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Doi, Hida, and Ishii have shown that the values of twisted ad-

joint L-functions L(1, Ad(f) 
 �) attached to modular forms f are

closely connected with discriminants of Hecke fields. Goto has

given a numerical example of this L-value for an elliptic cusp

form f of level 1 and weight 20. We shall show a method to

calculate the L-values, which is more effective than Goto’s, and

give new numerical examples.

1. INTRODUCTIONIn [Doi et al. 1998], theoretical and experimentalevidences have been given for the divisibility of thediscriminant of Hilbert modular Hecke �elds by thetwisted adjoint L-values of elliptic cusp forms ats = 1. Goto [1998] has given a numerical exam-ple of this L-value for an elliptic cusp form of level 1and weight 20. Using Hida's identity (Theorem 2.1),he reduced the computation of the L-value to thoseof Rankin products, which are more accessible by awork of Shimura. However, by high-dimensionalityof the space concerned, his calculation was limitedto weight 20 and level 1.In this paper, we shall show a way to reduce thedimension of the space involved by employing aninvolution operator. By extending the computationto higher weight, one can look into the case wherewe have two base-change lifts: one from level 1 andanother from the \Neben" space of the character �below. There could be two possibilties:
(1) The Hecke �elds of non-lifts is split into morethan 1 pieces; one for each lift so that the dis-criminant is divisible by the L(1;Ad(f) 
 �) ofeach f ;
(2) The Hecke �eld of the non-lift is a single �eldwith discriminat divisible by the product of two
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68 Experimental Mathematics, Vol. 9 (2000), No. 1L-values: one from level 1 and another from theNeben space.In the limit of our computation, (2) is always thecase. This is a unique new �nding in our work (apartfrom the computational advantage).We denote by Sk(N) the space of cusp forms ofweight k and level N . For a prime N such thatN � 1 (mod 4), we let F = Q (pN), and write� for the Legendre symbol �N �. For a primitiveform f 2 Sk(1) and the character �, we denote byL(s;Ad(f) 
 �) the twisted adjoint L-function off , which is, up to the shift: s 7! s + k � 1, thesymmetric square L-function de�ned in [Shimura1975]. By [Sturm 1989], it is known the L-valueL(1;Ad(f) 
 �)=��k+2hf; fi� is algebraic and con-tained inKf , whereKf is the algebraic number �eldgenerated by the Fourier coe�cients of f and hf; fiis the normalized Petersson inner product.For f = P1n=1 a(n)e2�inz 2 Sk(1), we denote byf� the twist of f by �, that is,f�(z) = 1Xn=1 �(n)a(n)e2�inz :We remark that f� 2 S0k(N 2), which is the spacegenerated by the primitive forms of level N 2. Wedenote by bf the base-change lift to GL(2)=F of theelliptic cusp form f . As in [Goto 1998] we can seethat the calculation of the L-value L(1;Ad(f)
�) isreduced to that of D(k�2; bf; bg ), D(k�2; f; g), andD(k � 2; f�; g). We shall show mainly the way tocalculate the value of D(k � 2; f�; g)=��khf�; f�i�.This calculation is reduced to that ofhf�; h0i=hf�; f�iby [Shimura 1976]. Here h0 is a cusp form in Sk(N 2),which is de�ned by (2{4) and (2{5) in the text.Taking the involution �N2 = � 0N2 �10�, we put h�0 =(h0 + h0kk�N2)=2. Then we can show h�0 is the el-ement of �S0k(N 2)��?, and hf�; h0i = hf�; h�0i (seeLemma 4.1). We note that if f 2 Sk(1) then f� iscontained in the subspace S0k(N 2)+ of S0k(N 2). Heresee (3{1) for S0k(N 2)" (" = +;�). So we can calcu-late the value in the case of higher weight.In fact, in the last section, we shall give numericalexamples of the special values of D(k � 2; f�; E�4;1)and the twisted adjoint L-values of L(1;Ad(f)
 �)for N = 5 and k = 22; 24.

2. PRELIMINARIESThough Hida's identity and some facts on the holo-morphic projection have been described in [Goto1998; Shimura 1976], for reader's convenience, werecall them in this section.We write e(z) = e2�iz. We denote by Z, Q , R , andC the ring of rational integers, the rational number�eld, the real number �eld, and the complex number�eld, respectively. The upper half complex plane isdenoted by H = fz 2 C j Im(z) > 0g:Let k and l be positive integers. For a cusp formf and a modular form g with Fourier expansionsf(z) = 1Xn=1 a(n)e(nz) and g(z) = 1Xn=0 b(n)e(nz);we putD(s; f; g) = 1Xn=1 a(n)b(n)n�s for s 2 C :We let N , � and F be as in the introduction.For a primitive form f 2 Sk(1) having the Fourierexpansion f(z) = P1n=1 a(n)e(nz), we de�ne thetwisted adjoint L-function associated with f byL(s;Ad(f)
 �)=Yp � (1� �(p)�p��1p p�s)(1� �(p)p�s)� (1� �(p)��1p �pp�s)��1for s 2 C , where the product is taken over all ratio-nal primes p, and�p + �p = a(p); �p�p = pk�1:
Theorem 2.1 (Hida). We suppose k > l, and let f 2Sk(1) and g 2 Gl(1) be primitive forms. Then foran integer m such that12 (k + l)� 1 < m < k; (2–1)the following identity holds:D(m; bf; bg)N 1=2�2khbf; bfi = c � D(m; f; g)�khf; fi � D(m; f�; g)�khf�; f�i� �L(1;Ad(f)
 �)�k+2hf; fi ��1 ;wherec = 22k(N + 1)(Nm0 � 1)B2;�Bm0N 2�(k)Bm0;� � hf�; f�ihf; fi :



Hiraoka: Numerical Calculation of Twisted Adjoint L-Values Attached to Modular Forms 69with m0= 2(m + 1) � k � l. Here Bm0 is the m0-thBernoulli number and Bm0;� is the m0-th generalizedBernoulli number associated with �.In our case, we know thathf�; f�ihf; fi = �N (k=2)�1(N + 1) + a(N)�� �N (k=2)�1(N + 1)� a(N)� � N � 1Nk(N + 1);see [Shimura 1976, Proof of Proposition 1]. Herea(N) is the N -th Fourier coe�cient of a primitiveform f in Sk(1).We consider the case k > l+2 and put m = k�2,then m satis�es the condition (2{1).Now we assume that l is an even integer greaterthan 2. For z 2 H, we de�neEl;1(z) = 2�(l) + 2 (2�i)l(l � 1)! 1Xn=1 �l�1(n)e(nz);E�l;1(z) = 2�1�(l)�1El;1(z);where � is the Riemann zeta function and �l�1(n) =P0<djn dl�1.For � > 0, we putE��;N2(z) = (1�N��)�1�E��;1(N 2z)�N��E��;1(Nz)�
(2–2)and de�ne a di�erential operator �� by�� = 12�i � �2iy + @@z� (z = x+ iy):We assume that k > l+4 and f belongs to Sk(N 2).We put � = k � l � 2. Since l > 2 and E�l;1 2 Gl(1),by [Shimura 1976, Theorem 2], we obtainD(k � 2; f;E�l;1) = t ��khf;E�l;1��E��;N2i: (2–3)Here t = t(N; k; l) = � 4k�1N(N + 1)3(k � l � 2)�(k � 3)!� :By [Shimura 1976], there exist unique elementsh0 2 Gk(N 2) and h1 2 Gk�2(N 2), satisfying thefollowing identity:E�l;1��E��;N2 = h0 + �k�2h1: (2–4)Then we havehf;E�l;1��E��;N2i = hf; h0i for every f 2 Sk(N 2)
(2–5)

andh0 = 12�i(k�2)� �l �E�l;1 � @@z E��;N2�� � @@z E�l;1 �E��;N2� ; (2–6)which is a cusp form, because a derivative of any(slowly increasing) holomorphic modular form is fastdecreasing.
3. THE INVOLUTION �For an integer M , we let W be the subspace ofSk(M) generated by all the functions of the formf (m)(z) = f(mz), for f(z) 2 Sk(M 0) with M 0 jM ,M 0 6=M , andm is a positive integer dividingM=M 0.Then we write S0k(M) for the orthogonal comple-ment of W in Sk(M) with respect to the Peterssoninner product.Hereafter in this section we assume that N is arational prime and k is an even integer. For � =�ac bd� 2 f� 2 GL2(R ) j det(�) > 0g, we putfkk�(z) = (det(�))k=2(cz + d)�kf(�(z));where z is the variable on H, so�(z) = (az + b)=(cz + d):Now for an integer M , we let ff1; : : : ; fdg be the ba-sis of consisting of primitive forms of S0k(M). Usingthis basis, for an integerM 0, we denote by S0k(M)(M 0)the space generated by ff (M 0)1 ; : : : ; f (M 0)d g. Then weknow that the space Sk(N 2) can be the following di-rect sum of subspaces as follows (see [Miyake 1989]):Sk(N 2) = S0k(N 2)� S0k(N)� S0k(1) �W;W = S0k(N)(N) � S0k(1)(N2) � S0k(1)(N):We remark that the space S0k(N 2) is orthogonal toits complement S0k(N)� S0k(1)�W . For an integerM , we put �M = � 0M �10�. Using �N2 , S0k(N 2) canbe decomposed as follows:S0k(N 2) = S0k(N 2)+ � S0k(N 2)�:HereS0k(N 2)" = ff 2 S0k(N 2) j fkk�N2 = "fg; (3–1)where " = +; �. Now, by [Atkin and Lehner 1970],the operator \f 7! fkk�N2" induces an involution ofSk(N 2). Since k is even, for f 2 S0k(N 2), we have(fkk�N2)k�N2 = (�1)kf = f . We obtain:
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Lemma 3.1. The operator \f 7! fkk�N2" induces thefollowing isomorphisms:S0k(N 2)" �! S0k(N 2)" (" = +;�);S0k(N) �! S0k(N)(N); S0k(N)(N) �! S0k(N);S0k(1) �! S0k(1)(N2); S0k(1)(N2) �! S0k(1);S0k(1)(N) �! S0k(1)(N):We let c(m; f) denote the m-th Fourier coe�cientof f at 1. By (2{4), (2{5), Lemma 3.1 and simplecalculation, we obtain:
Proposition 3.2. For the element h0 2 Gk(N 2) whichis de�ned in (2{4), we have the m-th Fourier coe�-cients of h0 and h0kk�N2 :c(m;h0) = C�mBla(m) +m(N��1)B��l�1(m)+ 2m�1Xi=1 c(i)�l�1(i)a(m�i)�;c(m;h0kk�N2)= N lC�mBla0(m) +m(N��1)B��l�1(m)+ 2m�1Xi=1 c(i)�l�1(i=N 2)a0(m�i)�;where a(n) = ���1(n=N)�N����1(n=N 2);a0(n) = ���1(n=N)� ���1(n);C = 2l�(k � 2)(N� � 1)BlB� ;c(i) = cm(i) = (k � 2)i� lm;���1(n) = �P0<djn d��1 if n is an integer ,0 otherwise.
4. AN EXPLICIT FORMULA OF D(k� 2; f, E�l,1)We continue with the notation of Sections 2 and3. We shall describe an explicit formula of D(k �2; f;E�l;1) for a primitive form f 2 S0k(N 2)+.
Lemma 4.1. Set h�0 = (h0 + h0kk�N2)=2. Then h�0 iscontained in the orthogonal complement of S0k(N 2)�in Sk(N 2), and we havehf; h0i = hf; h�0i (4–1)for every primitive form f 2 S0k(N 2)+ .

Proof. We let ff+1 ; : : : ; f+d+g and ff�1 ; : : : ; f�d�g be thebasis of consisting of primitive forms of S0k(N 2)+ andS0k(N 2)�, respectively. We put(f1; : : : ; fd0) = �f+1 ; : : : ; f+d+ ; f�1 ; : : : ; f�d��:Then ff1; : : : ; fd0g is the basis of consisting of prim-itive forms of S0k(N 2). We put simply f = f1. Sinceh0 2 Sk(N 2), we haveh0 = x1f + x2f2 + : : :+ xd0fd0 + g:Here xi 2 C (i = 1; : : : ; d0) and g 2 S0k(N)�S0k(1)�W . Then, by Lemma 3.1, we haveh0kk�N2 = x1f + x2f2 + : : : + xd+fd+� �xd++1fd++1 + � � � + xd0fd0�+ ~g;where ~g 2 S0k(N)� S0k(1) �W . So, we obtainh�0 = x1f + x2f2 + : : : + xd+fd+ + (g + ~g)=2;where (g + ~g)=2 2 S0k(N) � S0k(1) �W . Thus h�0 iscontained in the orthogonal complement of S0k(N 2)�in Sk(N 2). Therefore we obtain (4{1). �We put d = dimS0k(N 2)+ � S0k(N) � S0k(1). Then,by the same arguments as [Goto 1998], and also ourProposition 3.2 and Lemma 4.1, we obtain:
Proposition 4.2. We let p be a prime 6= N and l be aneven integer > 2. We assume that k > l + 4 and fis a primitive form belonging to S0k(N 2)+. And wedenote by � the p-th Fourier coe�cient of f . ThenD(k � 2; f;E�l;1)�khf; fi = t �  (�)'(�) ;where (�) = d�1Xi=0 � d�1Xj=i �d�jcj�i��i;'(�) = �0(�) = d�1Xi=0 ci(d� i)�d�i�1;t = t(N; k; l) = � 4k�1N(N + 1)3(k � l � 2)�(k � 3)!� ;�i = [(i�1)=2]Xr=0 �� i�1r �� � i�1r�1��pr(k�1)c(pi�2r�1; h�0);�(x) = dXi=0 cixd�i = �[2;+](x) ��[1](x) ��[0](x):Moreover , c(m;h�0) is the m-th Fourier coe�cient ofh�0; �[2;+](x), �[1](x), and �[0] are the characteristic



Hiraoka: Numerical Calculation of Twisted Adjoint L-Values Attached to Modular Forms 71polynomials of the Hecke operator T (p) in S0k(N 2)+,S0k(N), and S0k(1), respectively . In this situation weassume that �(x) has no multiple roots, and we take� i�1�1 � as 0.
Remark. The number x1 in the proof of Lemma 4.1is equal to  (�)='(�) in this proposition.We emphasize that d is almost a half of dimSk(N 2).
5. NUMERICAL EXAMPLESWe assume F = Q (p5). In this section we givetwo numerical examples of L-values L(1;Ad(f)
�),where f 2 Sk(1) is a primitive form and � = � 5�.By [Shimura 1971, Propositions 3.64 and 3.65], weremark that if f 2 Sk(1) then f� 2 S0k(N 2)+. In thefollowing examples, we use the same notation as inLemma 4.1 and Proposition 4.2.We �x p = 2.
Example 1. We let k = 22, l = 4, and f be a primitiveform belonging to S22(1). Then f� is a primitiveform belonging to S022(52)+. We shall obtain thespecial value D(20; f�; E�4;1)=��22hf�; f�i�.Now, in Proposition 4.2, we havet = t(5; 22; 4) = � 22338 � 52 � 72 � 11 � 13 � 17 � 19 :The characteristic polynomials of T (2) for each sub-spaces are given as follows:�[2;+](x)=(x�288)� (x3�1312x2�2780624x+2939762688)� (x4+2910x3�4542888x2�15642931840x�4309053579264)� (x7+737x6�10943402x5�8245654024x4+30199145968768x3+18103551357526016x2�19599947376572104704x�12132460755606042574848);�[1](x)=(x3+1312x2�2780624x�2939762688)� (x4�2910x3�4542888x2+15642931840x�4309053579264);�[0](x)=x+288:Since � = c(2; f�) = 288,x1 =  (288)='(288)= � 213 � 34 � 5 � 73 � 17 � 13963 � 21916913 � 89 � 173 � 313 � 2939 � 3617 � 11489 :

ThereforeD(20; f�; E�4;1)�22hf�; f�i= 236 � 7 � 13963 � 21916934 �5�11�132 �19�89�173�313�2939�3617�11489 :Next we show the L-valueL(1;Ad(f)
 �)=��24hf; fi�:Firstly, by an easy computation we haveD(20; f;E�4;1)�22hf; fi = 23236 � 5 � 72 � 11 � 13 � 17 � 19 � 3617 :
(5–1)On the other hand, in the same way as in [Doi andIshii 1994] we obtainD(20; bf ; dE�4;1)51=2�44hbf; bfi= 251 � 13963 � 219169315�58�72�112�132�172�192�71�457�3617�33092833 :
(5–2)Now we put g = 2�1�(�3)E�4;1. Then g is a primitiveform belonging to G4(1) and bg = 2�2�F (�3)dE�4;1. Inthis case, the constant c de�ned in Theorem 2.1 isgiven asc = 236 � 7 � 13 � 89 � 173 � 313 � 2939 � 3617 � 1148938 � 526 � 73 � 11 � 17 � 19 � 457 � 33092833 ;where a(5) = 21640950. Therefore, by Theorem 2.1,we obtainL(1;Ad(f)
 �)�24hf; fi = 249 � 7134 � 521 � 7 � 11 � 19 :We note that the discriminant of the �eld gener-ated by the Fourier coe�cients of \proper" Hilbertcusp form of weight (22; 22) with respect to GL(2)=Fis 5 � 71 � 2867327:For the primes 5 and 2867327, one �nds these primesappear in the numerator of L(1;Ad(f)
�) (see [Doiet al. 1998]). Here f is the \Neben" primitive cuspform with the character � = � 5�, level 5 and weight22.

Example 2. We take k = 24, l = 4 and let f be aprimitive form belonging to S24(1). Here we showthe special value D(22; f�; E�4;1)=��24hf�; f�i�. InProposition 4.2, we havet = t(5; 24; 4) = � 228311 � 53 � 73 � 11 � 13 � 17 � 19 ;



72 Experimental Mathematics, Vol. 9 (2000), No. 1The characteristic polynomials of T (2) for each sub-space are:�[2;+](x)=(x2+1080x�20468736)� (x3+666x2�7619376x�5728572416)� (x4�780x3�22815912x2�16729054720x+38396524609536)� (x8�3015x7�46537314x6+118994796720x5+643319168247936x4�1262140353147755520x3�2488682268041331933184x2+2550805516444321122877440x+1009109905157137608984231936);�[1](x)=(x3�666x2�7619376x+5728572416)� (x4+780x3�22815912x2+16729054720x+38396524609536);�[0](x)=x2�1080x�20468736:It has been known from the time of Hecke thatKf = Kf� = Kf̂ = Q (p144169):For � 2 Kf , we put N(�) = NKf=Q(�). By Propo-sition 4.2, we obtainN �D(22; f�; E�4;1)�24hf�; f�i �= 278�p1�p2311�53�73�112�132�19�313�8292�51672�q20�q1�q2�q3 ;where we have given names to several primes:p1 = 23820607970513;p2 = 5324628462248993;q0 = 43867;q1 = 144169;q2 = 80311577;q3 = 136379767:From this we can compute the special valueL(1;Ad(f)
 �)=��26hf; fi�:In the same fashion as for (5{1) we haveN �D(22; f;E�4;1)�24hf; fi �= 274 � 73312 � 55 � 74 � 116 � 132 � 17 � 19 � q20 � q1 ;

and just as for (5{2) we haveN  D(22; bf ; dE�4;1)51=2�48hbf; bfi != 2143�73�p1�p2330�517�710�119�134�172�193�412�109�p0�q20�q1�q24 ;where in addition we have setp0 = 54449;q4 = 317680421579:In this case the constant c in Theorem 2.1 isN(c) = 280 � 313 � 8292 � 51672 � q02 � q2 � q3314 � 552 � 75 � 113 � 13 � 172 � 192 � 232 � 412 � q42 ;where a(5) = 36534510 � 180480p144169. Thus weobtainN �L(1;Ad(f)
 �)�26hf; fi �= 281 � 109 � 5444939�545�72�112�13�17�19�232 �144169 :By [Doi and Ishii 1994], we note that the discrimi-nant of the �eld generated by the Fourier coe�cientsof \proper" Hilbert cusp form of weight (24; 24) withrespect to GL(2)=F is5 � 109 � 54449 � 15505829:Here again the primes 5 and 15505829 appear in thenumerator of L(1;Ad(f) 
 �) for the Neben cuspform f with the character � = � 5�, level 5 andweight 24 (see [Doi et al. 1998]).
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