On Some Elliptic Curves with Large Sha
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We consider a class of elliptic curves many of whose associated
Shafarevich-Tate groups LUl are relatively large, and give exam-
ples of curves with o(LLl) = k? for all k < 100.

1. INTRODUCTION

Let p be a prime satisfying p = 1 (mod 8) through-
out, and let C'(n) denote the elliptic curve

C(n):y* = 2° + na,

where n € Z. We shall mainly be concerned with
the case n = p®. Further, for the curve C(n), let
r(C(n)) denote the (Mordell-Weil) rank over Q, and
st(C(n)) denote the (analytic) order of the Shafa-
revich-Tate group I¢(,. We shall assume that
the full Birch and Swinnerton-Dyer conjecture holds
for all curves under consideration; see [Silverman
1986] for further details. The conjecture has been
established in the rank zero case, except possibly for

the 2 component of the formula; see [Rubin 1991].
Whilst undertaking some general investigations
on the elliptic curves C(n) for various small n, we
noted that in the cases when n = p?® a surprising
number of the curves had comparatively large val-
ues for st(C(n)); for instance st(C'(233%)) = 64 and
st(C(433?)) = 81. This phenomenon was also noted
for the curves C'(2p*) but to a lesser extent. After
some further computations it became clear that the
curves C'(p*) regularly have large sha; and hence it
was possible, and thought to be worthwhile, to pro-
duce a list of elliptic curves with o(III) = k? for each
k in some typical range. We chose k£ < 100 as be-
ing attainable in a few weeks using a reasonably fast
machine, although the last entry found, for £ = 98,
did extend this timetable somewhat (and so it is re-
markable in this case that a second prime occurs so
soon after the first; although there are a number of
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similar instances, for example when k£ = 6 or 35).
See Table 2.

Cassels [1964] showed that there are elliptic curves
with arbitrarily large Shafarevich-Tate groups I
by considering quadratic twists by many different
primes. Recently de Weger [1998] has given some
specific examples of curves with large sha, his largest
satisfies o(III) = 224%. He also discusses the Gold-
feld-Szpiro Conjecture, first considered in [Goldfeld
and Szpiro 1995], relating the size of III to the con-
ductor; see Section 4E.

A prime p is called a G-prime if it can be expressed
in the form p = x? + 64y* (or, equivalently, if 2 is a
quartic residue modulo p). A easy extension of this
gives: p® can be expressed in the form

PP = a;f + 64yf with  (z1,1) =1

if and only if p is a G-prime. Repeating the argu-
ment given in [Silverman 1986, Chapter 10] for the
curves C(p), we see that C'(p®) has rank zero or two
provided we assume, as we are doing, that the Birch
and Swinnerton-Dyer Conjecture holds. (Note. The
curve C(p?) is a quadratic twist of C'(p).) In [Rose
1995] we showed, using elementary methods, that
r(C(p)) = 0 if p is not a G-prime (and so the con-
jecture is not needed in this case); an exactly similar
argument shows that r(C(p®)) = 0 when p is not a
G-prime, and again the conjecture is only needed in
the G-prime case.

2. METHOD

For p =1 (mod 8) consider the elliptic curve C(p?).
Note first that, whilst the discriminant of this curve
is 64p°, its conductor is 64p?, and so it is as easy
to calculate the value of L(s)-function at s = 1 for
the curve C(p?) as it is for C(p) (as these curves
have the same conductor). The calculations were
undertaken using the method given in [Buhler et al.
1985] and the computer package Pari/GP 1.39.

In [Rose 1997] we conjecture that the probability
for the curve C(p) to have rank 2 is O(p~'/%) (this
is backed up with some numerical evidence and the
implied constant is close to 3/2). The computa-
tions undertaken for this paper suggest that a sim-
ilar estimate applies for the curves C(p?); that is,
the probability of the rank of C'(p*) equalling two
is O(p~®/®). The data given in Table 1 provides
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89 6529 26249 41177 52673 67057 83089
601 8969 26417 43441 54401 67129 83177*
937 12697* 26497 43721 54497 70921 84857

1889 13913 27449 45281 57073 71233 86161
2969 14249 29569 47057 57529 71761 87641
3257 16633 32009 47609 57697 73417 88873
3529 17881 32377 47713 60089 75289 91873
3673 25057* 35449 49681 65729 77249 96001
4289 25409 40577 52489 66569 79537 96137

TABLE 1. Primes p = 1 (mod 8) less than 10° for
which the curve C(p®) has rank 2. The asterisk
means that 7(C(p)) = 0.

some evidence for the validity of this estimate. It
is perhaps also of interest to note that there is no
close correspondence between the ranks of C'(p) and
C(p?) for fixed p— for many primes p, C(p) has rank
2 and C(p?) has rank 0, whilst those p marked with
an asterisk in Table 1 satisfy the opposite: namely,
r(C(p)) = 0 and r(C(p?)) = 2. In the remaining
cases in this table both curves have rank 2. Note
also that, for all the asterisked primes p in the ta-
ble, we have st(C(p)) = 64 using data given in [Rose
1997]; for larger p this equation will probably need
to be replaced by the condition 64 | st(C(p)). Note
that st(C(p)) need not be a power of two even in the
rank 2 case, for example st(C(51137)) = 9 as noted
in [Rose 1997].

We have confirmed that these curves have rank 2
(by finding two independent generators) for the first
three primes only, although one generator is known
in 20 cases. In the remaining cases we are relying on
the Birch and Swinnerton-Dyer conjecture, and the
fact that our calculated estimate for the value of the
L(s)-function at s = 1 equals zero to an accuracy of
at least four places. It would be a major undertaking
to find the generators for the remaining curves; in no
case will elementary (that is, quadratic) arguments
help.

3. RANK-ZERO CURVES

We consider now the elliptic curves C(p*) with rank
zero; note that in this case the Birch—Swinnerton-
Dyer conjecture has been established except for the
power of 2 in their formula; see [Rubin 1991]. We
have calculated the values of the L(s)-functions of
these curves at s = 1 for all primes congruent to



1 modulo 8 up to 150000, and up to 230000 for G-
primes congruent to 1 or 33 modulo 40 only; a sum-
mary of the results is given in Table 2. We curtailed
the calculations once we had found at least one en-
try in every line of Table 2, further details are avail-
able from the author via e-mail. We also calculated
these L-function values in two higher, randomly cho-
sen, ranges: 1200000 to 1205000, and 4100100 to
4105100. All calculations were performed to an ac-
curacy of at least three decimal places; this was suf-
ficient to give, using the Birch and Swinnerton-Dyer
conjecture, the value of st(C(p®)) as this number is
a square integer k? whose parity can be determined
in advance, see Section 4C below. Also we found
that the larger the value of st(C(p?)) the better was
the accuracy of the calculation. Typical examples
of actual calculated values are:

st(C(229321%)) = 8464.0733 ~ 8464 = 92°,
st(C(219361%)) = 2.8927 ~ 4

(here 219361 is a G-prime, so the st value is an even
square).

4. OBSERVATIONS ABOUT THE CALCULATIONS
4A. The Spread of Values of k

All values of k occur and, generally speaking, they
occur with a similar frequency. It seems reasonable
to assume that for all k£ there are infinitely many
primes p such that

st(C(p°)) = k7,

although the frequency of these occurrences prob-
ably drops considerably as p increases. For exam-
ple the values £ = 1,2 or 3 do not occur in the
range 1200000 < p < 1205000, the smallest value of
st(C(p*)) for rank zero curves in this range is 16.
Further the first prime p for which the displayed
equation above holds increases relatively smoothly
with k, except that there is a slight tendency for
this prime to be larger than ‘normal’ when k£ has
the form & = 2n and n is odd. Examples are when
k = 6,26,50 and 98. This is probably not signif-
icant; for instance, although the smallest prime p
with st(C(p?)) = 2500 is p = 79769, there are at
least eleven further primes with this property less
then 200000. Finally note that there is also a ten-
dency for the “first” prime to be congruent to 3 mod 5

Rose: On Some Elliptic Curves with Large Sha 87

(or, to a lesser extent, congruent to 1 mod 5); this is
also probably not significant but explains the choice
of primes between 150001 and 230000 above.

4B. The Size of Values k

Compared with some previously published tables,
for example Cremona [1997], the sizes of the Shafa-
revich—Tate groups for the curves under consider-
ation are relatively large. We have if p < 50000
the largest value for st(C(p*)) is 7744, for the prime
46681; if p < 10° the largest value is 11025, for
the prime 99233; if p < 150000 the largest value is
28561 = 1692, for the prime 137873.

Further in the range 1200000 < p < 1205000
the largest st value is 111556 = 334?% for the prime
1200833, and in the range 4100100 < p < 4105100
we found the values

st(C(4102393%)) = 3912,
st(C(4103353%)) = 4742,
st(C(4105033%)) = 635% = 403225,

which is the largest explicitly calculated value of sha
for any elliptic curve known to the author.

4C. G and Non-G Primes
For the curves C(p?),

st(C(p®)) is even if and only if p is a G-prime.

We used this to complete the table below by con-
sidering only G-primes between 150000 and 230000.
Note that, for the curves C(p), we have 4 | st(C(p))
for all p and

16 | st(C(p)) if and only if p is a G-prime;

see [Rose 1995]. Also note that although C(p?) is a
quadratic twist of C'(p) there is no precise relation-
ship between their corresponding ‘shas’. For exam-
ple st(C'(56081)) = 6 whilst st(C'(56081%)) = 552.

4D. Relationship Between C(p®) and C(p) for G-Primes p

There is some connection between the 2-component
of st(C(p®)) and the rank of C'(p). Using the data
given in [Rose 1995; 1997], the following properties
hold for p < 10° for the curves under consideration:

(@ If 4 || st(C(p*)) then r(C(p)) = 0.
(b) If 16 | st(C(p*)) then either r(C(p)) = 2, or
r(C(p)) =0 and 64 | st(C(p)).
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k-n p p2 |k n p D2 k- n m D2 k- n p D2 kn m D2

1 96 17 41 | 22 43 3761 7841 | 43 16 31081 41513 | 64 5 51913 59473 | 85 5 49433 74873
2 68 257 577 |23 33 2753 5641 | 44 15 20353 27073 | 65 4 70393 71633 | 86 0 134593 163481
3 116 137 241 | 24 45 3313 5113 | 45 16 31481 41953 | 66 2 57793 70321 87 2 48073 78713
4 126 73 113 | 25 46 2953 4561 | 46 5 23761 67049 | 67 3 29873 38113 | 88 1 46681 142193
5 123 313 401 | 26 25 19433 26297 | 47 7 32441 52433 | 68 7 16553 25633 | 89 2 64153 86353
6 72 2833 2857 | 27 27 7681 11369 | 48 13 27953 41233 | 69 1 81353 109001 90 0 159833 224881
7 82 641 2417 | 28 34 11633 14633 | 49 8 20233 30593 | 70 3 82073 89273 | 91 2 72353 96233
8 98 233 1153 | 29 22 5273 5953 | 50 4 79769 83737 | 71 4 82913 84761 92 0 123593 133033
9 92 433 673 | 30 32 9281 13921 | 51 7 11353 45121 | 72 3 50833 80273 | 93 2 67153 95233
10 60 1721 2441 | 31 19 12401 14081 | 52 13 14713 18433 | 73 2 28793 76873 | 94 0 145513 179801
11 63 953 2713 | 32 31 7993 12073 | 53 7 15233 31193 | 74 1 94273 103049 | 95 0 128873 141041
12 91 1753 1801 | 33 20 8513 16561 | 54 1 48593 113489 | 75 2 44953 48761 96 3 69833 71473
13 70 1321 5009 | 34 7 21961 30697 | 55 3 56081 63281 | 76 3 66593 78233 | 97 2 66713 90313
14 50 4001 5737 | 35 25 11393 11593 | 56 5 43313 51241 | 77 2 36473 73681 98 0 222193 224993
15 70 9049 11489 | 36 32 18481 24281 | 57 8 45673 52153 | 78 4 58073 62761 99 0 106321 139201
16 60 1193 3833 | 37 19 15473 17713 | 58 4 60601 70913 | 79 1 43913 146273 | 100 1 50153 103553
17 49 3881 8521 | 38 10 28001 29137 | 59 2 67961 79633 | 80 3 56713 57601 | 101 1 92033

18 36 7817 12497 | 39 17 17401 19753 | 60 10 23633 25673 | 81 2 82193 94033 | 102 0 114073 201673
19 42 3793 6473 | 40 14 24953 31649 | 61 3 82793 89513 | 82 1 87281 123953 | 103 0 117193

20 60 2273 3361 | 41 13 7193 12113 | 62 2 48953 78569 | 83 4 23593 45641 | 104 0 109433 117881
21 37 4793 6329 | 42 12 25913 32993 | 63 5 35593 49033 | 84 1 68713 109313 | 105 1 99233

TABLE 2. For each k < 105, the second column gives the number n of primes p < 10° for which st(C(p?®)) = k2.
The columns headed p; and p give the two smallest primes p for which st(C'(p®)) = k?; only one such prime is

known for k£ = 101, 103 and 105.

In this final case, divisibility cannot be replaced
by equality: for example if p = 50177, we have
r(C(p)) = 0 whilst st(C(p)) = 256.

4E. The Goldfeld-Szpiro Conjecture

In [Goldfeld and Szpiro 1995] it was conjectured that
elliptic curves defined over Q with Shafarevich—Tate
group I, conductor IV, and € > 0, satisfy

O(H_I) < N1/2+6.

Let GS denote the ratio o(Ill)/v/N, and dW de-
note the ratio o(Il1)/A'/*? where A is the discrim-
inant of the curve in question. In [de Weger 199§]
there are several examples of elliptic curves with GS
larger than 1, the largest value being 6.893 for the
curve mentioned in the introduction. In the same
article de Weger proves, assuming the validity of
the Birch and Swinnerton-Dyer Conjecture in the
rank zero case, that there are many elliptic curves
with dW larger than unity (the precise statement
is: for all € > 0, there exist infinitely many el-
liptic curves E defined over Q with the property
o(lllg) > AY'2=%). For the curves discussed in
this paper all values of GS are less than 0.040 but
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some satisfy dW > 1. The six curves C'(p?) with the
largest values of GS are:

P GS dW st(C(p*))
23593  0.0365  2.559 6889
16553  0.0349  2.241 4624

233 0.0343  0.759 64

7193  0.0292 1.522 1681
11353  0.0286  1.672 2601
73 0.0274 0453 16

Incidently, the elliptic curve C(4105033?), having
the largest sha we have found to date (see Section
4B above), has GS = 0.01228 and dW = 3.1264.
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