ON THE INVERSION OF LAGRANGE-DIRICHLET THEOREM*

VINICIO MOAyro AND PIERO NEGRINI

Dipartimento di Matematica dell’Università di Trento, 38050 Povo-Trento, Italy

(Submitted by: Luigi Salvadori)

Abstract. The inversion of the Lagrange-Dirichlet theorem is proved under the hypothesis that the potential function \(U \) of the acting force is \(h \)-differentiable, \(h > 3 \), and the lack of a local maximum of \(U \) at the equilibrium position is recognizable by means of the non-vanishing terms with lowest degree in the expansion of \(U \). This result extends a previous one relative to infinitely differentiable potential functions and is obtained by using known results concerning the existence of invariant stable manifolds.

Introduction. The Lagrange-Dirichlet theorem, as is well known, provides a sufficient condition for the stability of an equilibrium position of a conservative mechanical system. Precisely, let \(S \) be a holonomic mechanical system with a finite number \(n \) of degrees of freedom and let \(q = (q_1, \ldots, q_n) \) be a system of Lagrangian coordinates for \(S \). Let us suppose that a conservative force with potential function \(U : \Omega \rightarrow \mathbb{R}, \Omega \) neighborhood of the origin of \(\mathbb{R}^n, U \in C^h, h \geq 2 \), acts on \(S \). Finally, let \(q = 0 \) be an equilibrium position of \(S \). The L.-D. theorem assures that \(q = 0 \) is stable if \(U \) has a strict local maximum at \(q = 0 \). As also is well known, the L.-D. criterium is not invertible. Therefore, the question arises: under what additional conditions the lack of a strict local maximum of \(U \) at \(q = 0 \) implies the instability of this equilibrium position. Starting from Liapunov, many answers have been given. We will quote some of the most relevant ones. Denoting by \(U^{[i]}, i = 2, \ldots, h, \) the term of degree \(i \) in the development of \(U \) in the neighborhood of the origin, the following criteria of instability hold. The equilibrium position \(q = 0 \) is unstable if one of the following conditions holds:

1) \(U_{[2]} \) does not have a maximum at \(q = 0 \) (Liapunov [7]);
2) \(h > 2, \exists \) a positive integer \(k, 2 < k \leq h, \) such that \(U_{[2]} = \cdots = U_{[k-1]} = 0 \) and \(U_{[k]} \) has a proper minimum at \(q = 0 \) (Liapunov [7]);
3) \(U \) is an homogeneous polynomial and does not have a maximum at \(q = 0 \) (Cetaev [1]);
4) \(U \) has a proper local minimum at \(q = 0 \) (Hagedorn [3]);
5) \(h > 2, \exists \) a positive integer \(k, 2 < k \leq h, \) such that \(U_{[2]} = \cdots = U_{[k-1]} = 0, q = 0 \) is an isolated critical point for \(U_{[k]}, \) and \(U_{[k]} \) does not have a maximum at \(q = 0 \) (Palamadov [8]);

Received October 20, 1988.

*Work performed under the auspices of the National Group of Mathematical Physics of C.N.R., and the Italian Ministry of Public Education (M.P.I.).

AMS Subject Classifications: 70K20, 34D05.
\begin{itemize}
\item[\text{i}6)\] U has a local minimum at $q = 0$ (Taliaferro [10]; the result was proved under the weaker assumption $U \in C^1$);
\item[\text{i}7)\] U is analytic and \exists\ a positive integer k, $k > 2$, such that $U[2] = \cdots = U[k-1] = 0$ and $U[k]$ does not have a maximum at $q = 0$ (Kozlov and Palamadov [4,5]).
\end{itemize}

The last result was obtained by proving the existence of a motion of S which tends asymptotically to the origin. Precisely, Kozlov and Palamadov construct a series, satisfying formally the equations of motion, whose general term tends to 0 as $t \to \infty$. By using the analyticity of U, they are able to prove, by means of a fixed point theorem, that the series is convergent and an asymptotic motion to the origin exists. In [6] Kozlov proved that the result holds also if $U \in C^\infty$ without being analytic.

In this paper we prove the existence of an asymptotic motion of S under the following condition:

\begin{itemize}
\item[\text{i}8)\] $h > 3$ and \exists\ a positive integer k, $2 < k < h$, such that $U[2] = \cdots = U[k-1] = 0$ and $U[k]$ does not have a maximum at $q = 0$.
\end{itemize}

The result has been achieved by constructing, by means of the equations of motion, a suitable autonomous differential system of the first order and by applying to this system known results about the existence of a stable manifold. We are able, also, to provide some estimates for the asymptotic motion existing under the condition \text{i}8). Finally, an extension of the result to the case in which gyroscopic forces act on S is given.

1. Preliminaries. Let

$$L = \frac{1}{2} (\dot{q}, A\dot{q}) + U(q)$$

be the Lagrangian function of S, $A \in C^h[\Omega, L(\mathbb{R}^n, \mathbb{R}^n)]$, $U \in C^h[\Omega, \mathbb{R}]$, $h > 3$, $A(q) = A^T(q)$, $A(q)$ positive definite $\forall q \in \Omega$. Without loss of generality, we may assume

$$A(q) = I + \tilde{A}(q), \quad \tilde{A}(0) = 0.$$

Let k be a positive integer, $2 < k < h$. It is easy to prove the following two lemmas.

Lemma 1.1. If $U[k]$ has in $e = (1,0,\cdots,0)$ a positive maximum on $S^{n-1} = \{q \in \mathbb{R}^n, \|q\| = 1\}$, then $U[k]$ has the following expression:

$$U[k](q) = (\chi/k)q_1^k + (1/2) \sum_{\alpha,\beta=2}^n v_{\alpha\beta}(q)q_\alpha q_\beta$$ \hspace{1cm} (1.1)

with $\chi > 0$ and $v_{\alpha\beta}(q) = v_{\beta\alpha}(q) \forall q \in \mathbb{R}^n$. Furthermore, the eigenvalues μ_α, $\alpha = 2, \cdots, n$, of the matrix $((v_{\alpha\beta}(e)))_{\alpha,\beta=2,\cdots,n}$ satisfy the condition

$$\mu_\alpha \leq \chi, \quad \alpha = 2, \cdots, n.$$ \hspace{1cm} (1.2)

Proof: We have

$$[\text{grad } U[k]]_{q=e} = \chi e,$$

and therefore, $(\partial U[k]/\partial q_\alpha)(e) = 0$, $\alpha = 2, \cdots, n$. Furthermore, since $U[k]$ has a positive maximum on S^{n-1} at e, we have $\chi > 0$ and

$$\sum_{\alpha,\beta=2}^n v_{\alpha\beta}(e) u_\alpha u_\beta \leq \chi$$

for any vector u tangent to S^{n-1} at e.

Lemma 1.2. Under the hypothesis of Lemma 1.1, the differential equation

$$\ddot{q} = \text{grad} U[k]$$ \hspace{1cm} (1.3)

in \mathbb{R}^n, has the solution $q = z(t)e$, with

$$z(t) = \sigma t^{-2/(k-2)}, \quad t > 0, \quad \sigma = [(2/\chi)k/(k-2)]^{1/(k-2)}. \hspace{1cm} (1.4)$$

Proof: The function $q = z(t)e$ satisfies (1.3) if $z(t)$ satisfies

$$\ddot{z} = \chi z^{k-1}. \hspace{1cm} (1.5)$$

The function (1.4) is a solution of (1.5) satisfying

$$\dot{z} = -(2\chi/k)^{1/2}z^{k/2}. \hspace{1cm} (1.6)$$

2. Existence of asymptotic motions. We will prove now our result.

Theorem 2.1. Suppose there exists a positive integer k, $2 < k < h$, such that

$$U = U[k] + W,$$

where $W \in C^h(\Omega, \mathbb{R})$ is of order higher than k at $q = 0$. If $U[k]$ does not have a maximum at $q = 0$, then there exists a motion of S defined for $t \in (0, +\infty)$ and tending to the equilibrium position $q = 0$ as $t \to \infty$.

Proof: Let $B(q) = A^{-1}(q) = I + \tilde{B}(q)$, $\tilde{B}(0) = 0$, and $\Gamma_{h,i,j}$, $h,i,j = 1, \ldots, n$, be the Christoffel symbols associated to $A(q)$. The Euler-Lagrange equations of S can be written as

$$\ddot{q}_i = B_{im}[(\partial U[k]/\partial q_m) - \Gamma_{h,j,m}\dot{q}_h\dot{q}_j + (\partial W/\partial q_m)], \quad i = 1, \ldots, n. \hspace{1cm} (2.1)$$

In (2.1) and in the following formulae, the summation convention on repeated indices is assumed. First, we will show that the solutions of (2.1) defined for $t > 0$ can be determined by means of a class of solutions of an autonomous differential system of the first order in \mathbb{R}^{2n+1}. Second, we will examine the linear approximation of this system and prove the existence of a bidimensional stable manifold for it. This manifold contains a solution corresponding to an asymptotic motion of S.

First step. We can assume that $U[k]$ has a positive maximum on S^{n-1} at e. Let $z(t)$ be the function (1.4) and let us consider the time dependent transformation of Lagrangian coordinates defined by

$$q = z(t)[e + Q], \quad t > 0. \hspace{1cm} (2.2)$$

By (2.2), taking into account (1.5) and (1.6), equations (2.1) are transformed into the system

$$z\ddot{q}_i - 2(2\chi/k)^{1/2}z^{k/2}\dot{Q}_i + \chi z^{k-1}(\delta i_1 + Q_i) = B_{im}\{(\partial U[k]/\partial q_m)$$

$$- (2\chi/k)\Gamma_{h,j,m}z^k(\delta h_1 + Q_h)(\delta j_1 + Q_j) - \Gamma_{h,j,m}z^2\dot{Q}_h\dot{Q}_j$$

$$+ (2\chi/k)^{1/2}z^{(k+2)/2}(\Gamma_{h,j,m} + \Gamma_{j,h,m})(\delta h_1 + Q_h)\dot{Q}_j + (\partial W/\partial q_m)\}, \hspace{1cm} (2.3)$$
\(i = 1, \ldots, n \), where \(\delta_{ij}, i, j = 1, \ldots, n \), denote the Kronecker symbols. In (2.3), all the functions of \(q \) are evaluated for \(q = z(t)(e + Q) \). Since the function \(z(t) \) is invertible, we can assume \(z \) as independent variable. By setting \(y(z) = Q(t(z)), z > 0 \), and denoting by \('\) the derivative with respect to \(z \), the system (2.3) is transformed into the system

\[
\begin{align*}
 z^2 y_i'' + \left[(k + 4)/2 \right] z y_i' + (k/2)(\delta_{i1} + y_i) = & \, B_{im} \left\{ (k/2)z^{1-k}(\partial U_{|k|}/\partial q_m)
 \right. \\
 & - \, \Gamma_{h,j,m} z(\delta_{h1} + y_h)(\delta_{j1} + y_j) - (k/2\chi)\Gamma_{h,j,m} z^3 y_j y_h' \\
 & + \, (k/2\chi)^{1/2}(\Gamma_{h,j,m} + \Gamma_{j,h,m}) z^2 y_j' (\delta_{h1} + y_h) + (k/2\chi)z^{1-k}(\partial W/\partial q_m) \right\},
\end{align*}
\]

\(i = 1, \ldots, n \), where the functions of \(q \) are evaluated at \(q = z(e + y) \).

Let us reduce now (2.4) to a first order system by introducing the new system of variables

\[
v_i = z y_i' \quad i = 1, \ldots, n.
\]

We have:

\[
\begin{align*}
 \begin{cases}
 z y_i' = v_i \\
 z v_i' = \Xi_i(z, y, v)
 \end{cases}
\end{align*}
\]

where the functions \(\Xi_i \in C^{h-k} \) are defined by

\[
\Xi_i(z, y, v) = -[(k + 2)/2]v_i - (k/2)(\delta_{i1} + y_i) + B_{im} \left\{ (k/2)z^{1-k}(\partial U_{|k|}/\partial q_m)
 \right. \\
 \left. - \, \Gamma_{h,j,m} z(\delta_{h1} + y_h)(\delta_{j1} + y_j) - (k/2\chi)\Gamma_{h,j,m} z^3 y_j y_h' \\
 + \, (k/2\chi)^{1/2}(\Gamma_{h,j,m} + \Gamma_{j,h,m}) z^2 y_j' (\delta_{h1} + y_h) + (k/2\chi)z^{1-k}(\partial W/\partial q_m) \right\},
\]

\(i = 1, \ldots, n \).

It is easy to see that, for a fixed \(z_0 \in (0, +\infty) \), the solutions of (2.5) defined for \(z \in (0, z_0] \) are in a one to one correspondence with the solutions of the autonomous system in \(\mathbb{R}^{2n+1} \)

\[
\begin{align*}
 \begin{cases}
 dz/d\phi = -z \\
 dy_i/d\phi = -v_i \\
 dv_i/d\phi = -\Xi_i(z, y, v)
 \end{cases}
\end{align*}
\]

defined for \(\phi \in [0, +\infty) \) for which \(z(0) = z_0 \).

Second step. We will consider now the linear approximation of (2.7) around the origin of \(\mathbb{R}^{2n+1} \). We have

\[
\Xi_i(z, y, v) = p_i z - (k/2\chi)(\chi \delta_{ij} - V_{ij})y_j - [(k + 2)/2]v_i + N_i(z, y, v),
\]

where

\[
p_i = (k/2\chi)\left\{ \chi(\partial B_{11}/\partial q_1)(0) + [z^{-k}(\partial W/\partial q_1)(z_e)](0) + \Gamma_{i,1,1}(0) \right\} \quad i = 1, \ldots, n,
\]

\[
V_{ij} = (\partial^2 U_{|k|}/\partial q_i \partial q_j)(e), \quad i, j = 1, \ldots, n,
\]

and the functions \(N_i(z, y, v), i = 1, \ldots, n \), are infinitesimal of order \(> 1 \) at \((0,0,0)\). By (1.1), we have

\[
V_{11} = (k - 1)\chi, \quad V_{1\alpha} = 0, \quad V_{\alpha\beta} = v_{\alpha\beta}(e), \quad \alpha, \beta = 2, \ldots, n,
\]
and the linear approximation of (2.7) is written as

\[
\begin{align*}
\frac{dz}{d\phi} &= -z \\
\frac{dy_i}{d\phi} &= -v_i, \quad i = 1, \cdots, n, \\
\frac{dv_1}{d\phi} &= -p_1 z - (k/2)(k-2)y_1 + [(k+2)/2]v_1 \\
\frac{dv_\alpha}{d\phi} &= -p_\alpha z + (k/2\chi)(\chi \delta_{\alpha\beta} - v_{\alpha\beta}(e))y_\beta + [(k+2)/2]v_\alpha, \quad \alpha = 2, \cdots, n.
\end{align*}
\]

Let us denote by \(A \) the matrix of the coefficients of (2.8). We are going to show that \(A \) has two real negative eigenvalues and all the others are real non negative. Let us consider first the case

A) \(k \neq 4 \). In this case \(\lambda = -1 \) is eigenvalue of \(A \) with corresponding eigenvectors given by

\[
\begin{pmatrix}
1, a_1, \cdots, a_n, a_1, \cdots, a_n
\end{pmatrix},
\]

with \((a_1, \cdots, a_n)\) solution of the system

\[
\begin{align*}
(k^2 - 3k - 4)a_1 &= -2p_1 \\
(k+2)\delta_{\alpha\beta} - (k/2\chi)v_{\alpha\beta}(e) &a_\beta = p_\alpha.
\end{align*}
\]

System (2.10) has a unique solution as

\[
(k^2 - 3k - 4) \neq 0 \quad \text{for } k \neq 4,
\]

and, by (1.2),

\[
\det \left(\begin{pmatrix}
(k+2)\delta_{\alpha\beta} - (k/2\chi)v_{\alpha\beta}(e) &
\end{pmatrix}_{\alpha,\beta=2,\cdots,n} \right) \neq 0.
\]

Therefore, \(\lambda = -1 \) is a simple eigenvalue of \(A \). Furthermore, the solutions of the equation

\[
\lambda^2 - [(k+2)/2] \lambda - (k/2)(k-2) = 0
\]

are eigenvalues of \(A \) with corresponding eigenvectors given by

\[
\begin{pmatrix}
0, 1, 0, \cdots, 0, -\lambda, 0, \cdots, 0
\end{pmatrix}.
\]

Thus, the negative solution of (2.11), which is different from \(-1\) as \(k \neq 4 \), is another real negative simple eigenvalue of \(A \). The other eigenvalues of \(A \) are given by the positive solution of (2.11) and by the values of \(\lambda \) for which the following condition is satisfied:

\[
\det \left(\begin{pmatrix}
\lambda^2 - [(k+2)/2] \lambda + (k/2) &
\end{pmatrix}_{\alpha,\beta=2,\cdots,n} \right) = 0.
\]

Indeed, for any solution \(\lambda \) of (2.13) we have the eigenvector of \(A \)

\[
\begin{pmatrix}
0, 0, a_2, \cdots, a_n, 0, -\lambda a_2, \cdots, -\lambda a_n
\end{pmatrix},
\]
with \((a_2, \cdots, a_n)\) non null solution of the system

\[
[[\lambda^2 - [(k + 2)/2]\lambda + (k/2)]\delta_{\alpha\beta} - (k/2)\chi v_{\alpha\beta}(e)]a_\beta = 0, \quad \alpha = 2, \cdots, n.
\]

For any eigenvalue \(\mu_\alpha, \alpha = 2, \cdots, n\), of the matrix \((v_{\alpha\beta})_{\alpha,\beta=2,\cdots,n}\) we have two solutions of (2.13) given by

\[
\lambda_\alpha^\pm = (k + 2)/4 \pm \{[(k + 2)/4]^2 - (k/2)(1 - \mu_\alpha/\chi)\}^{1/2},
\]

which are distinct and non negative because of (1.2).

Let us consider, now , the case

B) \(k = 4\). Also in this case, \(\lambda = -1\) is eigenvalue of \(A\). If \(p_1 = 0\), the vectors

\[
(0,1,0,\cdots,0,1,0,\cdots,0), \quad (1,1,a_2,\cdots,a_n,1,a_2,\cdots,a_n)
\]

with \((a_2,\cdots,a_n)\) unique solution of the system

\[
[3\chi\delta_{\alpha\beta} - v_{\alpha\beta}(e)]a_\beta = (\chi/2)p_\alpha, \quad \alpha = 2, \cdots, n,
\]

are eigenvectors corresponding to it. Its multiplicity is equal to two because one can show, as in case A), that there are other \(2n-1\) real non-negative eigenvalues. Therefore, \(\lambda = -1\) is a semisimple eigenvalue. If \(p_1 \neq 0\), we have only one eigenvector corresponding to \(\lambda = -1\). Nevertheless, its algebraic multiplicity is equal to two, because there exist only other \(2n-1\) eigenvalues of \(A\) which are real and non-negative. A basis of its generalized eigenspace is given by the vectors

\[
(1,-p_1/5,b_2,\cdots,b_n,0,b_{n+2},\cdots,b_{2n}), \quad (0,1,0,\cdots,0,1,0,\cdots,0),
\]

with suitable values of \(b_2,\cdots,b_n,b_{n+2},\cdots,b_{2n}\).

Now, by using known results about the existence of invariant manifolds [9], we can conclude that for the differential system (2.7), a stable \(C^{n-1}\)-bidimensional invariant manifold \(M\) exists. This manifold contains the origin of \(\mathbb{R}^{2n+1}\), it is tangent at the origin to the generalized eigenspace of the negative eigenvalues of \(A\). All the solutions of (2.7) which start from points of \(M\) in a sufficiently small neighborhood \(U\) of the origin, tend asymptotically to the origin as \(\phi \to +\infty\). As there are points \((z_0,y_0,v_0)\in M \cap U\), with \(z_0 > 0\), then there are solutions of (2.4) tending to the origin of \(\mathbb{R}^n\) as \(z \to 0^+\) and therefore, there are motions of \(S\) which are asymptotic to the equilibrium position \(q = 0\).

Corollary 2.2. Assume now \(h > 4, 2 < k < h - 1\). Let \(\lambda^-\) be the negative solution of (2.11). Then, the asymptotic motion existing under the hypothesis of Theorem 2.1 admits a parametrization such that the following estimates hold:

i) if \(\lambda^-\) is a semisimple eigenvalue of \(A\), then \(q(t) = z(t)[1 + O(z(t))];\)

ii) if \(\lambda^-\) is not a semisimple eigenvalue of \(A\), then \(q(t) = z(t)[1 + O(|z(t)| \log z(t))].\)

Proof: If \(\lambda^-\) is a semisimple eigenvalue of \(A\), the eigenspace of the negative eigenvalues of \(A\) admits as basis the vectors (2.9) and (2.12) with \(\lambda = \lambda^-\) if \(\lambda^- \neq -1\), and the vectors (2.14) if \(\lambda^- = -1\). Therefore, if \((\xi, \eta)\) are coordinates associated to these bases, the manifold \(M\) is represented in a neighborhood of the origin of \(\mathbb{R}^{2n+1}\) by

\[
\begin{align*}
z &= \xi \\
y_1 &= \gamma_1 \xi + \eta, \quad y_\alpha = a_\alpha \xi + \Phi_\alpha(\xi, \eta) \\
v_1 &= \gamma_1 \xi - \lambda^- \eta + \Psi_1(\xi, \eta), \quad v_\alpha = a_\alpha \xi + \Psi_\alpha(\xi, \eta), \quad \alpha = 2, \cdots, n,
\end{align*}
\]
where \(\gamma = a_1 \) if \(\lambda^- \neq -1 \), \(\gamma = 1 \) if \(\lambda^- = -1 \), and \(\Psi_1, \Phi_\alpha, \Psi_\alpha, \alpha = 2, \ldots, n \), are infinitesimal at \((0, 0)\) of order \(\geq 2 \).

If \(\lambda^- \) is not a semisimple eigenvalue of \(\mathcal{A} \), the basis of the generalized eigenspace of the eigenvalue \(-1\) of \(\mathcal{A} \) is given by the vectors (2.15). Therefore, if \((\xi, \eta)\) are coordinates associated to this basis, the manifold \(M \) is represented by

\[
\begin{align*}
\{ z = \xi \\
y_1 &= -(p_1/5)\xi + \eta, \quad y_\alpha = b_\alpha \xi + \Phi'_\alpha(\xi, \eta) \\
v_1 &= \xi + \Psi'_1(\xi, \eta), \quad v_\alpha = b_{n+\alpha} \eta + \Psi'_\alpha(\xi, \eta), \quad \alpha = 2, \ldots, n,
\end{align*}
\]

where \(\Psi'_1, \Phi'_\alpha, \Psi'_\alpha, \alpha = 2, \ldots, n \), are infinitesimal at \((0, 0)\) of order \(\geq 2 \). Thus, in both cases, differential system (2.7) restricted on the stable manifold \(M \) assumes the form

\[
\begin{align*}
\frac{dz}{d\phi} &= -z \\
\frac{d\eta}{d\phi} &= \lambda^- \eta + \eta z + n(z, \eta),
\end{align*}
\]

where \(\eta = 0 \) in case \(\lambda^- \) is semisimple eigenvalue, \(\eta = -p_1/5 \) in the other case, and \(n(z, \eta) \) is of order \(\geq 2 \) at \((0, 0)\). Let us consider the first case. If \(\lambda^- \leq -2 \), by an obvious application of the Gronwall inequality, we have:

\[
|\eta(\phi, \eta_0, z_0)| \leq z_0 e^{-\phi},
\]

for \(z_0 > 0 \) sufficiently small, and \(\eta_0 = O(z_0^2) \). If \(\lambda^- > -2 \), we consider the Banach space \(X \) defined by

\[
X = \{ u \in C([0, +\infty), \mathbb{R}) : u(\phi)e^{2\phi} \text{ bounded, } \|u\| = \sup_{0, +\infty} (u(\phi)e^{2\phi}) \},
\]

and, for \(c > 0 \), the closed subset \(S \) of \(X \) defined by \(S = \{ u \in X : \|u\| \leq c \} \). The map \(F : S \to X \):

\[
(Fu)(\phi) = \int_{-\infty}^{\phi} e^{-(s-\phi)\lambda^-} n(z_0 e^{-s}, u(s))\, ds,
\]

admits a fixed point \(\eta(\cdot) \), provided that the values \(c \) and \(z_0 \) are suitably small. Obviously, \((z_0 e^{-\phi}, \eta(\phi))\) satisfies system (2.17). Then, i) follows now by means of (2.16).

To complete the proof we observe that ii) is a direct consequence of the presence of the secular term \((\eta \neq 0) \) in (2.17).

An extension of the result obtained by Furta [2], concerning the "gyroscopic" case, is given by the following.

Corollary 2.3. Let us consider the Lagrangian function

\[
\mathbf{L} = \frac{1}{2}(\dot{q}, A\dot{q}) + U(q) + (G(q), \dot{q})
\]

where \(A \) and \(U \) satisfy the same assumptions as in Theorem 2.1, and \(G = (G_1, \ldots, G_n) \), \(G_i \in C^1[\Omega, \mathbb{R}] \), \(i = 1, \ldots, n \), with

\[
G(q) = G_{[s]}(q) + H(q),
\]
s being an integer, \(s \in [(k + 2)/2, h) \), \(H(q) \) of order greater than \(s \) at 0. Then, again, the corresponding E.-L. system admits a solution tending to the origin as \(t \to +\infty \).

Proof: The proof is achieved by observing that the equations of motion are obtained by system (2.1) by adding the gyroscopic terms:

\[
B_{im}[(\partial G_i/\partial q_m) - (\partial G_m/\partial q_i)]\dot{q}_i, \quad i = 1, \cdots, n.
\]

Then we can associate to the equations of motion a linear system which differs from (2.8) only if \(s = (k + 2)/2 \); in such case in (2.8) \(p_i, i = 1, \cdots, n \), has to be replaced by

\[
p_i - (k/2\chi)[(\partial G_i/\partial q_1) - (\partial G_1/\partial q_i)]_{[k/2]}(e), \quad i = 1, \cdots, n.
\]

Therefore, the existence of the asymptotic motion is proved as above.

Acknowledgement. It is a pleasure for us to thank Professor L. Salvadori for the stimulating and very useful discussions on the topic of this paper.

After the present paper was complete, we learned from S.D. Taliaferro that simultaneously he obtained results similar to ours, by using different techniques.

REFERENCES

