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We characterize all cyclotomic polynomials of even degree with

coefficients restricted to the set f+1,�1g. In this context a cy-

clotomic polynomial is any monic polynomial with integer co-

efficients and all roots of modulus 1. Inter alia we characterize

all cyclotomic polynomials with odd coefficients.

The characterization is as follows. A polynomial P(x) with coef-

ficients �1 of even degree N�1 is cyclotomic if and only if

P(x) = �ol p1
(�x) ol p2

(�xp1 ) � � � ol pr
(�xp1p2���pr�1 ),

where N = p1p2 � � � pr and the pi are primes, not necessarily

distinct, and where ol p(x) := (xp�1)/ (x�1) is the p-th cyclotomic

polynomial.

We conjecture that this characterization also holds for poly-

nomials of odd degree with �1 coefficients. This conjecture

is based on substantial computation plus a number of special

cases.

Central to this paper is a careful analysis of the effect of Graeffe’s

root squaring algorithm on cyclotomic polynomials.

1. INTRODUCTIONWe are interested in studying polynomials with coef-�cients restricted to the set f+1;�1g. This particu-lar set of polynomials has drawn much attention andthere are a number of di�cult old questions concern-ing it. Littlewood [1968] raised a number of thesequestions and so we call these polynomials Little-wood polynomials and denote them by L. A Little-wood polynomial of degree n has L2 norm on theunit circle equal to pn+ 1: Many of the questionsraised concern comparing the behavior of these poly-nomials in other norms to the L2 norm. One of theolder and more intriguing of these asks whether suchpolynomials can be \at". Speci�cally, do there ex-ist two positive constants C1 and C2 so that for eachn there is a Littlewood polynomial of degree n withC1pn+ 1 < jp(z)j < C2pn+ 1
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400 Experimental Mathematics, Vol. 8 (1999), No. 4for each z of modulus 1? This problem, which hasbeen open for more than forty years, is discussedin [Borwein 1998], where there is an extensive bibli-ography. The upper bound is satis�ed by the so-called Rudin{Shapiro polynomials. It is still un-known whether there is a sequence satisfying justthe lower bound (this problem has been called oneof the \very hardest problems in combinatorial op-timization").The size of the Lp norm of Littlewood polynomialshas been studied from a number of points of view.The problem of minimizing the L4 norm (or equiv-alently of maximizing the so-called \merit factor")has also attracted a lot of attention.In particular, can Littlewood polynomials of de-gree n have L4 norm asymptotically close to pn+1 ?This too is still open and is discussed in [Borwein1998].Mahler [1963] raised the question of maximizingthe Mahler measure of Littlewood polynomials. TheMahler measure is just the L0 norm on the circle andone would expect this to be closely related to theminimization problem for the L4 norm above. Ofcourse the minimum possible Mahler measure for aLittlewood polynomial is 1 and this is achieved byany cyclotomic polynomial. In this paper we de�nea cyclotomic polynomial as any monic polynomialwith integer coe�cients and all roots of modulus 1,and denote by �n(x) the n-th irreducible cyclotomicpolynomial, that is, the minimum polynomial of aprimitive n-th root of unity.This paper addresses the question of characteriz-ing the cyclotomic Littlewood polynomials of evendegree. Speci�cally, we show that a polynomial P (x)with coe�cients �1 of even degree N � 1 is cyclo-tomic if and only ifP (x) = ��p1(�x)�p2(�xp1) � � ��pr(�xp1p2���pr�1);where N = p1p2 � � � pr and the pi are primes (notnecessarily distinct). The \if" part is obvious since�pi(x) has coe�cients �1.We also give an explicit formula for the numberof such polynomials.This analysis is based on a careful treatment ofGrae�e's root squaring algorithm. It transpires thatall cyclotomic Littlewood polynomials of a �xed de-gree have the same �xed point on iterating Gra-e�e's root squaring algorithm. This also allows us

to characterize all cyclotomic polynomials with oddcoe�cients.Substantial computations, as well as a number ofspecial cases, lead us to conjecture that the abovecharacterization of cyclotomic Littlewood polynomi-als of even degree also holds for odd degree. One ofthe cases we can handle is when N is a power of 2.It is worth commenting on the experimental as-pects of this paper. (As is perhaps usual, much ofthis is carefully erased in the �nal exposition). Itis really the observation that the cyclotomic Little-wood polynomials can be explicitly constructed es-sentially by inverting Grae�e's root squaring algo-rithm that is critical. This allows for computationover all cyclotomic Littlewoods up to degree severalhundred (with exhaustive search failing far earlier),a construction which is of interest in itself. Indeedit was these calculations that allowed for the conjec-tures of the paper and suggested the route to someof the results.The paper is organized as follows. Section 2 exam-ines cyclotomic polynomials with odd coe�cients.Section 3 looks at cyclotomic Littlewood polynomi-als with a complete analysis of the even degree case.The last section presents some numerical evidenceand other evidence to support the conjecture thatthe odd case behaves like the even case.
2. CYCLOTOMIC POLYNOMIALS WITH ODD

COEFFICIENTSIn this section, we discuss the factorization of cyclo-tomic polynomials with odd coe�cients as a productof irreducible cyclotomic polynomials. To do this,we �rst consider the factorization over Zp[x], wherep is a prime number. The most useful case is p = 2because every Littlewood polynomial reduces to theDirichlet kernel 1 + x+ � � �+ xN�1in Z2[x]. In Zp[x], �n(x) is no longer irreduciblein general but �n(x) and �m(x) are still relativelyprime to each other.
Lemma 2.1. Suppose n and m are distinct positive in-tegers relatively prime to p. Then �n(x) and �m(x)are relatively prime in Zp[x].
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Proof. Suppose e and f are the smallest positive in-tegers such thatpe � 1 (mod n) and pf � 1 (mod m):Let Fpk be the �eld of order pk. Then Fpe containsexactly '(n) elements of order n and over Zp, �n(x)is a product of '(n)=e irreducible factors of degree eand each irreducible factor is a minimal polynomialfor an element in Fpe of order n over Zp; see [Lidland Niederreiter 1983]. So �n(x) and �m(x) cannothave a common factor in Zp[x] since their irreduciblefactors are minimal polynomials of di�erent orders.This proves our lemma. �The following lemma tells which �m(x) can possiblybe factors of polynomials with odd coe�cients.
Lemma 2.2. Suppose P (x) is a polynomial with oddcoe�cients of degree N � 1. If �m(x) divides P (x),then m divides 2N .
Proof. Since �m(x) divides P (x), so �m(x) also di-vides P (x) in Z2[x]. However, in Z2[x], P (x) equalsto 1 + x+ � � �+ xN�1 and can be factored asP (x) = �1(x)�1YdjM �2td (x); (2–1)where N = 2tM , t � 0 and M is odd. In view ofLemma 2.1, �d1(x) and �d2(x) are relatively primein Z2[x] if d1 and d2 are distinct odd integers. So ifm is odd, then �m(x) is a factor in the right handside of (2{1) and hence m = d for some d jM . Onthe other hand, if m is even and m = 2lm0 wherel � 1 and m0 is odd, then�m(x) = �2m0(x2l�1) = �m0(x2l�1) = �m0(x)2l�1in Z2[x]. Thus, in view of (2{1), we must have m0 =d for d jM and l � t + 1. Hence in both cases wehave m divides 2N . �In view of Lemma 2.2, every cyclotomic polynomial,P (x), with odd coe�cients of degree N � 1 can bewritten as P (x) = Ydj2N �e(d)d (x); (2–2)where the e(d) are nonnegative integers.For each prime p let Tp be the operator de�nedover all monic polynomials in Z[x] byTp[P (x)] := NYi=1(x� �pi )

for every P (x) =QNi=1(x��i) in Z[x]. By Newton'sidentities [Borwein and Erd�elyi 1995, p. 5], Tp[P (x)]is also a monic polynomial in Z[x]. We extend Tp tobe de�ned over the quotient of two monic polynomi-als in Z[x] by Tp[(P=Q)(x)] := Tp[P (x)]=TP [Q(x)].This operator obviously takes a polynomial to thepolynomial whose roots are the p-th powers of theroots of P . Also we letMp be the natural projectionfrom Z[x] onto Zp[x]:Mp[P (x)] = P (x) (mod p):
Lemma 2.3. Suppose that n is a positive integer rela-tively prime to p and i � 2. Then(i) Tp[�n(x)] = �n(x),(ii) Tp[�pn(x)] = �n(x)p�1,(iii) Tp[�pin(x)] = �pi�1n(x)p.
Proof. (i) is trivial because if (n; p) = 1 then Tp justpermutes the roots of �n(x). To prove (ii) and (iii),we considerTp[P (xp)] = Tp" NYj=1(xp � �i)#= Tp" NYj=1 pYl=1(x� e2�il=p�1=pi )#= NYj=1 pYl=1(x� �i)= P (x)p:Thus (ii) and (iii) follow from (i) and the equalities�pn(x) = �n(xp)=�n(x) and �pin(x) = �pi�1n(xp)[Hungerford 1974, x 5.8]. �When P (x) is cyclotomic, the iterates T np [P (x)] con-verge in a �nite number of steps to a �xed point ofTp and we de�ne this to be the �xed point of P (x)with respect to Tp.
Lemma 2.4. If P (x) is a monic cyclotomic polynomialin Z[x], thenMp[Tp[P (x)]] =Mp[P (x)]; (2–3)in Zp[x].
Proof. Since both Tp and Mp are multiplicative, itsu�ces to consider the primitive cyclotomic polyno-mials �n(x). Let n be an integer relatively prime



402 Experimental Mathematics, Vol. 8 (1999), No. 4to p. Then (2{3) is true for P (x) = �n(x) by (i) ofLemma 2.3. For P (x) = �pn(x), we haveMp[Tp[�pn(x)]] =Mp[�n(x)p�1] =Mp[�n(x)]p�1by (ii) of Lemma 2.3. However,Mp[�pn(x)] = Mp[�n(xp)]Mp[�n(x)] = Mp[�n](xp)Mp[�n(x)]=Mp[�n(x)]p�1in Zp[x]. This proves that (2{3) is also true forP (x) = �pn(x). Finally, P (x) = �pin(x) impliesMp[Tp[�pin(x)]] =Mp[�pi�1n(x)p]=Mp[�pi�1n(xp)]=Mp[�pin(x)]by (iii) of Lemma 2.3. This completes the proof ofour lemma. �Lemma 2.4 shows that Tp[P (x)] = Tp[Q(x)] impliesMp[P (x)] = Mp[Q(x)]. The next result shows thatthe converse is also true.
Theorem 2.5. P (x) and Q(x) are monic cyclotomicpolynomials in Z[x] and Mp[P (x)] = Mp[Q(x)] inZp[x] if and only if both P (x) and Q(x) have thesame �xed point with respect to iteration of Tp.
Proof. SupposeP (x) = Yd2D�e(d)d (x)�e(pd)pd (x) � � ��e(ptd)ptd (x)andQ(x) = Yd2D�e(d)0d (x)�e(pd)0pd (x) � � ��e(ptd)0ptd (x);where t; e(j); e(j)0 � 0 and D is a set of positiveintegers relatively prime to p. Then using parts (i){(iii) of Lemma 2.3, we have for l � tT lp[P (x)] = Yd2D�d(x)f(d);T lp[Q(x)] = Yd2D�d(x)f(d)0 ; (2–4)where f(d) = e(d) + (p� 1) tXj=1 pj�1e(pjd);f(d)0 = e(d)0 + (p� 1) tXj=1 pj�1e(pjd)0:

From Lemma 2.4, we haveMp[T lp[P (x)]] =Mp[P (x)] =Mp[Q(x)]=Mp[T lp[Q(x)]];for any l � t. From this and (2{4),Yd2DMp[�d(x)]f(d) = Yd2DMp[�d(x)]f(d)0 :However, with Lemma 2.1, we know that Mp[�d(x)]and Mp[�d0(x)] are relatively prime if d 6= d0. So wemust have f(d) = f(d)0 for all d 2 D and hence from(2{4), P (x) andQ(x) have the same �xed point withrespect to Tp. �From Theorem 2.5, we can characterize the moniccyclotomic polynomials by their images in Zp[x] un-der the projection Mp. They all have the same �xedpoint under Tp. In particular, when p = 2 we have:
Corollary 2.6. All monic cyclotomic polynomials withodd coe�cients of the degree N � 1 have the same�xed point under iteration of T2. Speci�cally , if N =2tM where t � 0 and M is odd then the �xed pointoccurs at the (t+1)-th step of the iteration and equals(xM � 1)2t(x� 1)�1:
Proof. The �rst part follows directly from Theorem2.5 and the fact thatM2[P (x)] = 1 + x+ � � � + xN�1in Z2[x] if P (x) is a monic polynomial with oddcoe�cients of degree N � 1. If N = 2tM , then from(2{2),P (x) =YdjM �e(d)d (x)�e(2d)2d (x) � � ��e(2t+1d)2t+1d (x):Over Z2[x],1 + x+ � � �+ xN�1 = �1(x)�1YdjM �2td (x);so f(d) = e(d) + t+1Xi=1 2i�1e(2id)= � 2t for d jM , d > 1,2t � 1 for d = 1. (2–5)



Borwein and Choi: On Cyclotomic Polynomials with �1 Coefficients 403Therefore, from (2{5) and Lemma 2.3,T t+12 [P (x)] =YdjM �f(d)d (x) = �1(x)�1YdjM �2td (x)= (xM � 1)2t(x� 1)�1: �Corollary 2.6, when N is odd (t = 0), shows thatT2[P (x)] equals 1+x+ � � �+xN�1 for all cyclotomicpolynomials with odd coe�cients. From (2{2) and(2{5), we then have the following characterizationof cyclotomic polynomials with odd coe�cients.
Corollary 2.7. Let N = 2tM with t � 0 and M odd .A polynomial , P (x), with odd coe�cients of degreeN � 1 is cyclotomic if and only ifP (x) =YdjM �e(d)d (x)�e(2d)2d (x) � � ��e(2t+1d)2t+1d (x);and the e(d) satisfy the condition (2{5).Furthermore, if N is odd , then any polynomial ,P (x), with odd coe�cients of even degree N � 1 iscyclotomic if and only ifP (x) = YdjNd>1 �e(d)d (�x);where the e(d) are nonnegative integers.Corollary 2.7 allows us to compute the number ofcyclotomic polynomials with odd coe�cients. LetB(n) be the number of partitions of n into a sumof terms of the sequence f1; 1; 2; 4; 8; 16; : : :g. ThenB(n) has generating functionF (x) = (1� x)�1 1Yk=0(1� x2k)�1:
Corollary 2.8. Let N = 2tM with t � 0 and M odd .The number of cyclotomic polynomials with odd co-e�cients of degree N � 1 isC(N) = B(2t)d(M)�1B(2t � 1); (2–6)where d(M) denotes the number of divisors of M .Furthermore,logC(N) � ( 12 t2 log 2)(d(M) � 1) + (log(2t � 1))2log 4 :

(2–7)

Proof. Formula (2{6) follows from (2{5) and Corol-lary 2.7. To prove (2{7), we use de Bruijn's asymp-totic estimation for B(n) in [de Bruijn 1948]:B(n) � exp((log n)2= log 4):Now (2{7) follows from this and (2{6). �
3. CYCLOTOMIC LITTLEWOOD POLYNOMIALSWe now specialize the discussion to the case wherethe coe�cients are all +1 or �1.One natural way to build up Littlewood polyno-mial of higher degree is as follows: if P1(x) and P2(x)are Littlewood polynomials and P1(x) is of degreeN � 1 then P1(x)P2(xN ) is a Littlewood polynomialof higher degree. In this section, we show that thisis the only way to produce cyclotomic Littlewoodpolynomials, at least for even degree.Proving this is equivalent to showing that the co-e�cients of P (x) are \periodic" in the sense thatif P (x) = PN�1n=0 anxn, then there is a \period" isuch that ali+n = ali for all 1 � n � i � 1 and0 � l � N=i� 1. This is our Theorem 3.3 below.Suppose P (x) =PN�1n=0 anxn is a cyclotomic poly-nomial in L and let Sk be the sum of the k-th powersof all the roots of P (x). Since P (x) is cyclotomic,we have xN�1P (1=x) = �P (x). Thus it follows fromNewton's identities thatSk + a1Sk�1 + � � �+ ak�1S1 + kak = 0 (3–1)for k � N � 2. We may further assume that a0 =a1 = 1 by replacing P (x) by �P (x) or P (�x) ifnecessary. We now leta0 = a1 = � � � = ai�1 = 1 and ai = �1;for some integer i � 2. From (3{1), we haveS1 = �a1 = �1:We claim thats1 = S2 = � � � = Si�1 = �1;Si = 2i� 1: (3–2)Suppose S1 = � � � = Sj = �1 for j < i � 1. Thenfrom (3{1) again,Sj+1 = �a1Sj � � � � � ajS1 � (j + 1)aj+1= j � (j + 1) = �1:So S1 = � � � = Si�1 = �1. Similarly, from (3{1),Si = �a1Si�1 � � � � � ai�1S1 � iai = 2i� 1:
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Lemma 3.1. Let 2 � k � N�1i �1 and suppose ali+n =ali for 1 � n � i� 1 and 0 � l � k � 2. Thenk�2Xl=0 ali �S(k�l)i+j+1 � S(k�l�1)i+j+1�+ (ki+ j + 1)(aki+j+1 � aki+j)+ i�1Xn=0 a(k�1)i+n(Si+j�n+1 � Si+j�n) = 0 (3–3)for 0 � j � i� 2.
Proof. Suppose 0 � j � i� 2. From (3{1) and (3{2)we have0 = k�1Xl=0 i�1Xn=0 ali+nS(k�l)i+j�n+ j�1Xn=0 aki+nSj�n + (ki + j)aki+j= k�2Xl=0 ali i�1Xn=0 S(k�l)i+j�n + i�1Xn=0 a(k�1)i+nSi+j�n� jXn=0 aki+n + (ki+ j + 1)aki+j :

(3–4)Similarly,0 = k�2Xl=0 ali i�1Xn=0 S(k�l)i+j�n+1+ i�1Xn=0 a(k�1)i+nSi+j�n+1� jXn=0 aki+n + (ki+ j + 1)aki+j+1: (3–5)Hence, on subtracting (3{5) from (3{4), we have0 = k�2Xl=0 ali�S(k�l)i+j+1 � S(k�l�1)i+j+1�+ (ki+ j + 1)(aki+j+1 � aki+j)+ i�1Xn=0 a(k�1)i+n(Si+j�n+1 � Si+j�n):This proves (3{3). �
Lemma 3.2. Let 0 � k � N�1i �1. Suppose ali+n = alifor 1 � n � i� 1 and 0 � l � k. ThenSli+n = �1 (3–6)for 1 � n � i� 1 and 0 � l � k.

Proof. We prove this by induction on k. We haveproved that (3{6) is true for k = 0. Suppose (3{6)is true for k � 1. Then, for any 0 � j � i� 2,0 = a0(Ski+j+1 � S(k�1)i+j+1)+ a(k�1)i i�1Xn=0(Si+j�n+1 � Si+j�n)= Ski+j+1 + 1 + a(k�1)i(Si+j+1 � Sj+1)= Ski+j+1 + 1;by (3{3). Hence Ski+j+1 = �1 for 0 � j � i� 2. �
Theorem 3.3. Suppose N is odd . If a0 = a1 = � � � =ai�1 = 1 and ai = �1, thenali+n = alifor 1 � n � i� 1 and 0 � l � Ni � 1.
Proof. We �rst show that S2k = �1 for 1 � k � N�1and hence i is odd because Si = 2i � 1. Since N isodd, from Corollary 2.7,P (x) =YdjN �e(d)d (x)�e(2d)2d (x)where e(d)+ e(2d) = 1 if d > 1 and e(1) = e(2) = 0.If 1 � k � N � 1, thenS2k =XdjN (e(d)Cd(2k) + e(2d)C2d(2k))=XdjN (e(d) + e(2d))Cd(k)=XdjN Cd(k)� C1(k)= �1; (3–7)where the Ramanujan sum, Cd(k), is the sum of thek-th powers of the primitive d-th roots of unity andhence PdjN Cd(k) is the sum of k-th powers of theroots of QdjN �d(x) = xN�1, which is equal to zerowhen 1 � k � N � 1.We continue our proof by using induction on k.Suppose ali+n = alifor 1 � n � i� 1 and 0 � l � k � 1 where 1 � k �N�1i � 1 . From Lemmas 3.1 and 3.2 we haveSki+j+1+1+(ki+ j+1)(aki+j+1�aki+j) = 0 (3–8)



Borwein and Choi: On Cyclotomic Polynomials with �1 Coefficients 405and hence from (3{3) again0 = a0(S(k+1)i+j+1�Ski+j+1)+ai(Ski+j+1�S(k�1)i+j+1)+aki+j(Si+1�Si)+aki+j+1(Si�Si�1)+((k+1)i+j+1)(a(k+1)i+j+1�a(k+1)i+j)= (S(k+1)i+j+1�2Ski+j+1�1)+2i(aki+j+1�aki+j)+((k+1)i+j+1)(a(k+1)i+j+1�a(k+1)i+j)= S(k+1)i+j+1+1+2((k+1)i+j+1)(aki+j+1�aki+j)+((k+1)i+j+1)(a(k+1)i+j+1�a(k+1)i+j) (3–9)for 0 � j � i�2. Suppose k is even. Then in view of(3{7), Ski+j+1 = �1 if j is odd and S(k+1)i+j+1 = �1if j is even. So from (3{8) and (3{9), we haveaki+j+1 = aki+jfor j = 1; 3; : : : ; i�2 and�2(aki+j+1 � aki+j) = a(k+1)i+j+1 � a(k+1)i+j (3–10)for j = 0; 2; : : : ; i�3. However, since the ai's are +1or �1, Equation (3{10) implies thataki+j+1 = aki+j and a(k+1)i+j+1 = a(k+1)i+jfor j = 0; 2; : : : ; i�3. Hence aki+n = aki for n =1; 2; : : : ; i�1. The case of k odd can be proved inthe same way. �
Theorem 3.4. Suppose N is odd . A Littlewood poly-nomial , P (x), of degree N � 1 is cyclotomic if andonly ifP (x) = ��p1(�x)�p2(�xp1) � � ��pr(�xp1p2���pr�1);

(3–11)where N = p1p2 � � � pr and the pi are primes, notnecessarily distinct .
Proof. It is clear that if P (x) is of the form (3{11),then P (x) is a cyclotomic Littlewood polynomial.Conversely, suppose P (x) is a cyclotomic Littlewoodpolynomial. As before we may assume that a0 =a1 = � � � = ai�1 = 1 and ai = �1. We prove our re-sult by induction on N . From Theorem 3.3, we haveP (x) = P1(x)P2(xi), where P1(x) = 1+x+� � �+xi�1and P2(x) is a cyclotomic Littlewood polynomial ofdegree less than N � 1. By induction, P1(x) andP2(x) are of the form (3{11) and hence so is P (x)because the degree of P1(x) is i� 1. �

Corollary 3.5. Suppose N is odd . Then P (x) is cy-clotomic in L of degree N � 1 if and only ifP (x) = � tYi=1 xNi + (�1)"+ixNi�1 + (�1)"+iwhere " = 0 or 1, N0 = 1; Nt = N and Ni�1 is aproper divisor of Ni for i = 1; 2; : : : ; t.
Proof. Without loss of generality, we may assumethat P (x) = 1+ x+ a2x2+ � � � . From Theorem 3.4,P (x) is cyclotomic in L if and only ifP (x) = �p1(x)�p2(�xp1) � � ��pr(�xp1���pr�1)= �p1(x) � � ��pn1 (xp1���pn1�1)� �pn1+1(�xp1���pn1 ) � � ��pn2 (�xp1���pn2�1)� � � �� �pnt�1+1((�1)t�1xp1���pnt�1 ) � � ��pnt ((�1)t�1xp1���pnt�1);where N = p1 � � � pnt . Since �p(x) = (xp�1)=(x�1),the preceding equation becomesP (x) = tYi=1 xNi + (�1)ixNi�1 + (�1)i ;where N0 = 1 and Ni = p1 � � � pni for i = 1; : : : ; t.This proves our corollary. �Using Corollary 3.5, we can count the number ofcyclotomic Littlewood polynomials of given even de-gree. For any positive integers N and t, de�ner(N; t) := #�(N1; N2; : : : ; Nt) : N1 jN2 j � � � jNt;1 < N1 < N2 < � � � < Nt = N	;and for i � 1, di(N) :=XnjN di�1(n) (3–12)where d0(N) = 1.
Lemma 3.6. For l; t � 0 and p prime, we havedt(pl) = � l+tt �: (3–13)

Proof. We work by induction on t. Equality (3{13) isclearly true for t = 0 because d0(N) = 1. We thensuppose (3{13) is true for t� 1 where t � 1. Thendt(pl) =Xnjpl dt�1(n) = lXi=0 dt�1(pi) = lXi=0� i+t�1t�1 �:



406 Experimental Mathematics, Vol. 8 (1999), No. 4So dt(pl) is the coe�cient of xt�1 in(x+ 1)t�1 + (x+ 1)t + � � �+ (x+ 1)l+t�1= (x+ 1)t�1�(x+ 1)l+1 � 1x �= (x+ 1)l+t � (x+ 1)t�1x :Hence dt(pl) is the coe�cient of xt in (x + 1)l+t �(x+ 1)t�1. Therefore, dt(pl) = � l+tt �. �Since dt(N) is a multiplicative function of N , wehave
Corollary 3.7. If N = pr11 � � � prss where ri � 1 and piare distinct primes, thendt(N) = sYi=1�ri+tt �:
Lemma 3.8. For any positive integers N and t, wehaver(N; t) := � 0 if N = 1,Pti=1(�1)t�i� ti�di�1(N) if N > 1.

(3–14)

Proof. We again prove by induction on t. It is clearfrom the de�nition that r(1; t) = 0 and r(N; 1) = 1for any t;N � 1. We then suppose N > 1 and(3{14) is true for t� 1 where t � 2. Thenr(N; t) = XN1jNN1>1 r(N=N1; t�1)= XN1jNN>N1>1 r(N=N1; t�1)= XN1jN� t�1Xi=1 (�1)t�i�1� t�1i �di�1(N=N1)�� t�1Xi=1 (�1)t�i�1� t�1i �(di�1(1)+di�1(N))= tXi=2 (�1)t�i� t�1i�1�di�1(N)� t�1Xi=1 (�1)t�i�1� t�1i �di�1(N) + (�1)t�1= tXi=1 (�1)t�i� ti�di�1(N)

from (3{12) and the fact that � t�1i�1�+ � t�1i � = � ti�.�
Corollary 3.9. The number of cyclotomic polynomialsin L of degree N � 1, where N = pr11 � � � prss ; ri � 1and the pi are distinct odd primes, is4 r1+���+rsXi=1 iXj=1(�1)i�j� ij� sYk=1�rk+j�1j�1 �:
Proof. From Corollary 3.5, the number of cyclotomicpolynomials in L of degree N � 1 is4 r1+���+rsXi=1 r(N; i):The corollary now follows from Corollary 3.7 andLemma 3.8. �
4. CYCLOTOMIC LITTLEWOOD POLYNOMIALS OF

ODD DEGREEWe conjecture explicitly that Theorem 3.4 also holdsfor polynomials of odd degree.
Conjecture 4.1. A Littlewood polynomial , P (x), ofdegree N � 1 is cyclotomic if and only ifP (x) = ��p1(�x)�p2(�xp1) � � ��pr(�xp1p2���pr�1);

(4–1)where N = p1p2 � � � pr and the pi are primes, notnecessarily distinct .We computed up to degree 210 (except for the caseN � 1 = 191). The computation was based on com-puting all cyclotomic polynomials with odd coe�-cients of a given degree and then checking whichwere actually Littlewood and seeing that this setmatched the set generated by the conjecture. Forexample, for N � 1 = 143 there are 6773464 cyclo-tomic polynomials with odd coe�cients of which 416are Littlewood. For N�1 = 191 there are 697392380cyclotomic polynomials with odd coe�cients (whichwas too big for our program).We can generate all the cyclotomics with odd co-e�cients from Corollary 2.7 quite easily so the bulkof the work is involved in checking which ones haveheight 1. The set in the conjecture computes veryeasily recursively.



Borwein and Choi: On Cyclotomic Polynomials with �1 Coefficients 407Some special cases also support the conjecture.Most notably the case where N is a power of 2. Theproof is as follows. From Corollary 2.7, we haveP (x) = �e(1)1 (x)�e(2)2 (x) � � ��e(2t+1)2t+1 (x):Again, we assume a0 = a1 = 1. Since �1(x)�2(x) =x2 � 1 and �2l(x) = �2(x2l�1)for l � 2, we have e(2) � e(1) = 1 and henceP (x) = �2(x)Q(x2);for some cyclotomic Littlewood polynomial Q(x).Therefore, by induction, P (x) satis�es (4{1).
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