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Abstract. We give a necessary and su�cient condition for all solutions of a periodically
forced Liénard system to be oscillatory. This paper also deals with the question when all
trajectories keep on rotating around the origin. Several examples and global phase portraits
are given to illustrate our results.

1. Introduction. We consider the generalized Liénard equation with forcing
term

ẍ + f(x)ẋ + g(x) = p(t)

or an equivalent system
ẋ = y � F (x) + P (t)
ẏ = �g(x),

(1.1)

where

F (x) =
Z x

0
f(⇠) d⇠ and P (t) =

Z t

0
p(s) ds.

The theory of oscillations of (1.1) has very wide application in applied science and
engineering. A great deal of e↵ort has been made to study the phenomena of
oscillations. One of the main subjects is whether or not for every solution

�
x(t), y(t)

�
of (1.1), x(t) has arbitrarily large zeros, that is, x(t) is oscillatory. However, little
attention has been given to the problem of whether y(t) is oscillatory or not.

It is well-known that system (1.1) is also equivalent to the system

u̇ = v

v̇ = �f(v)u� g(u) + p(t).
(1.2)
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Figure 1. Trajectory of system (1.1) with

F (x) =
⇢

30x2 (x � 0)
�x2 (x < 0),

g(x) = x and P (t) =
1
4

sin 4t.

Let
�
u(t), v(t)

�
be a solution of (1.2). Then it is easy to see that if u(t) is oscillatory,

then v(t) is necessarily oscillatory.
But, system (1.1) does not have the same relation between x(t) and y(t). We

explain the situation by an example. Let

F (x) =
⇢

30x2 (x � 0)
�x2 (x < 0),

g(x) = x and P (t) =
1
4

sin 4t.

Then, as shown in Figure 1, the positive semitrajectory initiating at (t0, x0, y0) =
(0, 0,�0.4) crosses the y-axis infinitely many times and eventually stays in the upper
half-plane. Hence, x(t) is oscillatory, but y(t) > 0 for large t. The broken curve in
Figure 1 indicates the graph y = F (x).

We would like to clear up the reason why such a strange phenomenon occurs.
Likewise, the trajectory in Figure 1 does not rotate around the origin. Note that

even if both x(t) and y(t) are oscillatory, the corresponding positive semitrajectory
of (1.1) or (1.2) does not always rotate around the origin. For example, consider
system (1.1) with F (x) = g(x) = x and P (t) = �1 + cos t. Then system (1.1) has a
solution

�
x(t), y(t)

�
= (cos t, 1 � sin t), whose trajectory is x2 + (y � 1)2 = 1. It is

clear that x(t) and y(t) have an infinite number of zeros. However, the trajectory
does not go around the origin.

The plan of this paper is the following. In Section 2, we consider the case that
P (t) = E

! sin!t, where E > 0 and ! > 0, and give a necessary and su�cient
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condition under which all solutions of (1.1) are oscillatory in usual sense (Theorem
2.1). To see this, we introduce an important concept in the oscillation problem for
(1.1). The proof of Theorem 2.1 will consist of a series of Propositions. In Theorem
2.2 we also clarify a di↵erence between the oscillations of (1.1) and the unforced
Liénard system

ẋ = y � F (x)
ẏ = �g(x).

In Section 3, we present a su�cient condition for all positive semitrajectories of (1.1)
with P (t) = E

! sin!t to keep on rotating around the origin. Finally, in Section 4,
we illustrate Theorems 2.1 and 3.1 by some numerical examples. We also observe
that the condition in Theorem 3.1 is reasonable in some sense.

We have not yet found the real reason why the trajectory of (1.1) does not go
around the origin in Figure 1. The sign of P (t) seems to play some role, but the
situation is not so easy even if P (t) = E

! sin!t. The magnitude of E and ! actually
a↵ects the behavior of the trajectory of (1.1) (see Observations 4.1–4.3 in Section 4).
Our question is yet to be settled.

2. Oscillation of solutions. In this section we consider the periodically forced
Liénard system

ẋ = y � F (x) +
E

!
sin!t

ẏ = �g(x),
(2.1)

where E and ! are positive constants; F (x) and g(x) satisfy suitable smoothness
conditions for the uniqueness of solutions of the initial value problem and

xg(x) > 0 if x 6= 0. (2.2)

We assume that all solutions of (2.1) are continuable in the future
�
for the contin-

uation problem, we refer to [6], [7], [9]
�
. But we do not necessarily assume that

xF (x) > 0 for |x| large. (2.3)

The case that xF (x)! �1 as |x|!1 may be admitted.
As mentioned in the introduction, system (2.1) comes from the classical Liénard

equation. Hence, F (0) is zero by definition. However, we intend to investigate
system (2.1) in general, and so F (x) may not vanish at zero.

Definition 2.1. A solution
�
x(t), y(t)

�
of (2.1) is said to be oscillatory if there

exists a sequence {tn} tending to 1 such that x(tn) = 0.
Burton and Townsend ([1, Theorem 3.1]) gave a necessary and su�cient condition

for the oscillation of all solutions of a forced Liénard system which is slightly more
general than (2.1). Graef ([2, Theorem 4.11]) improved this result. He discussed
the oscillation problem under the rather restricted assumption, namely, (2.3).
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We will give another necessary and su�cient condition for all solutions of (2.1)
to be oscillatory without requiring (2.3). To this end, we need the following concept
concerning the unforced Liénard system:

ẋ = y � F (x)
ẏ = �g(x).

(2.4)

Definition 2.2. System (2.4) has property (X+) in the right half-plane (respec-
tively left half-plane) if, for every point P in the region

�
(x, y) : x > 0 and y > F (x)

 
�
respectively

�
(x, y) : x < 0 and y < F (x)

 �
, the positive semitrajectory starting

at P crosses the curve y = F (x).

Our main result on oscillation of solutions of (2.1) is stated as follows:

Theorem 2.1. Assume (2.2) and F (0) = 0. Then all solutions of (2.1) are oscil-
latory if and only if system (2.4) has property (X+) in the right and left half-plane.

It is useful to tell about property (X+) before proving Theorem 2.1. In the last
decade, several articles ([3], [5], [8], [10]–[12]) have been devoted to the study of
property (X+). The authors gave the following necessary and su�cient condition
for system (2.4) to have property (X+) in a recent paper ([4]).

Proposition 2.1. Assume (2.2). Then system (2.4) fails to have property (X+)
in the right half-plane if and only if there exist constants b � 0 and c 2 R, and a
continuous function  (x) such that

F (x) <  (x) and
Z x

b

g(⇠)
 (⇠)� F (⇠)

d⇠  c�  (x) for x � b.

Turning our attention to the left half-plane, we can obtain the following result
which is analogous to Proposition 2.1.

Proposition 2.2. Assume (2.2). Then system (2.4) fails to have property (X+)
in the left half-plane if and only if there exist constants b � 0 and c 2 R, and a
continuous function  (x) such that

F (x) >  (x) and
Z x

�b

g(⇠)
 (⇠)� F (⇠)

d⇠ � c�  (x) for x  �b.

Conditions in Propositions 2.1 and 2.2 are represented implicitly. Some explicit
conditions for property (X+) are also given in [4, Theorem 4.1 and Theorems 5.1–
5.4]. For example, in case g(x) = x, we have the following:

(i) if F (x) � �2x + x
log x for x large, then system (2.4) has property (X+) in

the right half-plane;
(ii) if F (x)  �2x+ x

4(log x)2 for x large, then system (2.4) fails to have property
(X+) in the right half-plane.
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To prove Theorem 2.1, we first prepare Lemma 2.1 below. Consider the following
system:

ẋ = y � eF (x)
ẏ = �g(x),

(2.5)

where eF (x) = F (x)�M and M is a constant. Then we have:

Lemma 2.1. Assume (2.2). Then system (2.4) has property (X+) in the right half-
plane (respectively, left half-plane) if and only if system (2.5) has property (X+) in
the right half-plane (respectively, left half-plane).

Proof. We consider only the case M > 0 because the other case is similar. Suppose
that system (2.4) fails to have property (X+) in the right half-plane. Then, by
Proposition 2.1 there exist constants b � 0 and c 2 R, and a continuous function
 (x) such that

F (x) <  (x) and
Z x

b

g(⇠)
 (⇠)� F (⇠)

d⇠  c�  (x) for x � b.

We therefore have eF (x) < F (x) <  (x) and
Z x

b

g(⇠)
 (⇠)� eF (⇠)

d⇠ <

Z x

b

g(⇠)
 (⇠)� F (⇠)

d⇠  c�  (x)

for x � b. Hence, Proposition 2.1 shows that system (2.5) fails to have property
(X+) in the right half-plane.

For the converse, suppose that system (2.5) fails to have property (X+) in the
right half-plane. Then, by using Proposition 2.1, there exist constants eb � 0 and
ec 2 R, and a continuous function e (x) such that

eF (x) < e (x) and
Z x

b̃

g(⇠)
e (⇠)� eF (⇠)

d⇠  ec� e (x) for x � eb.

Let b = eb, c = ec + M and  (x) = e (x) + M . Then we get for x � b

F (x) = eF (x) + M < e (x) + M =  (x)

and Z x

b

g(⇠)
 (⇠)� F (⇠)

d⇠ =
Z x

b̃

g(⇠)
e (⇠)� eF (⇠)

d⇠  ec� e (x) = c�  (x).

Thus, it follows from Proposition 2.1 that system (2.4) fails to have property (X+)
in the right half-plane.

For property (X+) in the left half-plane, by means of Proposition 2.2, we can use
the same argument in the right half-plane. Thus, the proof is complete.

The proof of Theorem 2.1 will consist of Propositions 2.3–2.5 below.
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Proposition 2.3. Assume (2.2). If all solutions of (2.1) are oscillatory, then sys-
tem (2.4) has property (X+) in the right and left half-plane.

Proof. Suppose that system (2.4) fails to have property (X+) in the right half-
plane. Consider an auxiliary system

ẋ = y � F (x)� E

!
ẏ = �g(x).

(2.6)

Then Lemma 2.1 shows that system (2.6) also fails to have property (X+) in the
right half-plane. To be more exact, there exists a point P in the region

�
(x, y) : x >

0 and y > F (x)+ E
!

 
such that the positive semitrajectory of (2.6) starting at P does

not cross the curve y = F (x)+ E
! . Compare the slope of this positive semitrajectory

with that of the positive semitrajectory of (2.1) starting at the same point P . Then
we can see that the latter as well as the former runs to infinity without intersecting
the curve y = F (x) + E

! . This means that system (2.1) has a solution which is not
oscillatory.

Similarly, if system (2.4) fails to have property (X+) in the left half-plane, then
from Lemma 2.1 and a comparison of the slope of trajectories of system (2.1) and

ẋ = y � F (x) +
E

!
ẏ = �g(x),

(2.7)

we conclude that there exists a nonoscillatory solution of (2.1). The proof is com-
plete.

Proposition 2.4. Assume (2.2). If system (2.4) has property (X+) in the right
and left half-plane, then all unbounded solutions of (2.1) are oscillatory.

Proof. Let
�
x(t), y(t)

�
be an unbounded solution of (2.1) which is not oscillatory.

Then there exists a T > 0 such that either x(t) > 0 or x(t) < 0 for t � T . We prove
only the case x(t) > 0 for t � T since the proof of the other case is carried out in
the same way. It follows from (2.2) that

ẏ(t) = �g
�
x(t)

�
< 0 for t � T.

Consequently, we have y(t)  y(T ) for t � T. Let Q =
�
x(T ), y(T )

�
and denote by

�+ the positive semitrajectory of (2.7) starting at the point Q.
Claim 1. The positive semitrajectory �+ meets the negative y-axis.
Define the regions RL and RU as follows:

RL =
�
(x, y) : x > 0 and y  F (x)�E/!

 
;

RU =
�
(x, y) : x > 0 and y > F (x)�E/!

 
.
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To prove the claim we consider two possible cases.
Case (i) Q 2 RL: We may regard �+ as a solution of

dy

dx
= � g(x)

y � F (x) + E
!

.

Hence �+ has no vertical asymptotes in RL, and therefore, by (2.2) it must meet
the negative y-axis.

Case (ii) Q 2 RU : By assumption and Lemma 2.1, system (2.7) has property
(X+) in the right half-plane. Hence �+ crosses the curve y = F (x)� E

! in the right
half-plane. The remainder of the proof is reduced to that of the case (i).

Consider the region S which is enclosed with �+, the y-axis and the line y = y(T ).
From Claim 1 we conclude that S is bounded. Comparing the vector field of (2.1)
with that of (2.7), we see that the positive semitrajectory of (2.1) which corresponds
to the unbounded solution

�
x(t), y(t)

�
remains in S for all future time. This is

impossible and completes the proof.

Proposition 2.5. Assume (2.2) and F (0) = 0. Then all bounded solutions of (2.1)
are oscillatory.

Proof. Let
�
x(t), y(t)

�
be a bounded solution of (2.1) which is not oscillatory. Then

there exist positive constants B and T such that for t � T

|x(t)| + |y(t)|  B and x(t) 6= 0.

We may assume without loss of generality that x(t) > 0 for t � T. Hence, by (2.2)
we have

ẏ(t) = �g
�
x(t)

�
< 0 for t � T,

and therefore, y(t) approaches the limit ȳ from above, because y(t) is bounded.
Claim 2. There exists a sequence {sn} tending to 1 such that x(sn) ! 0 as

n!1.
Suppose that the claim is not true. Then there exists a � > 0 such that � 

x(t)  B for t � T. Let K = min
�
g(x) : �  x  B

 
. Then we get

ẏ(t) = �g
�
x(t)

�
 �K for t � T,

and so
y(t)� y(T )  �K(t� T ) �! �1 as t!1.

This contradicts the fact that y(t) is bounded.
Claim 3. x(t) tends to 0 as t!1.
Suppose that the claim is false; that is,

lim sup
t!1

x(t) > 2µ for some µ > 0.
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Then, taking Claim 2 into account, we conclude that there exist two sequences {⌧n}
and {e⌧n} with ⌧1 > T, ⌧n < e⌧n < ⌧n+1 and ⌧n !1 as n!1 such that

x(⌧n) = µ, x(e⌧n) = 2µ and µ < x(t) < 2µ for ⌧n < t < e⌧n.

Define the following constants.

L = max
�
|F (x)| : µ  x  2µ

 
, M = min

�
g(x) : µ  x  2µ

 
,

ŷ = max{ȳ, 0} + 1 and N = ŷ + L +
E

!
.

Since y(t) approaches ȳ from above, we may assume that y(t) < ŷ for t � ⌧1. Hence
we have for ⌧n  t  e⌧n

ẋ(t) = y(t)� F
�
x(t)

�
+

E

!
sin!t < ŷ + L +

E

!
= N.

Integrating this inequality from ⌧n to e⌧n, we obtain

e⌧n � ⌧n >
1
N

�
x(e⌧n)� x(⌧n)

 
=

µ

N
,

and therefore,

y(e⌧n)� y(⌧n) = �
Z ⌧̃n

⌧n

g
�
x(s)

�
ds  �M(e⌧n � ⌧n) < �Mµ

N
.

Hence we have

y(e⌧n)� y(T ) <
nX

k=1

�
y(e⌧k)� y(⌧k)

 
�! �1 as n!1.

This is also a contradiction to the boundedness of y(t).
Since F (x) is continuous and F (0) = 0, there exists a sequence {�n} tending to

0 such that
|y � F (x)� ȳ| <

1
n

for (x, y) 2 Dn, (2.8)

where Dn =
�
(x, y) : x2 +(y� ȳ)2 < �2n

 
. For reasons mentioned above, the solution�

x(t), y(t)
�

converges to the point (0, ȳ). Hence, there exists a sequence {tn} with
tn !1 as n!1 such that

�
x(tn), y(tn)

�
2 @Dn,

�
x(t), y(t)

�
2 Dn for t > tn. (2.9)

There are two cases to consider.
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Case (i): ȳ > 0. Let m > 0 be chosen so that ȳ > 1
m . Then, by (2.8) and (2.9)

we get

ẋ(t) = y(t)� F
�
x(t)

�
+

E

!
sin!t > ȳ � 1

m
+

E

!
sin!t

for t > tm. Hence

x(t)�x(tm) >

Z t

tm

�
ȳ� 1

m
+

E

!
sin!s

�
ds =

�
ȳ� 1

m

�
(t� tm)+

E

!2
(cos!tm� cos!t)

which tends to 1 as t!1. This is a contradiction to (2.9).
Case (ii): ȳ  0. Let i > 0 and j > 2!

E be any integers and define a sequence
{Iij} of intervals by

Iij =
n
t 2 [2(i� 1)⇡/!, 2i⇡/!] : E

! sin!t  �1
j �

E
2!

o
.

Since sin!t is a periodic function, the length of Iij is independent of i, and so we
can denote by dj the length. By the definition of Iij , we see that dj approaches 2⇡

3!
from below. Therefore, since �n ! 0 as n!1, there exists an m > 0 with

E

2!
dm > �m. (2.10)

Next, we choose an l > 0 such that tm < 2(l�1)⇡
! . Then it follows from (2.8) and

(2.9) that

ẋ(t) = y(t)� F
�
x(t)

�
+

E

!
sin!t < ȳ +

1
m
�
� 1
m

+
E

2!
�
 � E

2!

for t 2 Ilm. Hence, together with (2.10), we conclude that the decrease of x(t)
on Ilm is larger than �m which is the radius of Dm. This means that the solution�
x(t), y(t)

�
does not stay in Dm for t 2 Ilm.

On the other hand, by (2.9) we have
�
x(t), y(t)

�
2 Dm for t > tm, which is a

contradiction.
Thus, both cases (i) and (ii) are impossible. The proof is now complete.

Under the assumptions of Proposition 2.5, we cannot conclude that all bounded
solutions of the unforced system (2.4) are oscillatory. Hence, if E = 0, then the
statement of Theorem 2.1 is not true. In oscillation results for system (2.4), we
need to assume some condition which guarantees that the origin is locally repulsive,
such as xF (x) < 0 in a neighborhood of the origin

�
for details, see [2], [5], [8],

[11]
�
. The following theorem give us a material reason why there is no necessity for

assuming such a condition in Theorem 2.1.
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Theorem 2.2. Suppose that F (0) = 0. Then system (2.1) has no solution (x(t),
y(t)) converging to the origin as t!1.

Proof. Suppose that there exists a solution
�
x(t), y(t)

�
of (2.1) such that

�
x(t), y(t)

�
�! (0, 0) as t!1.

Then, taking ȳ = 0, we can use the same argument as in the proof of Theorem 2.1.
Hence, we see the following in order of mention:

(i) there exists a sequence {�n} with �n ! 0 as n!1 and

|y � F (x)| <
1
n

on Un ⌘
�
(x, y) : x2 + y2 < �2n

 
;

(ii) there exists a sequence {tn} with tn !1 as n!1,
�
x(tn), y(tn)

�
2 @Un and

�
x(t), y(t)

�
2 Un for t > tn;

(iii) there exist integers m > 2!
E and l > 0 with

E

2!
dm > 2�m and tm <

2(l � 1)⇡
!

, (2.11)

ẋ(t) < � E

2!
for t 2 Ilm, (2.12)

where dm is the length of

Ilm =
�
t 2 [2(l � 1)⇡/!, 2l⇡/!] : E

! sin!t  � 1
m �

E
2!

 
.

From (2.11) and (2.12) we conclude that
Z

Ilm

ẋ(t) dt < � E

2!
dm < �2�m,

which means that the solution
�
x(t), y(t)

�
does not stay in the neighborhood Ulm

of the origin. This contradicts the fact (ii), and hence the proof is complete.

Remark 2.1. In Theorem 2.2, condition (2.2) is not necessary.
Consider again system (1.1) under the following conditions:

P (t) is a periodic function; (2.13)
Z 1

0
P (t) dt > �1; (2.14)

there exists a t1 such that P (t1) < 0. (2.15)

Then we can modify Theorems 2.1 and 2.2 as follows:
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Theorem 2.3. Assume (2.2), (2.13)–(2.15) and F (0) = 0. Then all solutions of
(1.1) are oscillatory if and only if system (2.4) has property (X+) in the right and
left half-plane.

Theorem 2.4. Assume (2.13)–(2.15) and suppose that F (0) = 0. Then system
(1.1) has no solution

�
x(t), y(t)

�
converging to the origin as t!1.

3. Rotation of solutions. As mentioned in Section 2, there is an essential dif-
ference between the oscillation for the forced system (2.1) and that for the unforced
system (2.4). Under the assumptions that

(i) F (0) = 0 and xg(x) > 0 if x 6= 0; and
(ii) system (2.4) has property (X+) in the right and left half-plane,

all solutions of (2.1) are oscillatory, but all solutions of (2.4) are not necessarily
oscillatory. If, in addition to the assumptions above,

(iii) the origin is locally repulsive for (2.4),
as xF (x) < 0 for |x| su�ciently small, then all solutions of (2.4) are oscillatory;
moreover, all trajectories of (2.4) keep on rotating around the origin clockwise.

It may seem that all trajectories of (2.1) rotate around the origin if the assump-
tions (i)–(iii) hold. However, this is not true (see Example 4.1). The question then
arises: instead of (iii), what kind of condition is necessary for all trajectories of
(2.1) to go around the origin? In this section we give an answer to this question.

We here put the following definition.

Definition 3.1. A solution
�
x(t), y(t)

�
of (2.1) is said to be rotatory if there exists

a sequence {tn} tending monotonically to 1 such that for each positive integer k

x(tn) = 0 and y(tn) > 0 if n = 4k � 3;
x(tn) > 0 and y(tn) = 0 if n = 4k � 2;
x(tn) = 0 and y(tn) < 0 if n = 4k � 1;
x(tn) < 0 and y(tn) = 0 if n = 4k.

Theorem 3.1. Assume (2.2) and suppose that system (2.4) has property (X+) in
the right and left half-plane. If

F (x) = ↵x and g(x) = �x for |x|  2�E

↵!e! , (3.1)

where ↵ > 0, � > 0 and e! = min{�,!}, then all solutions of (2.1) are rotatory.

To prove Theorem 3.1, we need Lemmas 3.1 and 3.2 below. We first construct a
positive invariant set with respect to (2.1). Let

P2 =
�2�E

↵!e! ,
�E

!e!
�

and Q2 =
�
�2�E

↵!e! ,��E

!e!
�
,
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and consider two trajectories of

ẋ = y � ↵x +
�E

!e!
ẏ = ��x

(3.2)

and
ẋ = y � ↵x� �E

!e!
ẏ = ��x

(3.3)

passing through P2 and Q2, respectively. It is clear that
(i) the negative semitrajectory of (3.2) starting at P2 meets the positive y-axis;
(ii) if ↵2 � 4�, then the positive semitrajectory of (3.2) starting at P2 approaches�

0,��E
!!̃

�
, and otherwise it meets the negative y-axis.

Let P1 and P3 be the intersecting points of the closure of the trajectory of (3.2)
passing through P2 with the positive y-axis and the negative y-axis, respectively.
Similarly, we denote by Q1 and Q3 the intersecting points of the closure of the
trajectory of (3.3) passing through Q2 with the negative y-axis and the positive
y-axis, respectively. Note that the points Pi and Qi (i = 1, 2, 3) are symmetric with
respect to the origin.

Let ⌦ be the region which is enclosed by the arcs P1P2P3 and Q1Q2Q3, and the
line segments P1Q3 and P3Q1. Then we have:

Lemma 3.1. Assume (3.1). Then the region ⌦ is a positive invariant set of (2.1).

Proof. Let
�
x(t), y(t)

�
be the solution of (3.2) satisfying

�
x(0), y(0)

�
= P2. Then

there exist t1 < 0 and t3 > 0 with�
x(t1), y(t1)

�
= P1 and

�
x(t3), y(t3)

�
= P3.

We will show that
y(t1) + y(t3) > 0. (3.4)

In case ↵2 � 4�, it is easy to see that (3.4) is satisfied. In fact,

y(t1) > y(0) =
�E

!e! and y(t3) = ��E

!e! .

Suppose that ↵2 < 4�. Then the solution
�
x(t), y(t)

�
is given by

x(t) =
2�E

!e!p4� � ↵2
exp

�
�↵

2
t
��

sin
p

4� � ↵2

2
t +

p
4� � ↵2

↵
cos

p
4� � ↵2

2
t
 

and

y(t) =
2�E

!e!p4� � ↵2
exp

�
�↵

2
t
���

↵� 2�
↵

�
sin

p
4� � ↵2

2
t

+
p

4� � ↵2 cos
p

4� � ↵2

2
t
 
� �E

!e! .
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Since x(t1) = x(t3) = 0, we have

sin
p

4� � ↵2

2
ti +

p
4� � ↵2

↵
cos

p
4� � ↵2

2
ti = 0 (i = 1 or 3);

that is,

sin
�p4� � ↵2

2
ti + ✓

�
= 0 (i = 1 or 3),

where 0 < ✓ < ⇡
2 , cos ✓ =

p
↵2/4� and sin ✓ =

p
1� (↵2/4�). Hence we get

t1 = � 2✓p
4� � ↵2

and t3 =
2(⇡ � ✓)p
4� � ↵2

.

Taking notice that sin(�✓) = � sin ✓ = �
p

1� (↵2/4�) and sin(⇡ � ✓) = sin ✓ =p
1� (↵2/4�), we obtain the following:

y(t1) =
2�E

!e!p4� � ↵2
exp

�
�↵

2
t1
��
� 2�

↵
sin

p
4� � ↵2

2
t1
 
� �E

!e!
=

2�E

!e!p4� � ↵2
exp

� ↵✓p
4� � ↵2

�⇢
�2�
↵

sin(�✓)
�
� �E

!e!
=

2�
p
�E

↵!e! exp
� ↵✓p

4� � ↵2

�
� �E

!e! ;

y(t3) =
2�E

!e!p4� � ↵2
exp

�
�↵

2
t3
��
� 2�

↵
sin

p
4� � ↵2

2
t3
 
� �E

!e!
=

2�E

!e!p4� � ↵2
exp

�
� ↵(⇡ � ✓)p

4� � ↵2

�⇢
�2�
↵

sin(⇡ � ✓)
�
� �E

!e!
= �2�

p
�E

↵!e! exp
� ↵(✓ � ⇡)p

4� � ↵2

�
� �E

!e! .

Since 0 < ✓ < ⇡
2 , we conclude that

y(t1) + y(t3) =
2�
p
�E

↵!e!
�

exp
� ↵✓p

4� � ↵2

�
� exp

� ↵(✓ � ⇡)p
4� � ↵2

�
� ↵p

�

 

>
2�
p
�E

↵!e!
�

exp
� ↵✓p

4� � ↵2

�
� exp

�
� ↵✓p

4� � ↵2

�
� ↵p

�

 
.

For simplicity, let ⇣ = ↵p
�
. Then 0 < ⇣ < 2 and

y(t1) + y(t3) >
2�E

⇣!e!
�
exp

�
⇣h(⇣)

�
� exp

�
� ⇣h(⇣)

�
� ⇣

 
,
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where h(⇣) = 1p
4�⇣2

Tan�1
p

4�⇣2

⇣ . Since

d

d⇣
h(⇣) =

1
4� ⇣2

� ⇣p
4� ⇣2

Tan�1

p
4� ⇣2

⇣
� 1

�
< 0

and

h(⇣) =
1
⇣

� ⇣p
4� ⇣2

Tan�1

p
4� ⇣2

⇣

�
�! 1

2
as ⇣ ! 2,

it follows that
h(⇣) >

1
2

for 0 < ⇣ < 2.

Define z = ⇣h(⇣) and k(z) = exp(z)� exp(�z)� 2z for 0 < z < 1. Then we have

y(t1) + y(t3) >
2�E

⇣!e!
�
exp(z)� exp(�z)� ⇣

�
>

2�E

⇣!e! k(⇣) > 0

because d
dz k(z) > 0 and k(z)! 0 as z ! 0. Hence, (3.4) is satisfied.

Since the arcs P1P2P3 and Q1Q2Q3 are symmetric with respect to the origin, the
inequality (3.4) means that P1 and P3 lie above Q3 and Q1, respectively.

Consider any positive semitrajectory of system (2.1) with (3.1) starting in ⌦.
Then, since E

! sin!t  �E
!!̃ for t 2 R, it traverses the line segments P1Q3 and

P3Q1. Also, a simple comparison of the direction of the vector field shows that such
a trajectory does not cross the arcs P1P2P3 and Q1Q2Q3. Thus, ⌦ is a positive
invariant set with respect to (2.1). The lemma is proved.

Remark 3.1. The region ⌦ is contained in the strip
�
(x, y) : |x|  2�E

↵!!̃

 
.

Remark 3.2. In case ↵2 � 4�, the positive semitrajectory of (3.2) starting at
R1 =

�
0, �E

!!̃

�
approaches R2 =

�
0,��E

!!̃

�
through the right half-plane and the

positive semitrajectory of (3.3) starting at R2 approaches R1 through the left half-
plane. Hence, the arcs R1R2 and R2R1 constitute another positive invariant set of
(2.1). This set is included in ⌦.

We next give a result on the asymptotic behavior of trajectories of (2.1).

Lemma 3.2. Under the assumption (3.1), every positive semitrajectory of (2.1)
starting at a point in ⌦ spirals toward an ellipse (�x)2 + (!y)2 = (�E)2

(��!2)2+(↵!)2 in
clockwise order.

Proof. Consider a linear system

ẋ = y � ↵x� E

!
sin!t

ẏ = ��x.
(3.5)
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Then it is easy to see that system (3.5) has a particular solution

xp(t) =
p

a2 + b2 cos(� � !t)

yp(t) =
�

!

p
a2 + b2 sin(� � !t),

where
a =

(� � !2)E
(� � !2)2 + (↵!)2

, b =
↵!E

(� � !2)2 + (↵!)2
,

cos � =
ap

a2 + b2
and sin � =

bp
a2 + b2

.

Note that the trajectory of
�
xp(t), yp(t)

�
rotates in a clockwise direction on an ellipse

(�x)2 + (!y)2 = (�E)2

(��!2)2+(↵!)2 .
The general solution

�
⇠(t), ⌘(t)

�
of (3.5) has the form

⇠(t) = xh(t) + xp(t) and ⌘(t) = yh(t) + yp(t),

where
�
xh(t), yh(t)

�
is the general solution of the corresponding homogeneous system

ż = Az; A =
��↵ 1
�� 0

�
, z =

�x
y

�
.

Since ↵ > 0 and � > 0, the eigenvalues of A have negative real parts. Hence,
�
xh(t), yh(t)

�
�! (0, 0) as t!1,

and therefore, the phase portrait of (3.5) consists of clockwise spirals tending to the
ellipse as t increases.

Let
�
x(t), y(t)

�
be any solution of (2.1) leaving a point in ⌦ at t = t0. Then it

follows from Lemma 3.1 that the trajectory of
�
x(t), y(t)

�
stays in ⌦ for all future

time, and so we have

|x(t)|  2�E

↵!e! for t � t0.

Hence, by (3.1) we may regard
�
x(t), y(t)

�
as a solution of (3.5) satisfying

x(t) = xh(t) + xp(t) and y(t) = yh(t) + yp(t) for t � t0.

We therefore conclude that every trajectory of (2.1) starting in ⌦ spirals toward the
elliptical orbit, in clockwise order, as t!1. The proof is complete.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let
�
x(t), y(t)

�
be a solution of (2.1). If there exists a

t1 > 0 with
�
x(t1), y(t1)

�
2 ⌦, then by Lemmas 3.1 and 3.2 we see that

�
x(t), y(t)

�



732 jitsuro sugie and tadayuki hara

Figure 2. Trajectory of system (2.1) with E = 8, ! = 4,

F (x) =
⇢ �x (x � �0.1)

2x + 0.3 (x < �0.1),
and g(x) = x.

remains in ⌦ for t � t1; and the trajectory of
�
x(t), y(t)

�
spirals toward the ellipse

(�x)2 + (!y)2 = (�E)2

(��!2)2+(↵!)2 . Hence,
�
x(t), y(t)

�
is rotatory.

Suppose that
�
x(t), y(t)

�
does not go in ⌦. Theorem 2.1 shows that

�
x(t), y(t)

�
is oscillatory. Hence, taking account of the vector field of (2.1), we see that the
trajectory of

�
x(t), y(t)

�
keeps on going around ⌦; that is,

�
x(t), y(t)

�
is rotatory.

This completes the proof.

4. Numerical examples and observations. In this section we give some
global phase portraits for the forced Liénard system (2.1) to illustrate our results.
To clarify the essence of Theorems 2.1 and 3.1, we restrict ourselves to the case that
F (x) is piecewise linear and g(x) = x. Then the unforced system (2.4) has property
(X+) in the right and left half-plane if and only if the gradient of F (x) is greater
than �2 for |x| su�ciently large. In Figures 2–8 the broken lines represent the graph
y = F (x).

Example 4.1. Consider system (2.1) with E = 8, ! = 4,

F (x) =
⇢ �x (x � �0.1)

2x + 0.3 (x < �0.1)
and g(x) = x.

Then system (2.4) has property (X+) in the right and left half-plane, and therefore,
by Theorem 2.1 all solutions of (2.1) are oscillatory.
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Figure 3. Trajectory of system (2.1) with E = 8, ! = 4,

F (x) =
⇢ �2x (x � �0.1)

2x + 0.4 (x < �0.1),
and g(x) = x.

Figure 2 shows that the positive semitrajectory initiating at (t0, x0, y0) = (0, 0,�3)
crosses the negative y-axis infinitely many times and coils around an oval in the lower
half-plane. Hence the solution in Figure 2 is not rotatory though it is oscillatory.

Note that all solutions of (2.4) with F (x) and g(x) in Example 4.1 are rotatory
because xF (x) < 0 for |x| su�ciently small

�
the origin is locally repulsive for (2.4)

�
.

Example 4.2. Consider system (2.1) with E = 8, ! = 4,

F (x) =
⇢ �2x (x � �0.1)

2x + 0.4 (x < �0.1)
and g(x) = x.

Then system (2.4) fails to have property (X+) in the right half-plane. Hence, by
Theorem 2.1 there exists a nonoscillatory solution of (2.1).

From Figure 3 we see that the positive semitrajectory initiating at (t0, x0, y0) =
(0, 0,�3) does not oscillate and goes to infinity through the right half-plane.

Example 4.3. Consider system (2.1) with E = ! = 4,

F (x) =

8>>><
>>>:

�x + 3 (x � 1)
2x (�1  x < 1)

�x� 3 (�3  x < �1)
x + 3 (x < �3)

and g(x) = x.

Then the conditions of Theorem 3.1 hold, and so all solutions of (2.1) are rotatory. In
fact, system (2.4) has property (X+) in the right and left half-plane, and condition
(3.1) is satisfied with ↵ = 2 and � = e! = 1.
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Figure 4. Trajectory of system (2.1) with E = ! = 4,

F (x) =

8>>><
>>>:

�x + 3 (x � 1)
2x (�1  x < 1)
�x� 3 (�3  x < �1)
x + 3 (x < �3)

and g(x) = x.

Let us turn our attention to the positive semitrajectory initiating at (t0, x0, y0) =
(0, 0,�20). This trajectory spirals clockwise and then approaches the origin (see
Figure 4). Ultimately, it winds around an ellipse surrounding the origin (see Fig-
ure 5).

In Theorem 3.1, condition (3.1) seems to be much too restricted. But, by three
observations below, we can show that (3.1) is a reasonable condition for all solutions
of (2.1) to be rotatory.

Observation 4.1. Consider system (2.1) with E = ! = 4,

F (x) =
⇢

2x (x � �0.1)
�x� 0.3 (x < �0.1)

and g(x) = x.

Then, as shown in Figure 6, the positive semitrajectory initiating at (t0, x0, y0) =
(0, 0,�0.4) does not rotate around the origin. Since ↵ = 2 and � = e! = 1, we have

2�E

↵!e! = 1 > 0.1.

Hence, F (x) does not satisfy condition (3.1).
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Figure 5. Trajectory of system (2.1) with E = ! = 4,

F (x) =

8>>><
>>>:

�x + 3 (x � 1)
2x (�1  x < 1)
�x� 3 (�3  x < �1)
x + 3 (x < �3)

and g(x) = x.

Observation 4.2. Consider system (2.1) with E = 105, ! = 500,

F (x) =

8<
:

2x (x � 0)

1.99x (x < 0)
and g(x) = x.

Then F (x) is nearly linear, but not linear. Of course, condition (3.1) is not satisfied.
Figure 7 indicates that the solution passing through (x0, y0) = (0, 1) at t0 = 0 is not
rotatory.

Observation 4.3. Consider system (2.1) with E = 60, ! = 10,

F (x) = 3x and g(x) =

(
x + 1

2x sin 10
|x| (x 6= 0)

0 (x = 0).

Then g(x) is nonlinear and so condition (3.1) is not satisfied. The positive semi-
trajectory initiating at (t0, x0, y0) = (0, 1, 2) does not rotate around the origin (see
Figure 8). From this observation, we conclude that even though

F (x) and g(x) are odd functions, (4.1)
all solutions of (2.1) are not always rotatory.

Taking these observations into consideration, we finally present the following:
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Figure 6. Trajectory of system (2.1) with E = ! = 4,

F (x) =
⇢

2x (x � �0.1)
�x� 0.3 (x < �0.1)

and g(x) = x.

Figure 7. Trajectory of system (2.1) with E = 105,! = 500,

F (x) =
⇢

2x (x � 0)
1.99x (x < 0)

and g(x) = x.

Problem. Suppose that system (2.4) has property (X+) in the right and left half-
plane. If, in addition to conditions (2.2) and (4.1),

g(x) is monotone,

then are all solutions of (2.1) rotatory?
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Figure 8. Trajectory of system (1.1) with E = 60, ! = 10,

F (x) = 3x and g(x) =

(
x + 1

2x sin 10
|x| (x 6= 0)

0 (x = 0).

Many numerical examples suggest that the answer to this problem is a�rmative.
The problem is yet to be proved.
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