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We consider the doubling map T : z + z? of the circle. For
each T-invariant probability measure p we define its barycentre
b(u) = fs1 zdu(z), which describes its average weight around
the circle. We study the set € of all such barycentres, a com-
pact convex set with nonempty interior. Its boundary 02 has a
countable dense set of points of nondifferentiability, the worst
possible regularity for the boundary of a convex set. We explain
this behaviour in terms of the frequency locking of rotation num-
bers for a certain class of invariant measures, each supported on
the closure of a Sturmian orbit.

1. INTRODUCTION

A recurring theme in the study of chaotic dynamics
is the occurrence of nonsmooth phenomena (such as
fractal attractors and irregular conjugacies), even
when the system itself is smooth. Such nonsmooth
behaviour has been observed even in the simplest of
dynamical systems, one-dimensional discrete maps.

In this article we describe some experimental work
leading to a new example of nonsmooth behaviour,
associated to arguably the simplest model of chaotic
dynamics, the doubling map z — 2% of the unit
circle in the complex plane. This map has a com-
plicated orbit structure, an abundance of invariant
sets, and hence a highly nontrivial set M of invariant
probability measures (a measure y is T-invariant if
u(T=*A) = u(A) for all Borel subsets A). Indeed
the behaviour described in this article is further tes-
timony to the complicated nature of M.

Our problem is geometrical. We consider the most
natural two-dimensional projection of M, given by
taking the barycentre (or, equivalently, the first mo-
ment) b(p) = [ zdu(z) of each measure p. Since
M is weak* compact and convex [Walters 1982], the
barycentre set = b(M) is a compact convex sub-
set of the unit disc, and one easily checks that it
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has nonempty interior. The convexity of {2 means
it is completely determined by its extremal points
(those not expressible as a convex combination of
other points). It is natural to ask questions about
these extremal points, and about the boundary 0f).

Question 1.1. What are the points on the bound-
ary? The only immediately obvious point is the
fixed point 1, which supports a Dirac measure.

Question 1.2. What are the smoothness properties of
00?7 Is it smooth? Piecewise smooth? Piecewise
linear?

Question 1.3. Which invariant measures have bary-
centres on 927 Do such boundary measures share a
common structure?

Question 1.4. Is each point on 92 the barycentre of
a unique measure?

Question 1.5. What are the ergodic properties of
boundary measures? In particular, do such mea-
sures have positive entropy? Zero entropy?

It turns out that €2 is strictly convex, but that 9
is highly nonsmooth. In fact 02 has a countable
dense set of points of nondifferentiability. This is the
most pathological possible behaviour for the bound-
ary of a convex planar set [Royden 1988]. Moreover,
there is a fascinating parametrisation of 92, which
explains this nondifferentiability in a way reminis-
cent of the frequency locking of rotation numbers
observed in parametrised families of degree-one cir-
cle maps.

The parametrisation of 92 is by a remarkable one-
parameter family of zero entropy measures known
as Sturmian. A point lies on the boundary of 2
if and only if it is the barycentre of a Sturmian
measure. There are many ways of defining Stur-
mian measures, the original (purely symbolic) def-
inition going back to [Morse and Hedlund 1940].
For our purposes the most pertinent characterisa-
tion of Sturmian measures is the following [Bullett
and Sentenac 1994]: a T-invariant measure is Stur-
mian if and only if its support is completely con-
tained within some closed semicircle.

In fact this support is always a rather thin set.
It is either finite, or a Cantor set of zero Hausdorff
dimension. Combinatorially, the dynamics on this
support is a rotation [Bullett and Sentenac 1994],

so the measure can be assigned a rotation num-
ber between 0 and 1. This rotation number, which
parametrises the family of Sturmian measures, is ra-
tional precisely when the support of the measure is
finite. If the rotation number is irrational, then the
support is contained in a unique closed semicircle
[)\ — i, A+ ﬂ If, however, the rotation number is
rational, then there exists [\, A™] such that the sup-
port is contained in [)\—i, )\—i—ﬂ forall A € [A—, \T].
This phenomenon, where the pre-image of a ratio-
nal rotation number is a nontrivial parameter-space
interval, is known as frequency locking.

The relation to the boundary of the barycentre
set is the following. Let w(6) denote the barycentre
with maximal component in the 276 direction (that
is, whose projection to the line through the ori-
gin making angle 270 with the positive real axis is
maximal). This defines a parametrisation of 9 by
the angle of an outward-pointing normal. Now if
w € 08 is a point of nondifferentiability, then its
pre-image under this parametrisation is a whole in-
terval in f-space. That is, the parametrisation locks
at the value w.

Below we state more precisely the main result
about 0. This was first conjectured in [Jenkin-
son 1996]. A reduced form of the main result was
also conjectured by [Hunt and Ott 1996], who gave a
heuristic argument for the support of the boundary
measures having zero Hausdorff dimension. Very re-
cently the main result has been proved by [Bousch
1998], who at the same time introduced an arsenal
of techniques applicable to similar ergodic optimisa-
tion problems. In this article, an hors d’ceuvre for
the main (fish!) dish of [Bousch 1998|, we describe
some of the experimental work leading to the main
result, and draw out the parallels with frequency
locking.

Main Result. Let T : z — 2? be the doubling map of
the circle, and let ) be the corresponding barycentre
set.

Q is strictly conver, and its boundary 002 has a
countable dense set of points of nondifferentiability.
The set of boundary measures (those whose bary-
centres lie on 0Q2) is precisely the set of Sturmian
measures. w € 0S) is a point of nondifferentiability
if and only if it is an atomic Sturmian measure.
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In Section 2 we describe our experimental approach,
and the results it gave. In Section 3 we interpret
these results in terms of Farey fractions. In Sec-
tion 4 we take a closer look at Sturmian measures,
their various characterisations, and their parametri-
sation by rotation number. In Section 5 we give
the frequency locking analogy, and in Section 6 de-
scribe how this causes the nondifferentiability on the
boundary 0f2.

2. THE APPROACH

As well as the multiplicative circle S* C C, it will
also be convenient to work with the additive circle
K = ]0,1), with addition defined modulo one, so
that the doubling map becomes T'(z) = 2z (mod 1).
We let O(z) denote the T-orbit of a point x € K.
However, our measures p € M will always be given
on S' C C, so that barycentres b(u) lie in the unit
disc in C.

We will also use the symbolic model of the dou-
bling map, obtained by associating each x € K with
its binary expansion. Periodic points for 7' corre-
spond to periodic sequences in {0,1}". For con-
venience we represent such sequences by the finite
repeated block which defines them. For example,
the period-2 point % has symbolic representation
010101010101. .., which we abbreviate to simply 01.
In fact we will use a single block to represent a
whole periodic orbit —we simply use the block cor-
responding to the smallest point in the orbit. So,
for example, 01 represents the orbit {%, %} T has
precisely 2" — 1 periodic points of period n, each of
the form j/(2"—1) for some 0 < j < 2" — 2.

In this section we calculate the barycentres of
those invariant probability measures concentrated
on single periodic orbits. Each periodic orbit sup-
ports a unique such measure, so without ambiguity
we will talk of the barycentre corresponding to a
particular periodic orbit. For example, b(01) will
denote the barycentre of the invariant measure sup-
ported on the orbit {%, % (which has symbolic rep-
resentation 01). Such atomic measures are weak*-
dense in M, so the corresponding barycentres are
dense in 2. By computing sufficiently many we ex-
pect to obtain a reasonable approximation to 2. If

has period n under 7', then the corresponding bary-
centre is the trigonometric sum

n—1
l § e27r1J2Tz .
n

r=0

Starting with period 1 we systematically increase
the period and calculate the barycentres of all peri-
odic orbits of a given (least) period n. We performed
this for all n < 19, thereby considering around 22°
periodic points.

The symmetry of Q about the real line (due to
the fact that T' commutes with complex conjuga-
tion) halves the task, meaning we can ignore all
barycentres with negative imaginary part. More-
over, the convexity of 2 means that at any stage
we are only interested in those barycentres which
extend the convex approximation we already have.

We can compute the first few barycentres by hand.
The fixed point 0 has barycentre 1 in the complex
plane. The period-2 orbit {%, %} has barycentre —%.

The barycentre of the period-3 orbit {%, %, %} is
2mi/T | pAmi/T 4 o8mi/T 1 V7.

3 ~ 6 6
—0.1666666 + 0.44095851.

12

(We ignore the conjugate orbit {£, 2,2}, which just

gives conjugate barycentre). So far each new bary-
centre has extended our convex approximation, but
for period 4 we have:

Symbolic code Barycentre
0001 0.125 + 0.4841229 i
0011 —0.25

Although 5(0001) does extend our convex region,
it is clear that b(0011) does not (since it lies between
b(0) and b(01)). We therefore “throw away” the
point b(0011) —that is, we can freely ignore it when
considering whether subsequent barycentres extend
the region of convexity.

For period 5 we have:

Symbolic code Barycentre

00001 0.3083872 + 0.4435991
00011 —0.0786801 + 0.1745122¢
00101 —0.329707 + 0.28768961

A short calculation shows that whereas 5(00001)
and b(00101) do extend our convex region, b(00011)
does not.
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For period 6 we have:

Symbolic code Barycentre

000001 0.4285381 + 0.3919765:
000011 0.0833333 + 0.2204793¢
000101 —0.124271 4 0.3709144:
000111 0

001101 —0.3042671 4 0.0210621¢

Of these barycentres, only 5(000001) extends our
region of convexity.

Let us take stock. So far we have a polygon whose
extremal points are the barycentres of those peri-
odic orbits with symbolic codes 0, 01, 001, 0001,
00001, 00101, and 000001. AIl these barycentres
have a chance of being bona fide extremal points
of €, though we don’t know for sure whether they
are. It is possible (in theory) that some of these
points will be “outflanked” —that we will calculate
new barycentres which will contain some of the old
extremal barycentres in their convex hull. So far
we note that this has not happened —any bary-
centre which has been extremal at the n'* stage has
remained extremal at later stages. In fact in our
subsequent calculations (up to and including period
19) we continue to observe this “persistence” of ex-
tremal points. This is the first hint of some sort of
order in our observations. We might start to believe

0.4}

0.2

that a barycentre which is extremal at the n'" stage
is in fact a bona fide extremal point of €.

What about the symbolic codes giving extremal
barycentres? So far we note that all codes of the
form 01 are extremal. In fact the only extremal
codes not of this form are the fixed point 0 and the
period-5 orbit 00101. No other noticeable patterns
have yet emerged.

Lastly, we note that already the calculations are
becoming somewhat laborious. The least of our
problems is that the trigonometric sums are becom-
ing longer. More pertinent is that the number of
periodic-n orbits is growing (exponentially fast).

Even more of a problem is that each new bary-
centre must be compared with previous ones to see
if it lies inside or outside the existing convex re-
gion — often this is a fairly delicate question, so we
need to work with high precision. For all subsequent
computations we used Mathematica.

In Figure 1 we plot the points obtained by con-
sidering orbits up to period 19, together with their
complex conjugates. There are 120 such points, two
of which lie on the real line.

Figure 1 strongly suggests that 02 is nondifferen-
tiable. At the points 1 and —% the nondifferentia-
bility seems particularly pronounced. Figure 1 also
suggests that 92 might in fact be piecewise linear.

0.4

-0.2 ¢

-0.4 |

FIGURE 1. The 120 extremal points of the nineteenth polygonal approximation to (2.
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However the picture is misleading. Sufficiently pre-
cise calculations reveal that the “almost collinear”
points on the boundary are not in fact collinear. In-
deed it will turn out that the boundary does not
contain any line segments.

3. THE FAREY PYRAMID

The next step in our investigation was to exam-
ine the symbolic codes corresponding to those bary-
centres which we believe to be extremal. We ob-
served that these codes seemed to be generated by
a symbolic concatenation process, which we now de-
scribe. If we start with the codes 0 and 01 (the par-
ents) we can concatenate to obtain 001 (the child),
which we now place in between 0 and 01. We then
repeat the process, concatenating each pair of ad-
jacent codes and then placing the child in between
each of its parents. So after the second stage we
have the five codes 0, 0001, 001, 00101, 01. Contin-
uing in this way we generate an infinite sequence of
“levels”, each level consisting of 2¥~! 4+ 1 codes in
(lexicographic) order.

We call the sequence of levels the Farey pyramid,
as it resembles the well-known method of construct-
ing Farey fractions (see [Hardy and Wright 1979],
for example).

The first four levels of the Farey pyramid are
shown in Table 1.

All the symbolic codes in the Farey pyramid are
finite, and represent periodic orbits of the doubling
map. Naturally this process also generates infinite
nonperiodic sequences if we concatenate infinitely
often, thus giving an extended Farey pyramid (the
infinite nonperiodic sequences “at infinity” together
with the finite codes in the Farey pyramid). The na-
ture of this process means that all sequences in the
extended Farey pyramid display a high level of self-
similarity. Indeed the sequence of finite codes lead-
ing down to an infinite code at infinity is analogous
to the sequence of continued fraction convergents
to an irrational number. This analogy can be made
precise if we replace each code by the frequency with
which the symbol 1 appears in it.

In fact, the way the Farey codes are generated (by
concatenation and interpolation) projects down to
the barycentre set — a barycentre child has complex
argument in between those of its barycentre parents.

Note that had we started with the symbolic codes
01 and 1 (this corresponds to coding the fixed point
with a 1 rather than a 0) and repeated the con-
catenation procedure, we would have obtained a dif-
ferent (extended) Farey pyramid. We call this the
conjugate (extended) Farey pyramid, since the codes
obtained represent orbits conjugate to those in the
(extended) Farey pyramid. In particular, the bary-
centres obtained are the complex conjugates of those
arising from the Farey pyramid.

4. STURMIAN ORBITS AND STURMIAN MEASURES

Let us give some alternative characterisations of the
sequences appearing in the extended Farey pyramid.

Definition 4.1. A sequence z = (1, 2y,...) € {0, 1}"

is said to be Sturmian if

(a) the number of 1’s in any two sub-blocks of the
same length differs by at most one, and

(b) it is recurrent (for all n, the length-n initial block
of z occurs infinitely often in z).

If this sequence is the symbolic code of a point = € K
then we say the orbit O(z) is a Sturmian orbit.

The simplest example of a non-Sturmian sequence
is the periodic sequence defined by the finite block
0011 (recall from Section 2 that this was the first
symbolic code which did not give an extremal bary-
centre).

Sturmian sequences were first studied by [Morse
and Hedlund 1940]. Since then a variety of ap-
plications has been discovered, and an impressive
body of literature has accumulated; see, for exam-
ple, the extensive bibliographies in [Berstel 1996;
Brown 1993]. One application is in coding circle ro-
tations. If §: K — K is rotation by angle «, then
the points 0 and 1 — « define a partition of the cir-
cle into two intervals, which we label 0 and 1. The
S-orbit of any point on the circle thus generates a
sequence of 0’s and 1’s, and this sequence turns out
to be always Sturmian. Another application is to
coding trajectories in square billiard systems, which
in turn is closely related to the notion of a cutting
sequence of a line in the plane [Series 1985]. Stur-
mian sequences are also important in language the-
ory. The nonperiodic Sturmian sequences have sub-
word complexity n + 1 (there are precisely n + 1
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Level
1
2 0
3 0 0001
4

01
001 01
001 00101 01

0 00001 0001 0001001 o001 00100101 00101 0010101 01

TABLE 1. Beginnings of the Farey pyramid.

subwords of length n), the minimal possible com-
plexity for a sequence which is not eventually pe-
riodic. Similarly, the periodic Sturmian sequences
have sub-word complexity n + 1 until this number
reaches the least period of the sequence, after which
the complexity function is constant.

In terms of the dynamics of the doubling map
we have the following characterisations of Sturmian
sequences [Bullett and Sentenac 1994].

Lemma 4.2. Let x € K, and let T : K — K be the
doubling map. The following statements are equiva-
lent.

(a) O(z) is a Sturmian orbit under T.

(b) The symbolic code for x belongs to either the ex-
tended Farey pyramid or the conjugate extended
Farey pyramid.

(c) The closure of the T-orbit O(x) is minimal (that
18, contains no proper closed T-invariant sub-
sets) and is contained in some closed semicircle
6,04+3] CK.

(d) The closure of the T-orbit O(x) is minimal, and
the orbit is ordered. That is, if a, b, ¢ are points
on O(z), then their cyclic order around K is pre-
served by T.

We remark (see [Bullett and Sentenac 1994]) that if
O(x) is a nonperiodic Sturmian orbit contained in
the semicircle [, + 3], then both of the endpoints
d, 6+ 3 belong to the orbit. We can then define the
symbolic code of O(x) to be the symbolic code of the
smaller (as elements of [0,1)) endpoint. We will be
interested in invariant measures supported on the
closure of a Sturmian orbit. We have the following
result.

Lemma 4.3. The closure of a Sturmian orbit has
zero Hausdorff dimension. It supports a unique T'-
invariant probability measure. This measure, which
we will call a Sturmian measure, is ergodic and has
zero entropy. With the trivial exception of the Dirac

measure concentrated on the fixed point, a Sturmian
measure is not weak-mizing.

Proof. Zero Hausdorff dimension is proved in [Bul-
lett and Sentenac 1994]. Unique ergodicity and the
other ergodic properties follow from the fact that
the shift acting on the closure of a Sturmian orbit
is conjugate (off a countable set) to a circle rotation
[Morse and Hedlund 1940]. O

If z € K has symbolic code (z, x, ..
its rotation number

.), we define

provided this limit exists. If O(z) is Sturmian then
the ordered property (see Lemma 4.2) means that
p(z) is a rotation number in the usual sense of the
word, since O(z) has the same combinatorial order
as a circle rotation by angle p(z). Indeed we can
associate a continuous degree-one circle map to O(x)
in a natural way —see the discussion at the end of
Section 5. By Lemma 4.3 we can unambiguously
assign a rotation number to each Sturmian measure.

In fact the rotation number defines a one-to-one
correspondence between Sturmian orbits and the in-
terval [0, 1], with rationals corresponding precisely
to the periodic Sturmian orbits. The only slight
ambiguity concerns the fixed point, which has two
possible codings, though this is unimportant. The
interval [0, %] corresponds to the extended Farey
pyramid, while [%, 1] corresponds to the conjugate
extended Farey pyramid.

5. FREQUENCY LOCKING OF ROTATION NUMBERS

Now we describe the frequency locking of rotation
numbers of Sturmian orbits as we vary the semi-
circle to which they belong. For A € K, let C\ =
[)\ — i, A+ i] C K be the closed semicircle centred
around A. Bullett and Sentenac [1994] proved the
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following results, following earlier work [Gambaudo
et al. 1984; Veerman 1986; 1987].

Proposition 5.1. Fach semicircle C C K contains a
unique minimal closed T-invariant set Ay. This set
is the closure of some Sturmian orbit.

Proposition 5.2. Let A, denote the unique minimal
closed T-invariant set contained in the semicircle
Cy = [)\ — i, A+ i] C K. There is a sequence of
disjoint nontrivial intervals [A\; ,\]] C K with the
following properties.

(@) U2, (A7, A) has full Lebesgue measure. Its com-
plement is a Cantor set of zero Hausdorff dimen-
s10M.

(b) There is a one-to-one correspondence between
intervals in the sequence and periodic Sturmian
orbits. If[\; , \[] is an interval, and O is the cor-
responding periodic Sturmian orbit, then Ay = O
for all X € A7, \[].

(c) The points of (U, [\, AT])" are in one-to-one
correspondence with nonperiodic Sturmian orbits.
If X e (U2, [\ A7), and O is the correspond-
ing nonperiodic Sturmian orbit, then A, = O.

(d) The rotation number map X\ — p(A,) is a weakly

13

increasing continuous surjection of [—Z, Z] onto

[0,1]. It is constant on each interval [\; , \]].
The map A — p(A,), which by Proposition 5.2 is
continuous, weakly monotonic, locally constant on
a set of full measure but not globally constant, is
called a dewvil’s staircase. The phenomenon of fre-
quency locking of rotation numbers at rational val-
ues is well-known in the theory of parametrised fam-
ilies of degree-one circle maps. If S, is such a param-
etrised family then certain mild conditions ensure
that the map associating rotation numbers (in the
usual sense of the term) to parameter values is a
devil’s staircase, and that the inverse image of each
rational value is a nontrivial interval. Further de-
tails can be found in [Katok and Hasselblatt 1995,
p. 392; Newhouse et al. 1983]. The connection to
our situation arises because each A, is an orbit clo-
sure lying in a semicircle C\. The corresponding
T-orbit is therefore also an orbit of a certain contin-
uous degree-one map Sy. We simply define S, to be
the restriction of the doubling map on C, and con-
stant otherwise. For further details, see [Boyland
1986] or [Veerman 1986].

6. A PARAMETRISATION OF THE BOUNDARY

We will parametrise the boundary of the barycentre
set () by # € K, which we think of as indexing a
normal to 9 in the 276 direction. We let ¢(f) =
SUP,eq {w, ™) denote the maximal component in
the 276 direction, and

w(f) ={w € Q: (w,e™’) = q(6)}

the set of barycentres achieving this maximum. Here
(-,-) is the usual inner product.

Clearly any w(f) must lie in 92, and is either a
point or a line segment, and conversely any point of
0 must belong to some w(6).

Note that g(0) = sup,cy [ fodp, where fo(z) =
cos2m(z — 0) = (e*™® e*™%). This variational char-
acterisation of ¢(#) motivates the following defini-
tion.

Definition 6.1. For a given continuous function f :
K — R we say the measure m € M is f-mazimal if

[ fdm = sup,c [ fdp.

The weak* compactness of M ensures that a maxi-
mal measure always exists, though in general it need
not be unique. From the above discussion we clearly
have the following.

Lemma 6.2. The barycentre b(p) lies on the boundary
O if and only if p is fo-mazimal for some 6 € K.

We now consider the smoothness properties of 9€2,
and relate them to the behaviour of the parametri-
sation € — w(#).

We will consider separately the two symmetric
halves of 0f2, thinking of them as the graphs of two
real-valued functions. Let 9Q = 0Q" U 0Q2~, where

00" ={w € 90 : Imw > 0},
0N ={w e o : Imw < 0}.

Let gt : QNR — R be the function whose graph is
o0t (thinking of Q" as lying in R?). The convex-
ity of Q means that g* is a concave function, so by
[Royden 1988], page 113, its left and right deriva-
tives exist at every point, with the left derivative
always greater than or equal to the right derivative.
Moreover, the left and right derivatives are equal to
each other except on a countable set. Analogous
differentiability properties hold for the convex func-
tion g- = —g* whose graph is 9. In particular,
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gt and g~ both have at most countably many points
of nondifferentiability.

We say that w = c+ig*(c) or w = c+ig (c) is a
point of differentiability of ) if ¢ € QNR is a point
of differentiability of g™ or g, respectively. Other-
wise we say that w is a point of nondifferentiability.
The above analysis omits a discussion of the possi-
ble differentiability at the points 1, —%, where 952
intersects the real line. This could easily be done by
considering 9 = 02" U 0§, say, where

0N ={w € 90 : Rew > 0},
00 = {w € 90 : Rew < 0},

and introducing functions g, ¢' : QNiR — R whose
graphs are 0927, Q! respectively. In fact it turns out
that both 1 and —% are points of nondifferentiability
of 90Q).

With these definitions, we see that 02 can have
at most countably many points of nondifferentia-
bility. If w € 0 is a point of nondifferentiability
then the left and right gradients to 92 at w do not
agree, so that 9€) does not have a unique tangent
at w. Rather, there is a nontrivial interval [§~,67]
such that, for any 6 € [#—,0"], the line through w
of gradient tan(27wf + 7/2) is a tangent to 092. In
other words, 6 — w(f) is constant on the interval
[0~,07]. So bad behaviour (nondifferentiability) of
082 corresponds to good behaviour (local constancy)
of § — w(f). In terms of the parametrised family
fo, a sufficient (but a priori not necessary) condition
for the local constancy of 6 — w(f) on [#~,07] is the
existence of some measure p which is the unique fy-
maximal measure for all § € [#—,607].

This discussion, and the strong analogy with Prop-
osition 5.2, led us [Jenkinson 1996] to conjecture the
following theorem, which in particular implies the
main result described in the introduction. This the-
orem was proved by [Bousch 1998]. As notation, if
O is a Sturmian orbit, then s will denote the corre-
sponding Sturmian measure (the unique 7-invariant
probability measure supported on 6).

Theorem 6.3. Let T : K — K be the doubling map
of the circle, and let fo : K — R be the family of
functions defined by fo(x) = cos 2w (x —0). There is
a sequence of disjoint nontrivial intervals [0, ,0;] C
K with the following properties.

(a) U;2,(6;,6) has full Lebesque measure. Its com-
plement in K is a Cantor set of zero Hausdorff
dimension.

(b) There is a one-to-one correspondence between
intervals in the sequence and periodic Sturmian
orbits. If [0;,0]] is an interval, and O is the
corresponding periodic Sturmian orbit, then the
Sturmian measure po s the unique fo-maximal
measure for all 6 € [0 ,0]].

(c) The points of (U-.[0;,6; )C are in one-to-one
correspondence with nonperiodic Sturmian orbits.
If9 e (U;;[e;, 9;“])6, and O is the corresponding
nonperiodic Sturmian orbit, then the Sturmian
measure o 1s the unique fy-maximal measure.

(d) Let Op be the Sturmian orbit corresponding to
parameter value 8. There is a length one ordered
interval I C K such that the map 0 — p(Oy)
is a weakly increasing continuous surjection of 1
onto [0,1]. It is constant on each of the intervals
167,07

If in this theorem we replace the family of func-
tions f, by the family xc, of characteristic func-
tions of the semicircles Cy = [)\ — i, A+ i], then
we have precisely Proposition 5.2, where the ordered
interval I is [—1,2]. One might imagine that the
intervals of constancy of 6 — p(Qy) are precisely
the same as those of A — p(A,), so that the max-
imal measure for any f; is the unique one whose
support lies in the semicircle where fy is positive.
However, this is clearly not the case. For example,
the fixed point 0 € K is the unique Sturmian orbit
contained in the semicircle Cy for all A € [—1,1].
Thus the map A — p(A,) is constant on the interval
[—i, ﬂ In contrast, the map 6 — p(Qy) is clearly
not constant on the whole of [—i, ﬂ To see this
just note that the Dirac measure concentrated on
the fixed point z = 0 is maximal for the function
fo(xz) = cos2mz, while it is certainly not maximal
for f1(z) = sin2rz.

Bullett and Sentenac [1994] show that if an or-
dered periodic orbit has (rational) rotation number
p/q (in lowest terms), then the corresponding inter-
val of constancy has length 1/(2(27—1)). An open
problem is to describe the scaling behaviour of the
lengths of the intervals of constancy of 8 — p(Oy).
Below we give the intervals of constancy correspond-
ing to the symbolic codes on the first three levels of
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the Farey pyramid. The intervals corresponding to
the conjugate codes (obtained by swapping 0’s and
1’s) in the conjugate Farey pyramid are obtained by
reflecting in the mid-point % of our parameter cir-
cle K. The codes 0 and 01, whose corresponding
orbits are symmetric in the circle, have intervals of

constancy which are also symmetric.

Code Interval of Constancy Length

0 [—0.149550, 0.149550) 0.2991

01 [ 0.420148, —0.420148| 0.159704

001 [ 0.279199, 0.367215] 0.088016

0001 [ 0.216946, 0.266213] 0.049267

00101 [ 0.374417, 0.404815] 0.030398
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