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The identity�
(x2�85)2�4176

�2�28802 = (x2�12)(x2�72)(x2�112)(x2�132),

discovered by R. E. Crandall, allows the evaluation of a product

of 8 integers by a succession of 3 squares and 3 subtractions.

The question arises whether there exist formulas like Crandall’s

with more than 3 nested squares. It will be shown that this is not

the case; however, there are infinitely many formulas of length 3.

1. INTRODUCTIONCrandall [1996, p. 109] found the following interest-ing identity:�(x2� 85)2 � 4176�2� 28802= (x2 � 12)(x2 � 72)(x2 � 112)(x2 � 132): (1–1)The potential signi�cance of this identity, which re-sembles Horner's scheme for polynomial evaluation,lies in that a product of eight integers on the rightof (1{1) can be evaluated as a succession of threesquares and three subtracts.Crandall [1996, p. 109] also asks whether there ex-ist formulas like (1{1) with more than three (say k)nested squares which would produce a product of 2kintegers, or linear factors of the form x�aj, aj 2 N .Such formulas would have important consequencesfor the fast computation of factorials, with furtherconsequences in the �eld of factorization, etc. (For ageneral discussion of factorial evaluation, see [Cran-dall 1996; Crandall et al. 1997].)It is the main purpose of this note to show thatsuch larger formulas cannot exist; this will be donein Section 3. However, we will �rst see, in Section2, that it is easy to give in�nitely many formulasof type (1{1), by means of sums of squares. Bymultiplying two or three such formulas together, onecan obtain expressions for products of a relativelylarge number of integers in arithmetic progression.
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2. NESTED SQUARES OF LENGTH 3The left-hand side of (1{1) can be factored in anobvious way. In fact, the two parts thus obtainedcan likewise be factored, and we get�(x2�85)2�4176�2�28802 == �(x2�85)2�4176+2880��(x2�85)2�4176�2880�= �(x2�85)2�362��(x2�85)2�842�= (x2�85+36)(x2�85�36)(x2�85+84)(x2�85�84)= (x2�72)(x2�112)(x2�12)(x2�132):Note that 72+112 = 12+132 = 2 �85. This indicatesthat we should get a similar formula whenever aneven number can be written as a sum of 2 squaresin at least two ways. Indeed: we have
Proposition 1. Suppose the even number n can be writ-ten in two di�erent ways as a sum of two squares ,say n = a21 + b21 = a22 + b22:Then��x2�n2�2��n24 � a22b22+a21b212 ��2��a22b22�a21b212 �2

= (x2�a21)(x2�b21)(x2�a22)(x2�b22): (2–1)This can be veri�ed by simple calculation, just as inthe example above. Also note thatn24 � a22b22 + a21b212 = 18�(a21 � b21)2 + (a22 � b22)2�and a22b22 � a21b212 = 18�(a21 � b21)2 � (a22 � b22)2�:To obtain examples for (2{1), we let N2(n) be thenumber of integral solutions (x; y) of x2 + y2 = nwith x > 0 and y � 0. Then it is well-known thatN2(n) = Yp�1(4)(1 + ordp(n)) (2–2)

if there are solutions at all, i.e., if prime factors p � 3(mod n) of n occur only to even powers (see [Irelandand Rosen 1990, p. 279], for example). Note thatin (2{2), (x; y) and (y; x) for x 6= y count as twodi�erent solutions. This means that the smallesteven n with two \essentially di�erent" solutions, i.e.,with N2(n) = 4, is n = 2 � 5 � 13 = 130, the next onebeing n = 2 � 5 � 17 = 170. Since 170 = 12 + 132 =72 + 112, (2{1) specializes to (1{1) in this case. For

n = 130 = 32 + 112 = 72 + 92 we get the smallerexample�(x2 � 65)2 � 1696�2 � 14402= (x2 � 32)(x2 � 72)(x2 � 92)(x2 � 112): (2–3)Table 1 shows the six smallest values of even n withtwo di�erent representations, along with the solu-tions a1; a2; b2; b1. It lists only those representationsfor which all the ai; bi are distinct and nonzero, andhave no factors in common. (Otherwise the right-hand side of (2{1) would have repeated factors, or(2{1) could be reduced to an equivalent formula withsmaller coe�ciencts).
n a1, a2, b2, b1 A B130 3, 7, 9, 11 1696 1440170 1, 7, 11, 13 4176 2880250 5, 9, 13, 15 5968 4032290 1, 11, 13, 17 10656 10080370 3, 9, 17, 19 20896 10080410 7, 11, 17, 19 15696 8640

TABLE 1. The six smallest values of n that have twonontrivially distinct representations as a sum of twosquares, n = a21+b21 = a22+b22. The last two columnsgive the values of A = 14n2 � 12 (a22b22 + a21b21) andB = 12 (a22b22 � a21b21) in formula (2{1).
We see from Table 1 that if we multiply the for-mulas for n = 250 and for n = 410, we obtain(x� 19)(x� 17) : : : (x� 5)(x+5)(x+7) : : : (x+19):This can be completed to form a product of 20 inte-gers in arithmetic progression by way of the identity(x� 3)(x� 1)(x+ 1)(x+ 3) = (x2 � 5)2 � 16;which is a special case of a shorter and less interest-ing analogue of (2{1).

3. NESTED SQUARES OF LENGTH 4If we follow the construction that led to (2{1), itis clear that we need two more distinct solutions ofn = x2 + y2, sayn = a23 + b23 = a24 + b24:
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Then we obtain an exact analogue of (2{1), withsubscripts 3 and 4 instead of 1 and 2. Now in orderfor the two to combine to give a formula of the form���x2� n2�2�A�2�B�2�C2 = 8Yj=1(x2� c2j); (3–1)

for integers A;B;C; c1; : : : ; c8, it is necessary (andsu�cient) thatn24 � a22b22 + a21b212 = n24 � a24b24 + a23b232 ;or, equivalently,a21b21 + a22b22 = a23b23 + a24b24: (3–2)Our aim is to show that (3{2) cannot have a solutionin a1; : : : ; a4; b1; : : : ; b4 with a2i + b2i = n for i =1; : : : ; 4. To do this, we de�ne the di�erenced := a21b21 + a22b22 � a23b23 � a24b24: (3–3)Note that d is not uniquely determined but dependson how the four solutions (ai; bi) of n = x2 + y2 arecombined to give the formulas (2{1) and its analoguewith subscripts 3 and 4. In fact, up to sign, we getthree di�erent values of d by combining the fourterms according to the patterns++�� ; +�+� ; +��+ :However, the nonvanishing of d is independent ofthis. In fact:
Proposition 2. No quadruple f(ai; bi), i = 1; : : : ; 4g ofdistinct solutions of n = x2 + y2 satis�es (3{2).
Proof. By (2{2) we can write n = n1n2, where n2 hasat least one representation n2 = a2 + b2 and n1 hasat least two essentially distinct representationsn1 = c21 + d21 = c22 + d22; (3–4)which combine, by way of the well-known formula(a2 + b2)(c2j + d2j) = (acj � bdj)2 + (adj � bcj)2;to give the four solutions (ai; bi) of the proposition.Hence with (3{3) we get

d = �(ac1+bd1)(ad1�bc1)�2+�(ac1�bd1)(ad1+bc1)�2��(ac2+bd2)(ad2�bc2)�2��(ac2�bd2)(ad2+bc2)�2= �c1d1(a2�b2)�ab(c21�d21)�2+�c1d1(a2�b2)+ab(c21�d21)�2��c2d2(a2�b2)�ab(c22�d22)�2��c2d2(a2�b2)+ab(c22�d22)�2= 2c21d21(a2�b2)+2a2b2(c21�d21)�2c22d22(a2�b2)2�2a2b2(c22�d22)2= 2c21d21(a2+b2)2+2a2b2(c21+d21)2�16a2b2c21d21�2c22d22(a2+b2)�2a2b2(c22+d22)+16a2b2c22d22= 2(c22d22�c21d21)(8a2b2�n22):Now we have c21d21 6= c22d22, since otherwise the tworepresentations in (3{4) would be the same. Also,8a2b2 � n22 6= 0since both 4a2b2 and n22 are squares while 2 is not.Hence d 6= 0, which completes the proof. �
4. CONCLUDING REMARKS

1. Although a formula of the type (3{1) is not pos-sible, there are formulas that are \close" to (3{1)in the following sense: If the even integer n hasfour essentially distinct representations as sum oftwo squares, then it is not di�cult to show, usingthe methods of this note, that a product of 16 linearfactors (as on the right of (3{1)) can be written asnested squares of length four (as on the left of (3{1)),plus a certain polynomial of degree four with integercoe�cients, as \error term".
2. More generally, given 2k essentially di�erent re-spresentations of n, a product of 2k+2 linear factorscan be written as nested squares of length k+2, withan error term of degree 2k+2 � 12. These formulas,however, become increasingly unpleasant.
3. The di�erences d, as de�ned in (3{3), have someinteresting arithmetical properties. For instance, itcan be shown that d is always divisible by 1152 =27 � 32, and by 28800 = 27 � 32 � 52 whenever 5 doesnot divide n.



372 Experimental Mathematics, Vol. 9 (2000), No. 3

REFERENCES[Crandall 1996] R. E. Crandall, Topics in advanced sci-enti�c computation, TELOS, The Electronic Libraryof Science, Springer, New York, 1996.[Crandall et al. 1997] R. Crandall, K. Dilcher, and
C. Pomerance, \A search for Wieferich and Wilsonprimes", Math. Comp. 66:217 (1997), 433{449.[Ireland and Rosen 1990] K. Ireland and M. Rosen, Aclassical introduction to modern number theory, 2nded., Graduate Texts in Math. 84, Springer, New York,1990.

Karl Dilcher, Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5,Canada (dilcher@mathstat.dal.ca)
Received August 27, 1999; accepted in revised form October 31, 1999


