble, at least in principle. Because of this, naivelyas it may be, it might cross one's mind that at thispoint the story of the elliptic equation comes to anatural and happy end. However, on reection, itwould be of interest to see whether signi�cant im-provements could be made, especially as Ellog heav-ily relies on non-trivial computations. And, likewise,it would also be nice to know precisely where the-ory and practice diverge, that is to say, at whichpoint one should expect to come up against insur-mountable obstacles in the form of upper bounds fornumbers, memory size and cpu-time that cannot bereduced to workable magnitude. In [Bremner et al.1997; Stroeker and Tzanakis 1994; Stroeker 1995;Tzanakis 1996; Stroeker and de Weger 1999a] ex-amples are given in which serious size problems areavoided, so that these questions were not really ad-dressed.

Here we will do some modest speculation in moredemanding circumstances and consider a few morechallenging examples. Moreover|and this is themain contribution of this paper|we suggest an im-provement of the algorithm introduced in [Stroekerand Tzanakis 1994] for Weierstra� equations andsubsequently extended to quartic elliptic equationsin [Tzanakis 1996], which often has a favourable im-pact on the �nal brute search work that needs to bedone, not by lowering the (arti�cially) large upperbound resulting from the Principal Inequality[Stroeker and Tzanakis 1994, (16)], but by signi�-cantly reducing the �nal bound after LLL-reduction.In summary, in this paper we concentrate on theopportunities o�ered by the Ellog method to makechoices optimal where possible. In the �nal sec-tion, we shall illustrate these points by means ofsuitable examples, all taken from the existing litera-ture. We shall also seize the opportunity to show byexample that Ellog does not have more trouble indealing with quartic equations than it usually haswith Weierstra� equations. This fact agrees withthe claim made in the �nal lines of the Introductionof [Tzanakis 1996].
2. PRELIMINARIESThe starting point is a speci�c elliptic diophantineequation for which we wish to explicitly compute allrational integral solutions. This equation representsan elliptic curve E over the rationals Q , and oftenit has the standard Weierstra� formy2 + a1xy + a3y = x3 + a2x2 + a4x+ a6;with integral coe�cients a1, a2, a3, a4, a6, usuallysatisfying a1 = a2 = a3 = 0. However, other modelsare permitted, such as the binary quartic represen-tation y2 = f(x)used in [Tzanakis 1996], where f 2 Z [x] is monic andof degree 4, or even less common cubic models likethose in [Stroeker and deWeger 1999a] and [Stroekerand de Weger 1999b] of typeF (u; v) = 0;for any F 2 Z [u; v] of degree 3, provided it repre-sents an elliptic curve over Q with a rational pointon it. Instead of giving all the details of Ellog|



Stroeker and Tzanakis: On the Elliptic Logarithm Method for Elliptic Diophantine Equations: Reflections and an Improvement 137which may be found in [Stroeker and Tzanakis 1994]and [Tzanakis 1996]|we shall merely advance in-formation that is strictly necessary for our purpose.The Ellog method naturally splits up into three dis-tinct parts. In the initial stage essential character-istics of the corresponding elliptic curve are gath-ered to be used in the second part, like the tor-sion group, the fundamental period ! of the Weier-stra� }-function for the minimal Weierstra� modelof E, the rank r and a basis fP1; : : : ; Prg for thefree part of the Mordell{Weil group. Now any pointP 2 E(Q ) having integral coordinates with respectto the original equation can be uniquely expressedas an integral linear combination of basis elements,allowing for torsion:P = m1P1 + � � �+mrPr + T0: (1)Here T0 stands for any one of the �nitely many tor-sion points. If torsion is trivial, then T0 is absentfrom (1). Setting M = maxi=1;:::;r jmij, once an ab-solute upper bound for M is obtained, all points Psatisfying relation (1) can be explicitly calculated,at least in principle.The next stage of the method forms the body ofEllog. An upper bound is established for a linearform in elliptic logarithms, which is closely relatedto (1), and which involvesM . A basic instrument forthis purpose is the group isomorphism ' : E0(R )!R =Z = [0; 1) de�ned by
P 7!

8>>><>>>:
0 if P =O,1! Z 1x(P ) dxpx3+ax+b (mod 1) if y(P )� 0,�'(�P ) (mod 1) if y(P )< 0.Here E0(R ) is the in�nite component of the shortWeierstra� model y2 = x3 + ax+ b for E. The saidlinear form generally is of typeL(P ) := 1q (u0 + n1u1 + � � �+ nrur + n0!); (2)where the ui := !'(Pi), for i = 0; : : : ; r, are knownas the elliptic logarithms of the points Pi; the pointP0, if not the zero-point, is algebraic of degree atmost D = 3, and can be easily calculated. The qappearing in (2) is an explicitly known small posi-tive integer, usually 1 or 2. Further, the integers ni,for i = 1; : : : ; r, are explicit linear combinations of

m1; : : : ;mr with small integer coe�cients; in manycases ni = mi for all i = 1; : : : ; r, including thosecases in which the equation to be solved is a Weier-stra� equation. Non-Weierstra� equations can befound in [Tzanakis 1996, Examples 1, 5, 6, 7], whereq = 2 or 4. Finally, the integer n0 can be explicitlybounded in terms of M .So the only unknowns in this linear form are therational integers ni, for i = 0; : : : ; r. If we put N =maxi=0;:::;r jnij, then N � �M+� for some explicitlycomputable small positive integers � and �. Theessential inequality referred to above looks likejL(P )j � c2 exp(c3 � c1M 2); (3)for positive constants c1, c2, and c3. The word con-stant is used here to indicate independence of M .The computation of these constants is the main pur-pose of this part of the algorithm. A direct, ratherautomatic application of a deep result by SinnouDavid [1995] leads to a lower bound for jL(P )j (pro-vided L(P ) 6= 0), which takes the formjL(P )j>exp(�c4(logN+c5)(log logN+c6)k+2); (4)where k = r if u0 = 0 in (2) and k = r+1 otherwise.The constants c5 and c6 are small, but c4 is the verylarge constantc4 = 2:9 � 106k+12D2k+442(k+1)2� (k + 2)2k2+13k+23:3(log E)�2k�3 kYi=0Ai; (5)

for some small positive technical constants Ai inde-pendent of k. Usually log E = 1 and D = 1, 2 or 3.Combining the upper and lower bounds for jL(P )jand taking into account that N � �M + � leads tothe Principal Inequality (see (8)), which givesa large upper bound M0 for M . Note that the c4in (5) di�ers from the one mentioned in [Stroekerand Tzanakis 1994; Bremner et al. 1997]: the latteroccurred in a preliminary version of [David 1995].The �nal part of Ellog is about reducing this hugeupper bound M0 to manageable size. In order to dothis, de Weger's implementation [1989] of the LLL-algorithm is used. A brief description will su�cehere. Assume, for the sake of simplicity, that thelinear form (2) is homogeneous, so that u0 is ab-sent. In order to reduce M0, we apply the lattice



138 Experimental Mathematics, Vol. 8 (1999), No. 2basis reduction process to the lattice spanned bythe columns of the matrix
A =

0BBBB@
1 0 : : : 0 00 1 : : : 0 0... ... . . . ... ...0 0 : : : 1 0[Cu1] [Cu2] : : : [Cur] [C!]

1CCCCA ;
where C is a large constant of the size of M r+10 , andwhere [ � ] denotes rounding to the nearest integer.Consider the lattice pointl := A(n1; : : : ; nr; n0)t = (n1; : : : ; nr; �)t;where n0 appears in (2), which makes � a good ap-proximation to qC � L(P ). From the reduced basiswe �nd a lower bound d for the length of the short-est nonzero lattice vector. The inequality klk � dgives us a lower bound for jL(P )j, namelyjL(P )j � 1qC��pd2�r(�M0+�)2� r+12 (�M0+�)� ; (6)assuming d is large enough| if not, we choose Cslightly larger. Together with the upper bound (3) areduced upper bound M1 for M0 is obtained whichis roughly plogM0; see (10). For a complete de-scription, we refer to [Stroeker and Tzanakis 1994;Tzanakis 1996].
3. REFLECTIONS AND SPECULATIONSIn an analysis of Ellog it is natural to focus on thequestion of choice. Since we are working with a �xedelliptic curve, invariants like rank, torsion, regula-tor, and the like are uniquely determined. Fromthe Principal Inequality it is obvious that therank r plays a major role in the shaping of the up-per bound for M . How di�cult is it to computethe rank of a given elliptic curve over Q ? Even forsmall ranks, this may pose considerable problemsif one wishes to establish the rank unconditionally.The best algorithm available seems to be John Cre-mona's mwrank [1992]. Ian Connell's apecs [1995]is also very useful. An example of the di�cultiesinvolved is given in [Bremner et al. 1997, Section 2].If one does not shy away from using conjectural as-sumptions, like the Birch{Swinnerton-Dyer conjec-tures, things become easier. Even so, for r > 8 say,

the searching for independent points could easily getout of hand. Fortunately, for most notorious ellipticequations the corresponding curve is of low rank.Now suppose that the rank r has been established.What is the e�ect of high rank on Ellog? Consider-ing the collection of curves to which the elliptic log-arithm method has been applied in [Bremner et al.1997; Stroeker and Tzanakis 1994; Tzanakis 1996;Stroeker 1995], and also in the present paper, itis not di�cult to notice the regular behaviour ofthe upper bound M0 for M obtained before LLL-reduction with respect to the size of r, namelyM0 � 10(5r2+15r+28)=2: (7)All curves considered, even the ones of rank 6, 7,and 8, agree to this size, with the exception of theupper bounds found in [Gebel, Peth}o, and Zimmer1994], which are too small to satisfy (7). This is ex-plained by the fact that in that paper the authors er-roneously use '-values instead of elliptic logarithms,that is to say, they consider a non-homogeneous lin-ear form in r '-values where they should have useda homogeneous one in r+1 elliptic logarithms. Thereplacement of r+ 1 by r has a considerable dimin-ishing e�ect on the size of the upper bound M0. Af-ter correction the new bounds also agree with (7).Nevertheless, being merely heuristic, this formulaonly serves as an indication. In order to reduce thebound M0 in the third stage of Ellog, the ellipticlogarithms need to be calculated to a precision ofat least (r + 1) logM0 decimal digits. Some care-ful extrapolation on (7) shows that this means atleast 2115 digits for rank 8, which is just feasible aswe shall see in Example 4 (Section 5), and no lessthan 3740 digits for rank 10; for curves of rank 20and higher this bound gets completely out of reach.This seems to suggest a natural upper bound for therank of approximately 8 or maybe a bit larger be-yond which Ellog is not likely to succeed at present.Once there is no doubt about the rank, �nding asmany independent rational points is the next steptowards a Mordell{Weil basis. The search for pointscould be very troublesome, since the upper boundfor the canonical height of points could be ratherlarge. In such cases, further descent techniques maybe successfully applied; see [Merriman et al. 1996].The process of in�nite descent used to construct a



Stroeker and Tzanakis: On the Elliptic Logarithm Method for Elliptic Diophantine Equations: Reflections and an Improvement 139Mordell{Weil basis is very well described in [Siksek1995].So far we have not had any real choice. But havinga single basis gives us immediate access to in�nitelymany bases. What is the e�ect on Ellog of changingthe Mordell{Weil basis? A natural choice for ba-sis elements is those of least canonical height. Thisis what John Cremona's mwrank and Ian Connell'sapecs do. But is such a basis also the most naturalchoice for Ellog? The answer to this question is notobvious. The element of the Principal Inequal-ity that has the most signi�cant e�ect on the size ofM0 (second to the rank r of course) is the constantc1 in (3). This can be seen as follows. Stripped frominsigni�cant elements, the Principal Inequalityessentially reduces toM 2 < c4c1 log(�M + �) (log log(�M + �))k+2
(8)for k = r or r + 1. Now c4 really depends on ronly|see (5)|and is therefore more or less �xed.In view of (8) one would expect M to be roughlyof the order of pc4 which is essentially (4k)k2; see(5). Hence, for large k the estimate (7) is ratherconservative. Returning to (8), the constant c1 is theleast eigenvalue of the positive de�nite Grammianheight-pairing matrix H = (Hij)r�r, whereHij = 12�ĥ(Pi + Pj)� ĥ(Pi)� ĥ(Pj)�; (9)and therefore depends solely on the Mordell{Weilbasis fP1; : : : ; Prg of E(Q ) modulo torsion. Thenotation ĥ indicates the canonical, or N�eron{Tateheight function, so (1) implies thatĥ(P ) = X1�i;j�rHijmimj � c1M 2:Thus, our choice of a Mordell{Weil basis should re-ect our wish to make c1 as large as possible. It isthis aspect of the Ellog method we shall investigateclosely in the next section.Other choices one may have are few, and seem tohave little e�ect on the Ellog method. For example,we start with a given elliptic equation and we alsoneed the short Weierstra� model for E. These arerelated by birational transformations, which do playa minor role in the constants c3 and maybe P0. Theirinuence however is nothing like the e�ect the choiceof c1 may have on inequality (8), although the latter

e�ect should not be exaggerated either. Indeed, thebest M satisfying the Principal Inequality, sayM0, is always very large. Hence a doubling of thec1-value results in a decrease of M0 by a factor p2.This is obviously of very little signi�cance on num-bers of size 10100. It is much more important torealize that an optimal choice of Mordell{Weil ba-sis has a favourable e�ect on the �nal upper boundfor the coe�cients mi after LLL-reduction has beenapplied a few times. This is immediately clear fromthe inequalityM 21 < 1c1�log(qc2C)+c3�log�pd2�r(�M0+�)2�r+12 (�M0+�)��; (10)see (6) and (3). The �nal upper bound for M in(10) is small, usually under 20. So doubling thevalue of c1 has a much more signi�cant e�ect on the�nal upper bound after reduction than on the initialvery large upper bound before reduction takes place.This is best illustrated by Example 4 in Section 5.Finally, we have argued that for any rank r > 8there will be grave computational problems. We addanother, rather mundane argument. After applyingthe LLL-reduction process several times until no fur-ther improvement on the bound M is obtained, wewill usually end up with a �nal bound no less thansay 6, if r � 4, but most likely larger than that forlarger r. Then in the �nal search for missed inte-gral points, there are 12 t((2� 6 + 1)r � 1) points tobe checked, where t stands for torsion. This meansmore than 10 billion points if r = 9 and t = 2,and if no substantial number of them can be dis-carded beforehand this could take a very long timeindeed! However, the \inequality trick" discussed inExample 4 on page 147 may reduce considerably theoverall search time.
4. THE OPTIMAL MORDELL–WEIL BASISIn the previous section we showed that the size ofthe bound on M before reduction is governed bythe rank r, which cannot be altered, and after thatby the choice of Mordell{Weil basis, that is to say,by the least eigenvalue c1 of the Grammian height-pairing matrix H. Now for small r it is very easyto search for and �nd an improved basis by taking



140 Experimental Mathematics, Vol. 8 (1999), No. 2random combinations of basis points. Of course, forr = 1 there is nothing to improve, but a moderatelylarge �nal bound for M is computationally nothingto worry about when the rank is so small. Example 1in Section 5 is meant to illustrate this. For largevalues of r the optimal choice for the Mordell{Weilbasis is not obvious. This may be illustrated by thefact that hardly any \natural" Mordell{Weil basis ofan elliptic curve of rank � 5 is c1-optimal. The re-maining examples in Section 5 exemplify this point.For us this fact provided ample motivation to inves-tigate the possibility of standardizing the search forthe best Mordell{Weil basis.
4A. An Integral Minimax ProblemAs before, let P1; : : : ; Pr be free generators of theMordell{Weil group of an elliptic curve E=Q andlet H be its r � r Grammian matrix, whose entriesare given by (9). This matrix H is real, symmetric,and positive de�nite, and therefore all its eigenval-ues are real and positive. It goes without saying thatthese eigenvalues depend on the choice of generators.Now the point of this discussion is to choose the setof generators so that the least eigenvalue c1 of thecorresponding Grammian H is as large as possible.To analyze the dependency of c1 on the choiceof generators, we consider another set of generatorsfP 01; : : : ; P 0rg. Then there is an r � r integer matrixA = (aij), such that P 0i = Prj=1 aijPj, and for theGrammian matrix corresponding with this new setof generators we haveH0 = AHAt:Since detH0 = detH, it follows that detA = �1,so that A is unimodular. In particular, this meansthat the elements a0ij of A�1 are also integral.Summarizing, our problem may be formulated inthe following general terms.
Integral Minimax Problem. Given an r � r real , sym-metric, positive de�nite matrix H, �nd an r�r inte-gral , unimodular matrix A that maximizes the leasteigenvalue of the matrix AHAt. In symbols, deter-mine maxA minx6=0 xtAHAtxxtx ;where the maximum runs over all r � r integral ,unimodular matrices A, and the minimum runs overall nonzero vectors x 2 R r.

The second formulation arises because the vectorsx that minimize the quotient above are exactly theeigenvectors corresponding to the least eigenvalue;this is called the Rayleigh{Ritz theorem [Horn andJohnson 1985, p. 176] and is an easy consequence ofthe existence of an orthonomal basis of eigenvectorsfor AHAt (for the inner product de�ned by xtx).It is not di�cult to prove that this problem issolvable (of course the maximizing A need not beunique). To do this, consider the setS(H) := fc1(A) jA is integral and unimodularg;where c1(A) is the least eigenvalue of AHAt, that is,c1(A) = minx6=0 xtAHAtxxtx :S(H) is nonempty, since it contains c1 = c1(I). Ifc1 is the largest element of S(H), there is nothingto prove. Therefore, assume that there exists a c01 =c1(A) > c1 > 0 and write H0 = AHAt. Then, forany x 2 R r with x 6= 0,xt� 1c1H0 � I�x = 1c1 �xtH0x� c1xtx�� 1c1 (c01 � c1)xtx > 0;so that (1=c1)H0 � I is a positive de�nite matrix.ThenA�1� 1c1H0 � I� (A�1)t = 1c1H� A�1(A�1)tis also positive de�nite. Therefore, the main diago-nal of the latter matrix has positive elements only.From the inequalitiesrXj=1(a0ij)2 < 1c1Hii for i = 1; : : : ; r; (11)bearing in mind that the a0ij are integers, it followsthat there can be only �nitely many matrices A�1for any given matrix H. This proves that S(H) isa �nite, nonempty set, and the optimal c1 is themaximal element of this set.Naturally, inequality (11) could serve as a base forour algorithm. However, it seems more convenientto distinguish two separate stages in the computa-tion of the optimal c1.Set B := A�1(A�1)t (12)



Stroeker and Tzanakis: On the Elliptic Logarithm Method for Elliptic Diophantine Equations: Reflections and an Improvement 141and observe that B is integral, symmetric, positivede�nite, and that detB = 1. Also note that thematrix H1 := (1=c1)H has least eigenvalue 1.We now reformulate the integral minimax prob-lem in the following way.
Integral Minimax Problem (reformulated).

Part 1. Given a real , symmetric, positive de�nitematrix H1 with least eigenvalue 1, �nd all integral ,symmetric, positive de�nite matrices B of determi-nant 1 and such that H1�B is also positive de�nite.
Part 2. Given an integral , symmetric, positive de�-nite matrix B of determinant 1, decide whether thereexists an integral , unimodular matrix A satisfying(12) and , if so, �nd any one such decomposition.In Part 2 a single decomposition (12) of B su�ces,since any other such decomposition of B gives thesame c1. This can be seen as follows. SupposeA�11 (A�11 )t = B = A�12 (A�12 )t;for integral, unimodular matricesA1; A2. ThenQ :=A2A�11 is orthogonal, and hencec1(A2) = c1(QA1) = c1(A1);because similar matrices have the same eigenvalues.
4B. The First Stage of the AlgorithmLet the r � r matrices H1 = (hij) and B = (bij) bede�ned as in Part 1 of the integral minimax problem.Since both B and H1 � B are positive de�nite, allprincipal minors of these matrices are positive. Inparticular, all 1 � 1 principal minors are positive,which means, 0 < bii < hii (13)for all i = 1; : : : ; r, and also all 2 � 2 principal mi-nors are positive. On the element level, the lattertranslates to jbijj <pbiibjj =: sijand jhij � bijj < p(hii � bii)(hjj � bjj) =: dijfor all i; j = 1; : : : ; r with i 6= j, which restricts bijto the interval�maxf�sij ; hij � dijg; minfsij; hij + dijg�: (14)

This enables us to construct the matrix B by suc-cessively enlarging the leading principal submatricesof B by a single row and a single column, startingwith (b11), thus leading to the following description.
Algorithm (Stage 1).

Input: a real symmetric, positive de�nite matrix H1with least eigenvalue 1.
1. Choose b11 2 N such that (13) holds for i = 1.Set B1 = (b11), and let B1 be the set of all such1� 1 matrices B1. If B1 is empty, stop.
2. Suppose the �nite set Bk of k � k integral, sym-metric and positive de�nite matrices Bk has beenconstructed, for 1 � k < r. Now Bk+1 is the setof all possible symmetric (k+1)�(k+1) matricesBk+1 = (bij) with these properties:

(i) the leading principal k� k submatrix of Bk+1belongs to Bk,
(ii) bk+1;k+1 2 N satis�es (13) for i = k + 1,
(iii) bi;k+1 2 Z satis�es (14) for j = k+1 and eachi = 1; : : : ; k,
(iv) detBk+1 > 0.If Bk+1 is empty, stop. Else, if k + 1 < r, repeatStep 2 with k  k + 1.

3. For each Br 2 Br, if detBr = 1, accept Br as apossible B.We stress that, when r is not too small, r � 6 say,and c1 is rather small compared to 1, the number ofqualifying B matrices could be very large, so thatgenerating them all becomes infeasible. If we sus-pect this will happen, we proceed as follows. Once afew qualifying B matrices are known, the process isstopped in order to check for a possible improvementof c1 by means of Stage 2. If so, starting Stage 1with this improved c1-value necessarily restricts thenumber of qualifying B's.Another trick is to arti�cially enlarge c1 by insert-ing a multiplication factor � > 1, so as to shrink thesearch intervals resulting from (13) and (14). Moreprecisely, starting from a basis with correspondingc1 = c, we check whether there exists a basis withc1 � �c. Varying this factor �, we may enlarge c1step by step, until no improvement seems likely. Wethen start the process all over again with � = 1 andthe best c1-value so far obtained.



142 Experimental Mathematics, Vol. 8 (1999), No. 2

4C. The Second Stage of the AlgorithmAssume that the r�r matrices B and A are de�nedas in Part 2 of the reformulated Integral MinimaxProblem (page 141). We shall say that B splits ifthe problem formulated in Part 2 is solvable for thisparticular matrix B.First we prove:
Lemma. The matrix B splits if and only if , for anyreal decomposition of B as RtR, the correspondinglattice �R generated by the columns of R possesses abasis that is orthonormal with respect to the standardinner product .
Proof. Since B is symmetric and positive de�nite,real decompositions RtR of B always exist. Nowclearly A�1(A�1)t = RtR if and only if the matrixQ := RAt is orthogonal. Since At is integral andunimodular, this is equivalent to say that there isan orthogonal matrix Q such that �Q = �R, hencethe result. �Observe that B, being positive de�nite, de�nes avector normkxkB := pxtBx; for x 2 R r:Let B = RtR be any real decomposition of B. ThenkxkB = kRxkfor x 2 Z r, so kxkB gives the length of the latticevector Rx 2 �R.Now suppose that B splits, so that by the Lemma,the lattice �R has an orthonormal basis. Let thisbasis be given by the orthogonal matrix Q, so thatR = QU for some integral, unimodular matrix U .Then for any lattice vector Rx 2 �R we havekxk2B = kRxk2 = kQUxk2 = kUxk2 = kyk2 = rXi=1 y2i ;where y = Ux is an integral vector. Hence, the onlylattice vectors Rx with kxkB � 1 are those withx = 0 or �x = U�1ei, where ei denotes the i-thstandard basis vector of R r.
Conclusion. If B splits, the lattice �R has exactly2r nonzero vectors of length � 1, all of which infact have length 1. Conversely , if �R has exactly2r nonzero vectors of length � 1, then either �Rdoes not possess an orthonormal basis and therefore

B does not split , or �R does have such a basis theelements of which are amongst the 2r vectors.All of this enables us to use the Pari procedureminim(B; 1; 2r+1). This procedure seeks vectorsx 2 Z r with kxkB � 1, and returns a three-com-ponent list u, where u[1] is the number of vectorscomputed, u[2] is the maximum B-norm found, andu[3] is a matrix whose columns are the vectors com-puted, only one being given for each pair x;�x andthere being at most 2r + 1 of such pairs. No twocolumns of this matrix are equal, nor are they eachother's additive inverse.
Algorithm (Stage 2).

Input: an r � r integral, symmetric, positive de�nitematrix B with detB = 1.
1. Set u := minim(B; 1; 2r+1).
2. If u[1] 6= 2r or u[2] < 1, stop, because B does notsplit. Else set U := u[3].
3. If U tBU is the identity matrix|which is equiv-alent to RU being orthogonal| then stop andreturn A = U t, the required integral unimodularmatrix. Else stop, since B does not split.Our algorithm obviously relies on Pari's minim pro-cedure. According to the Pari team, in earlier ver-sions of the software sometimes this procedure hap-pened to produce incorrect results, but we no longerhave any reason to doubt its correctness.
5. EXAMPLESWe have gathered here some examples to illustratethe points made in previous sections. Far from be-ing picked out to show our algorithm to advantage,these examples (apart from the �rst) were amongthe most complicated cases we could �nd in the lit-erature. Some are worked out in detail; with otherswe make use of existing coverage in the literature.In the computations we used a variety of ma-chines (notably a number of Pentium PC's and aSun Sparcstation) at di�erent locations and over arather long period of time. Wherever it seemed ap-propriate we have recorded here the machine typeand the time it took to carry out the computations.The �rst example is an indication of the e�ect asmall c1-value has on the �nal upper bound for M .
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Example 1. The curve given by the Weierstra� equa-tion y2 + y = x3 � xhas rank 1, Mordell{Weil basis f(0; 0)g, and the c1-value, which obviously cannot be improved, is rathersmall, namely c1 = 0:0255557 : : : . The correspond-ing best upper bound for M is 16, which is large, aswas to be expected. Details are given in [Stroekerand de Weger 1999a].The next set of examples illustrates the fact that�nding the best c1-value is not automatic, at leastfor ranks not smaller than 5.

Example 2. Table 1 summarizes three examples, the�rst two due to Mestre [1986], with short Weierstra�forms y2 = x3 � 1642032x+ 628747920;y2 = x3 � 203472x+ 18487440;y2 = x3 � 879984x+ 319138704:These three examples are studied in [Gebel, Peth}o,and Zimmer 1994] without making use of an optimalMordell{Weil basis; the authors state the ranks as6, 5 and 5, but o�er no further information as tothe conditionality of these claims. All three curveshave trivial torsion. It is often very di�cult, if notExample 2.1 Example 2.2 Example 2.3A;B 1642032; 628747920 203472; 18487440 879984; 319138704r 6 5 5B0 P1 = [432; 108] P1 = [72; 2052] P1 = [540; 1188]P2 = [396; 6372] P2 = [36; 3348] P2 = [576; 1836]P3 = [360; 9180] P3 = [�36; 5076] P3 = [468; 3132]P4 = [1044; 7236] P4 = [�72; 5724] P4 = [612; 3132]P5 = [108; 21276] P5 = [396; 108] P5 = [432; 4428]P6 = [36; 23868]c1(B0) 0:21618 : : : 0:40335 : : : 0:34545 : : :M0 1:09� 10144 2:33� 10111 9:85� 10112M1 : : :M�nal 97; 17; 15; 15 57; 11; 10; 10 62; 11; 10; 10B1 P 01 = [360; 9180] P 01 = [36; 3348] P 01 = [540; 1188]P 02 = [�1296;�24084] P 02 = [�36; 5076] P 02 = [468; 3132]P 03 = [1060;�8900] P 03 = [432; 3348] P 03 = [432; 4428]P 04 = [1836;�61668] P 04 = [�216; 7236] P 04 = [�684;�24516]P 05 = [9=16;�1603611=64] P 05 = [468; 5076] P 05 = [720;�7668]P 06 = [36; 23868]c1(B1) 0:53027 : : : 0:46493 : : : 0:49206 : : :M0 6:94� 10143 2:17� 10111 1:08� 10113M1 : : :M�nal 62; 10; 9; 8; 8 53; 10; 9; 9 52; 10; 9; 9
U

0BBBBB@
0 0 1 0 0 0�1 �1 0 1 1 00 �1 0 1 1 00 0 �1 0 �1 00 1 �1 0 �1 00 0 0 0 0 1

1CCCCCA
0BBB@
0 1 0 0 00 0 1 0 00 0 1 1 00 0 �1 0 11 0 �1 0 1

1CCCA
0BBB@
1 0 0 0 00 0 1 0 00 0 0 0 10 1 0 0 10 0 0 1 �1

1CCCA
TABLE 1. Curves from Example 2. The Weierstra� equation of E=Q is y2 = x3�Ax+B, with Mordell{Weil basesB0 = fPi j i = 1; : : : ; rg, which is the basis given in [Gebel, Peth}o, and Zimmer 1994], and B1 = fP 0i j i = 1; : : : ; rgwhich is the c1-improved basis. Finally, U = (uij) with P 0i =Prj=1 uijPj .



144 Experimental Mathematics, Vol. 8 (1999), No. 2impossible, to establish the rank unconditionally forcurves without points of �nite order. The curve ofExample 3 illustrates this point.In Example 2.1 the �rst reduction step requireda precision of 1250 digits. We used Pari-GP ona 75MHz Pentium machine to execute the LLL-reduction. Together, the calculation of the '-valuesand the LLL-reduction took approximately one hourruntime. The optimal c1-value of Example 2.1 wasobtained by �rst using a multiplication factor � =2:4. See Section 4.2 for an explanation. Total run-time for this optimization took only a few minutes.In [Gebel, Peth}o, and Zimmer 1994] a di�erent def-inition of canonical height is used, so that doublec1-values are obtained: �1 = 2c1. The upper boundsM0 resulting from the Principal Inequality andthe LLL-reduced bounds M�nal related to the B0bases of Table 1 do not agree with the correspondingbounds in [Gebel, Peth}o, and Zimmer 1994], whichare considerably smaller.As we noted before in Section 3, the reason forthese di�erences lies in the fact that the '(Pi)-valuesused in [Gebel, Peth}o, and Zimmer 1994] are mis-taken for the elliptic logarithms ui (see for instancethe six listed u-values on page 186 of the paper),which causes a fortunate drop by one of the numberof elliptic logarithms in the linear form of ellipticlogarithms. Moreover, on page 187 of the same pa-per, either the notation b1 is unfortunate (see thede�nition on page 184 of the paper), or the authorsforgot to insert a factor 26=2 which might be anothercause for the fact that the �nal bounds are appre-ciably smaller than they should be (8 instead of 15for the �rst curve). Comparison of the M0 boundsfor both bases reveals that the inuence of a consid-erably improved c1-value on the initially computedupper bound is negligible. However, after reduction,the inuence is unmistakable, as can be seen fromthe M�nal bounds. This is most noticeable in Ex-ample 2.1, thus improving the �nal search e�ort forintegral points by a factor(316 � 1)=(176 � 1) � 36:77:Since the curves of Examples 2.2 and 2.3 both haverank 5, improvements are expected to be less signi�-cant, as is indeed the case. Complete lists of integralpoints are provided in [Gebel, Peth}o, and Zimmer1994].

Example 3. In response to a request from Tzanakis,Jaap Top briey wrote down [Top 1996] examples ofsome techniques for the construction of elliptic quar-tics with many integral points. He kindly agreed tolet us use this material freely. Since we are mainlyinterested in curves of higher rank, we restrict ourattention to the exemplary illustration of a methodexplained in [Mestre 1991]. Following Top, considerthe 10 integers, 0, �1, �2, �3, �4, 4q, and putF (X)=(X2�4qX)(X2�1)(X2�4)(X2�9)(X2�16):Next, write F (X) = h(X)2 � g(X), where h(X) =X5 � 2qX4 + � � � with coe�cients chosen in such away that g(X) has degree 4. Since there is no moreto this than simply \completing the square", g(X) isuniquely determined. This g(X) has coe�cients inZ [q] that can be explicitly worked out. Now observethat when X = � is any one of the 10 roots ofF (X) = 0, then h(�)2 = g(�). This means that[�; h(�)=2] is a rational point on the curve given byY 2 = g(X). In particular, for variable q, all thesecurves have at least 10 rational points. It is notunreasonable to expect that some, if not most, ofthese points will be independent. As it turns out,for q = 2 the rank is at least 4, for q = 3 and q = 4the rank is at least 6, and for q = 5 the rank is atleast 9.In this example we shall consider the case q = 3,for which we obtain, after division by 4, the quarticmodely2 = 24784x4 + 90096x3+114372x2 + 1376352x+ 7096896: (15)The minimal Weierstra� model for this curve isy2 + xy + y = x3 � x2 � 28159452x+ 15511281951:
(16)It is generally very hard to determine uncondition-ally the rank and a basis for the Mordell{Weil groupof an elliptic curve of moderate or large rank withtrivial torsion. See footnote 5 in [Siksek 1995, Ex-ample 5.2]. In fact the 2-descent which is necessaryto determine the rank is greatly hampered by theabsence of points of �nite order. For our curve weestimate that mwrank would take many hundreds ofdays on a 75MHz Pentium machine. However, as-suming the Birch{Swinnerton-Dyer conjecture, theTaniyama{Weil conjecture, and a suitable Riemann
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B0 (apecs) B1 (c1-optimal)[�21=2; 14220] [�21=2; 14220][�612=59;�48170880=3481] [�3;�1890][�3;�1890] [948=55; 157581648=3025][�1;�2402] [�1;�2402][�156=17;�3034080=289] [�328=51; 12035240=2601][�324=7; 15878304=49] [�36=7; 139680=49]c1(Bi) 0:42489 : : : 0:52127 : : :M0 5:84� 10184 5:04� 10144M1 : : :M�nal 78; 13; 12; 12 62; 11; 10; 10
TABLE 2. Top's curve of rank 6, with equation y2 = 24784x4 + 90096x3 + 114372x2 + 1376352x+ 7096896. Twoconditional Mordell{Weil bases B0 and B1 are given. See Example 3.conjecture, apecs quickly establishes the rank anda Mordell{Weil basis for our curve.Searching for points of low canonical height withSeek(5000), it took no more than 15 minutes ona 75MHz Pentium to �nd a conditional basis B0(see Table 2) with c1(B0) = 0:424899 : : : . Althoughnot optimal, this c1-value is almost optimal, whichrenders the present example less exciting than Ex-ample 4. The search for the c1-optimal basis B1took approximately 20 minutes on the same Pen-tium: 178 qualifying B-matrices were discovered,all of which split. Most of the computation timewent into the calculation of '-values to 1500 digitsprecision (almost 5 hours), the �rst LLL-reductionstep with the same precision (2 hours), and the �nalsearch, which was done on a 133MHz Pentium (ap-proximately 29 hours). This search revealed exactly14 integer solutions [x; y] with y > 0 on the quar-tic (15). Particulars of our calculations are listed inTable 2.Although we did not set out to do this at �rst,being at it, we decided to continue and compute allintegral solutions of the minimal Weierstra� equa-tion (16) as well. We were rather surprised to �ndno fewer than 186 of them! For these calculationswe used basis B1 of Table 2, properly transformed to�t Weierstra� equation (16) of course. Further, theLLL-reduction process, starting with initial upperbound M0 = 5:04� 10144 and applied several times,produced reduced bounds of 62; 11; 10; 10. The con-cluding �nal search took no more than 1 hour ona 133MHz Pentium. We �rst used inequality (3)to exclude all 6-tuples with at least one component

absolutely larger than 6 (see the inequality trick onpage 147). There is no point in listing all 28 inte-gral solutions of (15) and all 186 integral solutionsof (16): they can be reproduced without much e�ortat any moment, because, as it turns out, the abso-lute coe�cients jmij never exceed 2. A complete listof solutions may be obtained from Stroeker's home-page (see address at end of paper).Here we make an important general remark aboutthe way we carried out the �nal search for curvesof moderately large rank. This remark particularlyapplies to Example 3 and the two further examples.The �nal search is about �nding all integral r-tuples(m1; : : : ;mr) satisfying jmij < M for i = 1; : : : ; rand some small value of M , and for which the cor-responding point (1) has integral coordinates withrespect to the speci�c model of the elliptic curverepresented by our diophantine equation. At �rstwe thought this could easily be done by Pari orapecs, both of which have procedures for calculatinglinear combinations of points (1) symbolically. Wewere too optimistic, which we could have foreseen,since symbolic computations are extremely costly interms of CPU time. Although Pari is much fasterthan apecs, both demand far too much computingtime to be of much practical use for our �nal searchcomputations. Therefore, we turned to the Uba-sic language, which combines a very large numeri-cal precision with fast numerical computations. Wewrote a search procedure in Ubasic code in whichlinear combinations of rational points on the curveare calculated with oating point arithmetic to, say,



146 Experimental Mathematics, Vol. 8 (1999), No. 250 decimal digits precision. A point is recognizedby the Ubasic code as integral if its coordinates x; y(with respect to the relevant equation) di�er fromtheir nearest integers by at most 10�20. In Exam-ples 3, 4, and 5 all prospective integral points thusdetected were checked by apecs and turned out tobe truly integral.
Example 4. We consider a curve taken from the collec-tion of Jim Buddenhagen, given by the short Weier-stra� form y2 = x3 � 20932x� 330140: (17)First, it is easy to show that this curve has trivialtorsion. Next we used John Cremona's mwrank todetermine the rank of this curve. After running forabout 20 minutes on a Sun SparcStation 4 this pro-gram proved the rank to be 7 and it produced thepossible basis B0 for the Mordell{Weil group (seeTable 3).Further, mwrank tells us that B0 generates a sub-group of the Mordell{Weil group of odd index m.However, the upper bound of 23:34 for the canoni-cal height of possible extra generators is too largeto hope for a quick settling of the Mordell{Weilbasis uncertainty about B0. The least eigenvaluec1(B0) of the Grammian height-paring matrix hap-pens to be extremely small, so even if we could showthat m = 1, and consequently that B0 is indeeda basis, it would not be a very good basis for ourpurpose. So we let apecs 4.2 search for points ofsmall canonical height with the Seek command and

with its parameter set to 5000. After a few min-utes this turned up B1, which generates the samesubgroup as B0, because the determinants of theGrammian height-pairing matrices of B0 and B1 areequal, namely R = 1491:0120 : : : . This B1 gives amuch better c1-value. Again using apecs we estab-lished the following inequality between the canonicaland logarithmic heights:ĥ(P )� 12h(P )��0:69314 for all P 2E(Q ). (18)Searching for points P 2 E(Q ) of logarithmicheight � 5:5 only takes a few seconds and producesa list of 30 points, all of which have canonical height� 2:05, except one, namely [�18; 202] of canoni-cal height 2:04754 : : : . By (18) we deduce that anypoint P of canonical height less than 2:0475 has log-arithmic height less than 5:5. Since none was foundin our search, there are no such points. Now we useTheorem 3.1 of [Siksek 1995] in a slightly adaptedform, because the canonical height function Siksekuses di�ers from the one we use by a factor 2. Thisyields the following inequality for the index m:m � � 64 �R(2 � 2:0475)7�1=2 � 2:223:Sincem is odd, m can only be 1 and this proves thatB1 is indeed a basis for the Mordell{Weil group.Starting with B1, we used our algorithm describedin the previous section and after a brief search wefound the c1-optimal basis B2. The correspondingc1-value improves the original c1(B0) by a factor35! It is now a matter of seconds to produce theB0 (mwrank) B1 (apecs) B2 (c1-optimal)[1336; 48542] [�18; 202] [�16; 26][672; 17002] [�22; 346] [2849; 151871][656; 16378] [�62; 854] [232; 2702][528; 11654] [�66; 874] [�114; 758][280; 3970] [�70; 890] [�66;�874][�16; 26] [�16; 26] [�136;�34][24658; 3871946] [�24; 398] [402;�7498]c1(Bi) 0:01785 : : : 0:25397 : : : 0:60346 : : :M0 7:95� 10180 2:10� 10180 1:37� 10180M1 : : :M�nal 407; 69; 66; 65; 65 108; 17; 15; 15 69; 11; 10; 10
TABLE 3. Buddenhagen's curve of rank 7, withWeierstra� equation y2 = x3�20932x�330140. Three Mordell{Weilbases B0, B1, and B2 are given. See Example 4.



Stroeker and Tzanakis: On the Elliptic Logarithm Method for Elliptic Diophantine Equations: Reflections and an Improvement 147�rst upper bound M0 for the coe�cients mi, fori = 1; : : : ; 7. After that the reduction process pro-duces a �nal bound M�nal = 10. This would havebeen much larger, namely 65, if we had started withB0, the basis turned up by mwrank. Finally, we dida brute force search for all 7-tuples (m1; : : : ;m7) inthe range �10 � mi � 10 with m1 � 0, generatingintegral points (1) with T0 = O. After running on a133MHz Pentium for about three days a grand totalof 2� 88 integral points (x; y) were found.As it happens, this �nal search could have beenspeeded up signi�cantly if we had applied a sim-ple but very e�ective trick, which we now describe;we call it the inequality trick. Note that for every7-tuple (m1; : : : ;m7) corresponding to an integralpoint (1), inequality (3) must be satis�ed. The tricknow is based on the heuristic observation that thisinequality is rarely satis�ed for points (1) with atleast one large coe�cient mi. The reason is thatthe elliptic logarithms ui are more or less randomlydistributed|at least we see no reason to assumeotherwise|so that the linear form L(P ) is rarelyvery small. In the present example it works as fol-lows. Suppose that (m1; : : : ;m7) generates an inte-gral point and let jmij � 6 for at least one i. Then,in view of (3), the absolute value of the linear formL(P ) = L(m1P1 + � � �+m7P7)must be bounded from above by 1:919�10�7. Check-ing whether one 7-tuple (m1; : : : ;m7) in the range�10 � mi � 10 (with m1 � 0) satis�es this condi-tion or not is considerably less time consuming thanchecking the corresponding point (1) for integrality.After 7 hours and 35 minutes, a mere 1633 out ofalmost a billion 7-tuples passed the inequality testand the corresponding points (1) were subsequentlytested for integrality. This took no more than 1minute CPU time and revealed no integral points.The remaining search for 7-tuples in the reducedrange �5 � mi � 5 took only 54 minutes and pro-duced all integral points. Consequently, the initialcomputing time of more than three days was shrunkto less than 8 hours. An analogous trick could havebeen applied to Top's quartic curve of Example 3.Again we omit a complete listing of all integral so-lutions as max1�i�7 jmij = 2; they may be obtainedfrom Stroeker's homepage.

Example 5. Among the several exciting examples ofelliptic curves of large rank given in [Siksek 1995], wehave selected the curve of rank 8 from Example 5.3.Its minimal Weierstra� equation isy2 + xy = x3 � 5818216808130x+5401285759982786436: (19)This curve is due to Kretschmer [1986], but it isSiksek who proves without assuming any conjecturethat its rank is 8, and who gives an unconditionalMordell{Weil basis, called B0 in Table 4. Thoughthe situation here is more advantageous than in Ex-ample 3, because the curve has 2-torsion, it wasno easy matter to establish without any conditionwhatsoever that B0 is a Mordell{Weil basis modulotorsion. It came as no surprise to us that this basisis not c1-optimal. Running our c1-optimal programwith multiplication factor � = 1 for this basis soonmade us realize that the number of qualifying B-matrices is way too large. So, repeating the processof using di�erent values for � and stopping as soon aswe found a few good B's, after a few steps turned upthe free basis B1 of Table 4 with improved c1-value.Starting with this basis, and using � = 1, it tookapproximately 5 hours on a 75MHz Pentium to �nd10 qualifying B's, 9 of which split. This producedthe c1-optimal free basis B2.The �rst reduction step was executed in 2500 dig-its precision, which took approximately 34 hoursCPU time on a Sun Sparcstation 4; this included thetime needed to calculate the '-values to the sameprecision. The �nal search for integral points
P = 8Xi=1 miPi + "Q;

where fP1; : : : ; P8g is the c1-optimal free basis, Q =[1402932;�701466] generates the torsion group, " 2f0; 1g, and mi 2 Z with jmij � 8 for i = 1; : : : ; 8,would have taken a few weeks of computing time ona 133MHz Pentium had we not applied the inequal-ity trick mentioned in Example 4.In the present example this trick works as fol-lows. Assume (m1; : : : ;m8) generates an integralpoint and let jmij � 5 for at least one i. Then forthis point (1) (where T0 is either O or Q) inequality(3) must be satis�ed with 8:09 � 10�9 in the right-hand side. All 8-tuples in the range �8 � mi � 8
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B0 (Siksek) B1 (c1-improved) B2 (c1-optimal)[1410240;�29977314] [1365048; 51389034] [�2520768; 2013726114][1704648;�661672482] [1437384; 88804830] [1410240;�29977314][1421184;�55353570] [1284264;�218219910] [1145136; 489626526]� 5195234425 ;� 189069355038125 � [1410240;�29977314] � 917950008361 ; 182006173271826859 �[4740024; 9180268266] � 11080477905678961 ;� 13916246548409422188041 � � 22884623041849 ;� 2470190841493879507 �[975216; 808674546] [� 12014115964 ;� 1594807366953512 ] � 53139034 ; 10217998778 �[7028688;�17659711842] [1404150; 9858594] [1368480;�45144546][�2623596;�1613325930] [1368480;�45144546] � 637573719058998001 ; 1390151499263611822997002999 �c1(Bi) 0:13586 : : : 1:17637 : : : 1:20392 : : :M0 2:59� 10225 8:77� 10224 8:67� 10224M1 : : :M�nal 176; 27; 25; 25 60; 9; 8; 8 59; 9; 8; 8
TABLE 4. Siksek's curve of rank 8, withWeierstra� equation y2+xy = x3�5818216808130x+5401285759982786436.Three Mordell{Weil bases mod torsion are given: B0, B1, and B2. See Example 5.were checked; this took almost 33 hours and of allrelevant 8-tuples only 14277 with T0 = O and 14130with T0 = Q satis�ed the required inequality. Afew minutes CPU time proved that no such 8-tuplecorresponds to an integral point.It remained to search for all integral points amongthose corresponding to 8-tuples in the range �4 �mi � 4. This took 3 hours and 40 minutes in caseT0 = O and produced 2 � 21 integral points, and5 hours and 43 minutes were needed for the caseT0 = Q which found another 2 � 13 + 1 integralpoints. The factor 2 is explained by the fact that forany point (x; y) on (19), (x; �x�y) is also a pointdi�erent from (x; y), except when (x; y) = Q. Allintegral solutions satisfy max1�i�8 jmij = 1; for acomplete listing see the �rst author's homepage.
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