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1. Introduction. The main purpose of this work is to investigate the existence
of multiple positive solutions of the following problem:

⇢ ��u = Q(x)|u|p�2u + ✏h(x) in ⌦
u = 0 on @⌦,

(1n)

where ⌦ is a bounded smooth domain in RN (N � 3), p = 2N
N�2 is a critical Sobolev

exponent, h 2 L2(⌦), with h � 0, 6⌘ 0 on ⌦, Q 2 C(⌦̄) is positive and ✏ > 0 is a
parameter.

In recent years several authors have studied problems of this nature (see for
example [3], [4], [16], [14], [15]. In particular, in the case where Q(x) ⌘ 1 on ⌦,
Tarantello ([17]) proved the existence of at least two positive distinct solutions for
✏ > 0 small. This result has been extended by Rey ([16]) who proved that problem
(1n) has at least cat ⌦ + 1 positive distinct solutions for ✏ > 0 small.

In this paper we are concerned with the e↵ect of the shape of the graph of Q on
the number of positive solutions. Throughout this paper we assume the hypothesis

(Q) Q 2 C(⌦̄), Q > 0 on ⌦̄ and there exist points a1, . . . , ak 2 ⌦ where Q
takes on strict local maxima; i.e., Q(aj) = maxx2⌦ Q(x) and Q(x) < Q(aj) for x in
a neighbourhood Uj of aj , j = 1, . . . , k, and moreover for x 2 Uj

Q(x)�Q(aj) = o
�
|x� aj |

N�2
2
�
.

In what follows we use the notation QM = maxx2⌦ Q(x). The main results of this
paper are the following:
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Theorem 1. Suppose that Q satisfies (Q). Then there exists ✏� > 0 such that for
✏ 2 (0, ✏�], problem (1n) has, besides a minimum positive solution which tends to 0
in H1

� (⌦) as ✏! 0, at least k positive distinct solutions ui,✏ satisfying

|rui,✏|2 ! Q
�N�2

2
M S

N
2 �ai and |ui,✏|p ! Q

�N
2

M S
N
2 �ai

in the sense of measure as ✏! 0, where �ai is the Dirac measure assigned to ai and
S is the best Sobolev constant for a continuous embedding of H1

� (⌦) into Lp(⌦).

The second result is concerned with the Dirichlet problem with nonzero boundary
data ⇢ ��u = Q(x)|u|p�2u in ⌦

u(x) = ✏g(x) on @⌦,
(1d)

where g 2 H
1
2 (@⌦)\L1(@⌦), g � 0, 6⌘ 0 on @⌦ and ✏ > 0 is a small parameter and

@⌦ is smooth.

Theorem 2. Suppose that condition (Q) holds. Then there exists ✏� > 0 such that
for each ✏ 2 (0, ✏�], problem (1d) has, besides a minimum positive solution which
tends to 0 in H1(⌦) as ✏! 0, at least k distinct positive solutions vi

✏, i = 1, . . . , k,
in H1(⌦) satisfying

|rvi
✏|2 ! Q

�N�2
2

M S
N
2 �ai and |vi

✏|p ! Q
�N

2
M S

N
2 �ai

in the sense of measure as ✏! 0.

We mention here some earlier work dealing with the e↵ect of the shape of Q
on the number of solutions. Cao and Noussair ([7]), under assumptions similar to
those of Theorem 1, have established the existence of at least k positive and k nodal
solutions for the homogeneous problem

⇢ ��u = Q(x)|u|p�2u + ✏u in ⌦
u = 0 on @⌦.

Their result generalizes to some extent the work of Escobar ([12]), who proved the
existence of at least one positive solution for each ✏ 2 (0,�1), where �1 is the smallest
eigenvalue of �� with zero Dirichlet boundary values. A similar result has also been
established for the problem

⇢ ��u + �u = Q(x)|u|l�2u in RN

u 2 H1(RN )

with 2 < l < 2N
N�2 in [6] for � > 0 large or for fixed � > 0 and l close to 2N

N�2 in [9].
The paper is organized as follows. In Section 2 we reduce problem (1n) to prob-

lem (4). Problem (4) will be solved by constrained minimization subject to artificial
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constraints. However, in order to obtain the existence of k critical points we mini-
mize a variational functional for problem (4) on suitably chosen subsets of artificial
constraints which can be constructed using the assumption that Q has k strict local
maxima on ⌦. The main point is to show that infima of these localized minimizing
problems belong to the range of the level sets of the variational functional for prob-
lem (4) for which the Palais–Smale condition holds (see Sections 3 and 4). Applying
the Ekeland variational principle, we construct in Section 5 minimizing sequences
satisfying the Palais–Smale condition. In Section 6 we briefly show how results of
Sections 2–5 can be used to obtain k distinct positive solutions of the Dirichlet
problem (1d) with nonzero boundary conditions.

2. Preliminaries. In this paper we use standard notation and terminology. We
denote by H1

� (⌦) a Sobolev space defined as a completion of C1
� (⌦) with respect

to the norm
kuk =

� Z
⌦

|ru|2 dx
� 1

2 .

Its dual space is denoted by H�1(⌦). The norm in the space Lq(⌦), 1  q < 1, is
denoted by

kukq =
� Z

⌦
|u|q dx

� 1
q .

We always denote in a given Banach space X a weak convergence by “*” and a
strong convergence by “!”. The duality pairing between X and its dual X⇤ is
denoted by h·, ·i.

We say that a C1 functional F : X ! R satisfies the Palais–Smale condition
at level c (the (PS)c condition for short) if each sequence {um} ⇢ X such that
F (um) ! c and F 0(um) ! 0 in X⇤ is relatively compact in X.

For r > 0 and x� 2 RN we let B(x�, r) = {x 2 RN : |x � x�| < r} and
S(x�, r) = {x 2 RN : |x� x�| = r}.

According to results in [8] (see Lemma 3 there) there exists ✏� > 0 (small) such
that for each 0 < ✏  ✏� problem (1n) has a minimum positive solution u✏ which
satisfies Z

⌦
|ru|2 dx � (p� 1)µ

Z
⌦

Q(x)up�2
✏ u2 dx (2)

for all u 2 H1
� (⌦) and some constant µ > 1. Furthermore, u✏ satisfies the estimate

ku✏k  C✏khk2 (3)

for some constant C > 0.
One of the main objectives of this paper is to look for solutions of (1n) which are

of the form u = v + u✏, where v is a positive solution of the following problem:
⇢ ��v = Q(x)

�
(v + u✏)p�1 � up�1

✏

�
in ⌦

v = 0 on @⌦.
(4)
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A similar idea will be used in Section 6 to solve the Dirichlet problem (1d). We set

f✏(x, t) =
⇢

Q(x)
�
(t + u✏)p�1 � up�1

✏

�
for x 2 ⌦, t � 0

Q(x)
�
�(�t + u✏)p�1 + up�1

✏

�
for x 2 ⌦, t < 0;

that is, f✏(x, t) = �f✏(x,�t). Solutions to problem (4) will be found as critical
points of a variational functional I✏ : H1

� (⌦) ! R given by

I✏(u) =
1
2

Z
⌦

|ru|2 dx�
Z

⌦
F✏(x, u) dx,

where

F✏(x, t) =
Z t

0
f✏(x, s) ds =

1
p
Q(x)

�
(|t| + u✏)p � up

✏ � pup�1
✏ |t|

�
.

From now on it is assumed that � > 0 is chosen so that Q(x) < Q(ai) for x 2
B(ai, �)� {ai} ⇢ Ui, i = 1, . . . , k (see assumption (Q)). Let

M✏ = {u 2 H1
� (⌦)� {0} : hI 0✏(u), ui = 0}.

Lemma 1. Let l = min{p� 2, p
3}. Then there exists a constant C✏� > 0 such that

I✏(u) � l

2p
�
1� 1

µ

� Z
⌦

|ru|2 dx > C✏� (5)

for all u 2 M✏ and ✏ 2 (0, ✏�].

Proof. Let u 2 M✏. Then by inequality (A.1) in the Appendix and (2) we have

I✏(u) =
1
2

Z
⌦

|ru|2 dx� 1
p

Z
⌦

Q(x)
�
(|u| + u✏)p � up

✏ � pup�1
✏ |u|

�
dx

=
1
2p

Z
⌦

Q(x)
�
p
�
(|u| + u✏)p�1 � up�1

✏

�
|u|

� 2
�
(|u| + u✏)p � up

✏ � pup�1
✏ |u|

� 
dx

� l

2p

Z
⌦

Q(x)
��

(|u| + u✏)p�1 � up�1
✏

�
|u|� (p� 1)up�2

✏ |u|2
 

dx

=
l

2p

Z
⌦

�
|ru|2 � (p� 1)Q(x)up�2

✏ u2
�
dx � l

2p
�
1� 1

µ

� Z
⌦

|ru|2 dx.

(6)

Since u 2 M✏, we have by (A.2) and the Sobolev inequality thatZ
⌦
|ru|2 dx =

Z
⌦
Q(x)|u|p dx +

Z
⌦
Q(x)

�
(|u| + u✏)p�1 � up�1

✏ � |u|p�1
�
|u| dx


Z

⌦
Q(x)|u|p dx + C

Z
⌦

Q(x)
�
|u|p + up�2

✏ u2
�
dx (7)

 (C + 1)QMS�
p
2
� Z

⌦
|ru|2 dx

� p
2 + CQMku✏kp�2

Z
⌦

|ru|2 dx
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for some constant C > 0 independent of ✏. We may now assume, taking ✏� smaller
if necessary, that

�
1 � CQMS�

p
2 ku✏kp�2

�
� 1

2 for all 0 < ✏  ✏�. This combined
with (7) yields Z

⌦
|ru|2 dx � C1 (8)

for all u 2 M✏ and some constant C1 > 0. The assertion follows from (6) and (8).

3. Localization of constraints. We minimize the functional I✏ on some subsets
of constraints M✏. For this we need a functional � : H1

� (⌦)� {0}! RN defined by

�(u) =
R
⌦ x|ru|2 dxR
⌦ |ru|2 dx

.

We set M✏,j = {u 2 M✏ : �(u) 2 B(aj , �)}, j = 1, . . . , k. It is easy to see that M✏,j is
nonempty for each j. Indeed, let u� 2 C2(B(aj , �)) be such that supp u� ⇢ B(0, �

2 )
and u� 6⌘ 0. Since hI✏

0(tu�), tu�i > 0 for t > 0 small and hI✏
0(tu�), tu�i < 0 for

t > 0 large we can find t� > 0 such that t�u� 2 M✏. It is easy to show that
�(t�u�) 2 B(aj , �). We now consider the following variational problems:

m✏,i = inf{I✏(u) : u 2 M✏,i} and m̄✏,i = inf{I✏(u) : u 2 M✏, �(u) 2 S(ai, �)},

i = 1, . . . , k.

Lemma 2. Suppose that condition (Q) holds. Then there exists a constant ⌫ > 0
such that for all ✏ 2 (0, ✏�] we have

m̄✏,i >
S

N
2

NQ
N�2

2
M

+ ⌫, (9)

where ✏� is a constant from Lemma 1.

Proof. In the contrary case there exists a sequence {✏m} ⇢ (0, ✏�], such that ✏m ! 0
and

m̄✏m,i ! c  S
N
2

NQ
N�2

2
M

for some 1  i  k. Hence we can find a sequence {um} ⇢ H1
� (⌦) with um 2 M✏m

satisfying

I✏m(um) ! c  S
N
2

NQ
N�2

2
M

as m !1 and �(um) 2 S(ai, �) for each m. This means that
Z

⌦
|rum|2dx�

Z
⌦

Q(x)
�
(|um| + u✏m)p�1 � up�1

✏m

�
|um| dx = 0 (10)
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and

1
2

Z
⌦

|rum|2 dx� 1
p

Z
⌦

Q(x)
�
(|um|+ u✏m)p� up

✏m
� pup�1

✏m
|um|

�
dx = c + o(1), (11)

where o(1) always denotes a quantity satisfying o(1) ! 0 as m ! 1. It follows
from (10) and (11) that

1
2

Z
⌦

Q(x)
�
(|um| + u✏m)p�1 � up�1

✏m

�
|um| dx

� 1
p

Z
⌦

Q(x)
�
(|um| + u✏m)p � up

✏m
� pup�1

✏m
|um|

�
dx = c + o(1),

which implies

1
N

Z
⌦

Q(x)(|um| + u✏m)pdx +
1
2

Z
⌦

Q(x)up�1
✏m

|um| dx

= c +
1
p

Z
⌦

Q(x)up
✏m

dx +
1
2

Z
⌦

Q(x)(|um| + u✏m)p�1u✏m dx + o(1).
(12)

An application of the Hölder inequality to the last integral on the right side of (12)
gives Z

⌦
Q(x)(|um| + u✏m)p dx  C (13)

for some constant C > 0 independent of m. Combining (10) and (12) we obtain

Z
⌦

|rum(x)|2 dx  C (14)

for some constant C > 0 independent of m. As in the proof of Lemma 1 we show
that there exists a constant L > 0 such that

Z
⌦

Q(x)|um|p dx � L and
Z

⌦
|rum|2 dx � L (15)

for all m. Let

tm =
� R

⌦ |rum|2 dxR
⌦ QM |um|p dx

� 1
p�2

and set vm = tmum. Then vm satisfies
Z

⌦
|rvm|2 dx =

Z
⌦

QM |vm|p dx.
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On the other hand it follows from (10) and (A.2) thatZ
⌦

|rum|2 dx =
Z

⌦
Q(x)

�
(|um| + u✏m)p�1 � up�1

✏m

�
|um| dx


Z

⌦
QM |um|p dx + C

Z
⌦

�
u✏m |um|p�1 + up�1

✏m
|um|

�
dx

for some constant C > 0 independent of m, which implies
R
⌦ |rum|2 dxR

⌦ QM |um|p dx
 1 +

CS�
p
2
�
ku✏mkkumkp�1 + ku✏mkp�1kumk

�
R
⌦ QM |um|p dx

.

Taking into account the definition of tm and (15) we derive from the last estimate,
by choosing a subsequence, if necessary, that

lim
m!1

tm = t�  1, t� > 0. (16)

We now show that t� = 1. Since ku✏mk ! 0 we deduce from (10), taking a subse-
quence if necessary, that

lim
m!1

Z
⌦

|rum|2 dx = lim
m!1

Z
⌦

Q(x)|um|p dx.

Hence

c = lim
m!1

I✏m(um)

= lim
m!1

⇢
1
2

Z
⌦

|rum|2 dx� 1
p

Z
⌦

Q(x)
�
(|um| + u✏m)p � up

✏m
� pup�1

✏m
|um|

�
dx

�

=
1
N

lim
m!1

Z
⌦

|rum|2 dx  S
N
2

NQ
N�2

2
M

.

Thus

lim
m!1

Z
⌦

|rum|2 dx = lim
m!1

Z
⌦

Q(x)|um|p dx  S
N
2

Q
N�2

2
M

. (17)

Let wm = vm
kvmkp

. Then kwmkp = 1, and moreover

Z
⌦

|rwm|2 dx =
R
⌦ |rvm|2 dx

kvmk2p
=

R
⌦ |rum|2 dx� R
⌦ |um|p dx

� 2
p

= Q
2
p

M

R
⌦ |rum|2 dx� R

⌦ QM |um|p dx
� 2

p

= Q
2
p

M

� Z
⌦

|rum|2 dx
�1� 2

p
� R

⌦ |rum|2 dxR
⌦ QM |um|p dx

� 2
p

= Q
2
p

M

� Z
⌦

|rum|2 dx
�1� 2

p t
2(p�2)

p
m .
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Using (17) we deduce from this that limm!1
R
⌦ |rwm|2 dx  t

4
N� S. Since S is the

best Sobolev constant we necessarily have t� = 1, and {wm} is a minimizing sequence
for S. It follows from [14] that there exists x� 2 ⌦̄ such that

|rwm|2 ! S�x� and |wm|p ! �x� (18)

in the sense of measure, where �x� is a Dirac measure assigned to x�. Since �(um) 2
S(ai, �), we have

�(um) =
R
⌦ x|rum|2 dxR
⌦ |rum|2 dx

=
R
⌦ x|rwm|2 dxR
⌦ |rwm|2 dx

! x�.

Hence x� 2 S(ai, �). Since t� = 1 we obtain by (17) and (18)

S
N
2

Q
N�2

2
M

= lim
m!1

Z
⌦

|rum|2 dx

= lim
m!1

t�p
m kvmkp

p

Z
⌦

Q(x)|wm|p dx = Q�1
M

S
N
2

Q
N�2

2
M

Q(x�);

that is, QM = Q(x�), which is impossible, and this completes the proof. ⇤

We now estimate m✏,i. We follow the method from the paper [3]. Let � be a
C2(RN ) radial function such that �(x) = 1 for x 2 B(0, �

2 ), �(x) = 0 for x 2
RN �B(0, �), 0  �(x)  1 on RN and |r�(x)|  4

� on RN . As in [3] we set

U�,aj (x) = (�+ |x� aj |2)�
N�2

2 , � > 0

and
v�,aj (x) =

U�,aj (x)�(x� aj)
kU�,aj (·)�(·� aj)kp

.

In Lemma 3 below we use the following asymptotic properties of v�,aj which are
taken from the paper [3]:Z

RN

|rv�,aj |2 dx = S + O(�
N�2

2 ) for � small, (19)

Z
⌦

v2
�,aj

dx =

8><
>:

A�+ o(�) N � 5
A�| log�| + o(�) N = 4
A
p
�+ O(�) N = 3

(20)

for � small, where A = K2
K3

, K2 =
� R

RN
dx

(1+|x|2)N

�N�2
N , K3 =

R
RN

dx
(1+|x|2)N�2 ,

Z
⌦

v
N

N�2
�,aj

dx = O
�
�

N
4 | log�|

�
for � small, (21)

Z
⌦

vp�1
�,aj

dx = �
N�2

4
�
K + O(1)

�
for � small , (22)
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where
K =

Z
RN

dx

(1 + |x|2)N+2
2

� Z
RN

dx

(1 + |x|2)N

�
.�

N+2
2N

Finally, with the aid of condition (Q) we derive the following asymptotic relation:Z
⌦

Q(x)vp
�,aj

dx = QM

Z
⌦

vp
�,aj

dx�
Z

⌦

�
QM �Q(x)

�
vp

�,aj
dx

= QM + o
�
�

N�2
4
�
.

(23)

Lemma 3. Suppose that condition (Q) holds. Then for every fixed ✏ 2 (0, ✏�) we
have

0 < m✏,i <
S

N
2

NQ
N�2

2
M

, i = 1, . . . , k. (24)

Proof. For t � 0 we write

I✏(tv�,aj ) =
t2

2

Z
⌦

|rv�,aj |2 dx� tp

p

Z
⌦

Q(x)vp
�,aj

dx

� 1
p

Z
⌦

Q(x)
�
(tv�,aj + u✏)p � up

✏ � (tv�,aj )
p � ptup�1

✏ v�,aj

�
dx.

Since for � > 0 small hI✏
0(tv�,aj ), tv�,aj i < 0 for t > 0 large and hI✏

0(tv�,aj ), tv�,aj i
> 0 for t > 0 small, it is easy to see that for � > 0 small enough we can find t�,aj > 0
such that t�,aj v�,aj 2 M✏ and �(t�,aj v�,aj ) 2 B(aj , �). Therefore to prove (24) it is
su�cient to show that

max
t�0

I✏(tv�,aj ) <
S

N
2

NQ
N�2

2
M

(25)

for � > 0 small. Arguing as in [3] we can find t̃� > 0 such that maxt�0 I✏(tv�,aj ) =
I✏(t̃�v�,aj ), and moreover t̃� 2 [t1, t2] for some 0 < t1 < t2 independent of � (for
� > 0 small). Hence we have

max
t�0

I✏(tv�,aj )  max
t�0

� t2

2

Z
⌦

|rv�,aj |2 dx� tp

p

Z
⌦

Q(x)vp
�,aj

dx
 

� min
t2[t1,t2]

�1
p

Z
⌦

Q(x)
�
(tv�,aj + u✏)p � up

✏ � (tv�,aj )
p � ptup�1

✏ v�,aj

�
dx
 
,

(26)

and by (19) and (23)

max
t�0

� t2

2

Z
⌦

|rv�,aj |2 dx� tp

p

Z
⌦

Q(x)vp
�,aj

dx
 

=
1
N

Z
⌦

|rv�,aj |2 dx
� R

⌦ |rv�,aj |2 dxR
⌦ Q(x)vp

�,aj
dx

� 2
p�2

=
1
N

�
S + O(�

N�2
2 )

�� S + O(�
N�2

2 )
QM + o(�

N�2
4 )

�N�2
2 =

S
N
2

NQ
N�2

2
M

+ o(�
N�2

4 ).

(27)
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On the other hand it follows from [2] thatZ
⌦

Q(x)
�
(tv�,aj + u✏)p � up

✏ � (tv�,aj )
p � ptv�,aj u

p�1
✏

�
dx

� p

Z
⌦

Q(x)u✏(tv�,aj )
p�1 dx� C

Z
⌦

QMu
N

N�2
✏ (tv�,aj )

N
N�2 dx,

where C > 0 is a constant independent of � and t. Using asymptotic relations (21)
and (22) we deduce from the last inequality that

min
t2[t1,t2]

Z
⌦

Q(x)
�
(tv�,aj + u✏)p � up

✏ � (tv�,aj )
p � ptv�,aj u

p�1
✏

�
dx

� ptp�1
1

Z
⌦

Q(x)u✏v
p�1
�,aj

dx� Ct
N

N�2
2 QMku✏k

N
N�2
1

Z
⌦

v
N

N�2
�,aj

dx

� c�
N�2

4 + O
�
�

N
4 | log�|

�
� c̃�

N�2
4

(28)

for some constants c > 0 and c̃ > 0. By virtue of (26), (27) and (28) we get

max
t�0

I✏(tv�,aj ) 
S

N
2

NQ
N�2

2
M

� c̃�
N�2

4 + O
�
�

N�2
2
�

+ o(�
N�2

4 ) <
S

N
2

NQ
N�2

2
M

� c̃

2
�

N�2
4

for � > 0 small, and this completes the proof.

4. Palais–Smale condition. In Lemma 4 below we determine the range of
energy levels of the functional I✏ for which the Palais–Smale condition holds.

Lemma 4. Suppose that Q satisfies (Q). Then I✏ satisfies the (PS)c condition for

c 2
�
�1, S

N
2

NQ
N�2

2
M

�
.

The proof of this lemma is similar to that of Theorem 2.1 in [3] and therefore is
omitted.

The following lemma is needed to examine the minimizing sequences for m✏,i.

Lemma 5. Suppose that Q satisfies condition (Q). Let 1  j  k be fixed. Then
for every u 2 M✏,j there exists � > 0 and a di↵erentiable function t = t(w) defined
for w 2 H1

� (⌦) with kwk  � such that t(0) = 1. Moreover v = t(w)(u�w) 2 M✏,j,
and for  2 H1

� (⌦) we have

ht0(0), i =
2
R
⌦rur dx�G(u, )R

⌦

�
|ru|2 � (p� 1)Q(x)up�2

✏ u2
�
dx

, (29)

where

G(u, ) = (p� 1)
Z

⌦
Q(x)(|u| + u✏)p�2u dx

�
Z

⌦
Q(x)

�
(|u| + u✏)p�1 � up�1

✏

� u

|u| dx.
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Proof. We follow some ideas from the paper [17] (Lemma 2.4). However, the proof
of Lemma 5 is more involved. We define a function F : [0,1)⇥H1

� (⌦) ! R by

F (t, w) = t

Z
⌦

|r(u� w)|2 dx�
Z

⌦
Q(x)

�
(u✏ + t|u� w|)p�1 � up�1

✏

�
|u� w| dx.

Since u 2 M✏, we have F (1, 0) = 0, and moreover

d

dt
F (1, 0) =

Z
⌦

�
|ru|2 � (p� 1)Q(x)(u✏ + |u|)p�2u2

�
dx

=
Z

⌦
Q(x)

�
(|u| + u✏)p�1 � up�1

✏

�
|u| dx� (p� 1)

Z
⌦

Q(x)(u✏ + |u|)p�2u2 dx

=
Z

⌦
Q(x)

⇥�
(|u| + u✏)p�1 � up�1

✏

�
|u|� (p� 1)up�2

✏ u2
⇤
dx

� (p� 1)
Z

⌦
Q(x)

�
(|u| + u✏)p�2u2 � up�2

✏ u2
�
dx

= �(p� 2)
Z

⌦
Q(x)

�
(|u| + u✏)p�1 � up�1

✏ � (p� 1)up�2
✏ |u|

�
|u| dx

+ (p� 1)
Z

⌦
Q(x)

�
(|u| + u✏)p�2u2

✏ � up�1
✏ � (p� 2)up�2

✏ |u|
�
|u| dx

 ��
Z

⌦
Q(x)

�
(|u| + u✏)p�1 � up�1

✏ � (p� 1)up�2
✏ |u|

�
|u| dx

(30)

for some � 2 (0,min{1, p � 2}). In the last step we have used inequality (A.3) in
the Appendix. We claim that there exists a constant L > 0 such thatZ

⌦
|ru|2 dx � L and

Z
⌦

�
|ru|2 � (p� 1)Q(x)up�2

✏ u2
�
dx � L (31)

for all u 2 M✏. Indeed, it follows from (2) and inequality (A.4) that

�
1� 1

µ

� Z
⌦

|ru|2 dx 
Z

⌦

�
|ru|2 � (p� 1)Q(x)up�2

✏ u2
�
dx

=
Z

⌦
Q(x)

�
(|u| + u✏)p�1 � up�1

✏ � (p� 1)up�2
✏ |u|

�
|u| dx

 C

Z
⌦

Q(x)
�
|u|p + up�2�✓

✏ |u|2+✓
�
dx

 C
⇥� Z

⌦
|ru|2 dx

� p
2 + ku✏kp�2�✓

� Z
⌦

|ru|2 dx
� 2+✓

2
⇤

(32)

for some C > 0, ✓ 2 (0, p� 2). The claim (31) easily follows from (32). Combining
(30), (31) and (32) we obtain

d

dt
F (1, 0)  ��

Z
⌦

�
|ru|2 � (p� 1)Q(x)up�2

✏ u2
�
dx  ��L

�
1� 1

µ

�
< 0.
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Therefore by the implicit function theorem there exists a function t defined on a ball
{w 2 H1

� (⌦) : kwk < �}, where � > 0 is small, such that t(0) = 1, t(w)(u�w) 2 M✏.
By the continuity of �, taking � smaller if necessary, we have �(t(w)(u � w)) 2
B(aj , �). Finally, the implicit di↵erentiation of F (t(w), w) = 0 gives formula (29).

5. Proof of Theorem 1. In order to prove Theorem 1 we consider a minimizing
sequence {uj

m} for m✏,j . A starting point is to show that a minimizing sequence {uj
m}

can be chosen so that I 0✏(uj
m) ! 0 in H�1(⌦). This will be shown using the Ekeland

variational principle ([11]) and Lemma 5.

Proposition 1. Suppose that condition (Q) holds. Then for each ✏ 2 (0, ✏�] there
exist sequences {vj

m} ⇢ M✏,j, j = 1, . . . , k, such that vj
m � 0 and I✏(vj

m) ! m✏,j

and I 0✏(vj
m) ! 0 in H�1(⌦) as m !1.

Proof. Let �j denote the boundary of the set M✏,j ; that is, �j = {u 2 M✏ : �(u)
2 S(aj , �)}. Then M̄✏,j = M✏,j [ �j . According to Lemmas 2 and 3 we have

m✏,j = inf{I✏(u) : u 2 M̄✏,j} < inf{I✏(u); u 2 �j}. (33)

Let {vj
m} ⇢ M̄✏,j be a minimizing sequence for m✏,j . Replacing vj

m by |vj
m|, if

necessary, we may assume that vj
m � 0 in ⌦. By virtue of Ekeland’s variational

principle, for each 1  j  k we can find a sequence {uj
m} ⇢ M̄✏,j such that

⇢
I✏(uj

m)  I✏(vj
m) < m✏,j + 1

m , kuj
m � vj

mk  1
m

I✏(uj
m) < I✏(w) + 1

mkw � uj
mk

(34)

for every w 2 M̄✏,j and w 6= uj
m. For simplicity we suppress the superscript j in uj

m;
i.e., we write um = uj

m. According to Lemma 5, for each um there exist a constant
✓m > 0 and a function tm(w) defined in a ball {kwk < ✓m} ⇢ H1

� (⌦) such that
tm(w)(um � w) 2 M✏,j . Let 0 < ✓ < ✓m, u 2 H1

� (⌦) with u 6⌘ 0, and set w✓ = ✓u
kuk .

For a fixed m we consider v✓ = tm(w✓)(um �w✓). Since v✓ 2 M✏,j , by (34) we have

I✏(v✓)� I✏(um) � � 1
m
kv✓ � umk.

Applying the Taylor expansion we get

hI 0✏(um), v✓ � umi+ o(kv✓ � umk) � �
1
m
kv✓ � umk.

Consequently we have

hI 0✏(um),�w✓ + (tm(w✓)� 1)(um � w✓)i � �
1
m
kv✓ � umk+ o(kv✓ � umk),
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and hence
hI 0✏(um),�w✓i+ (tm(w✓)� 1)hI 0✏(um), um � w✓i

� � 1
m
kv✓ � umk+ o(kv✓ � umk).

(35)

Since hI 0✏(v✓), tm(w✓)(um � w✓)i = 0, we deduce from (35) that

hI 0✏(um),�w✓i+
tm(w✓)� 1

tm(w✓)
hI 0✏(um)� I 0✏(v✓), tm(w✓)(um � w✓)i

� � 1
m
kv✓ � umk+ o(kv✓ � umk).

This estimate can be rewritten in the form

hI 0✏(um),
u

kuki 
1

m✓
kv✓ � umk+ o

�kv✓ � umk
✓

�

+
tm(w✓)� 1

✓
hI 0✏(um)� I 0✏(v✓), um � w✓i.

(36)

Since kv✓ � umk  ✓ + C|tm(w✓)� 1| and by (29) and (32)

lim
✓!0

|tm(w✓)� 1|
✓

 kt0m(0)k+ C̃

for some constants C > 0 and C̃ > 0 independent of ✓ and m, we deduce from (36),
letting ✓ ! 0, that

hI 0✏(um),
um

kumk
i  C

m
. (37)

Here we have used the fact that v✓ ! um in H1
� (⌦) and I 0✏(v✓) ! I 0✏(um) as ✓ ! 0.

Inequality (37) yields that kI 0✏(um)kH�1(⌦) ! 0 as m ! 1. Since kvj
m � uj

mk ! 0
as m !1, we see that kI✏

0(vj
m)kH�1(⌦) ! 0 as m !1 which completes the proof.

Proof of Theorem 1. According to Proposition 1, for each j, j = 1, . . . , k, there
exists a minimizing sequence {uj

m} ⇢ M✏,j such that I✏(uj
m) ! m✏,j and I 0✏(uj

m) !
0 in H�1(⌦) as m !1. By virtue of Lemmas 2 and 3 we have

m✏,j <
S

N
2

NQ
N�2

2
M

< m̄✏,j , j = 1, . . . , k.

Therefore by Lemma 4 {uj
m} satisfies the Palais–Smale condition and we may assume

that uj
m ! uj

✏ in H1
� (⌦) and uj

✏ � 0 in ⌦. Hence I✏(uj
✏) = m✏,j and �(uj

✏) 2 B(aj , �).
Since I 0✏(uj

✏) = 0, j = 1, . . . , k, uj
✏ are weak solutions of problem (4) and ũj

✏ = uj
✏+u✏,

j = 1, . . . , k, are distinct positive solutions of problem (1n). To show the second
part of our assertion it is su�cient to prove that

|ruj
✏ |2 ! Q

�N�2
2

M S
N
2 �aj and |uj

✏ |p ! Q
�N

2
M S

N
2 �aj (38)
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as ✏ ! 0 in the sense of measure. Since u✏ ! 0 in H1
� (⌦) as ✏ ! 0, the assertion

will follow from (38). We follow the argument used in the proof of Lemma 2. Since
I✏(uj

✏) = m✏,j and hI 0✏(uj
✏), uj

✏i = 0, we can show thatZ
⌦

Q(x)|uj
✏ |p dx � L and

Z
⌦

|ruj
✏ |2 dx � L (39)

for some constant L > 0 and all ✏ 2 (0, ✏�]. Let

tj✏ =
� R

⌦ |ruj
✏ |2 dxR

⌦ QM (uj
✏)p dx

� 1
p�2 ,

and we set vj
✏ = tj✏u

j
✏ . Then vj

✏ satisfiesZ
⌦

|rvj
✏ |2 dx =

Z
⌦

QM (vj
✏ )

p dx.

As in the proof of Lemma 2 we show that for some sequence {✏m} ⇢ (0, ✏�) with
✏m ! 0, tj✏m

! tj� and 0 < tj�  1. Also, as in the proof of Lemma 2 we can derive
the following relation:

lim
m!1

Z
⌦

|ruj
✏m

|2 dx = lim
m!1

Z
⌦

Q(x)(uj
✏m

)p dx =
S

N
2

Q
N�2

2
M

. (40)

Finally, we let zj
m = vj

✏m

kvj
✏mkp

. Then

Z
⌦

|rzj
m|2 dx = Q

2
p

M

R
⌦ |ruj

✏m
|2 dx� R

⌦ QM (uj
✏m)p dx

� 2
p

= Q
2
p

M

� Z
⌦

|ruj
✏m

|2 dx
�1� 2

p
�
tj✏m

� 2(p�2)
p ,

and by (40) we have

lim
m!1

Z
⌦

|rzj
m|2 dx = t

4
N� S.

We necessarily have t� = 1. Therefore by the result of P.L. Lions ([14], Theorem
4.1—see also Coron [10], Théorème 2) |rzj

m|2 ! S�x�,j and |zj
m|p ! �x�,j in the

sense of measure for some x�,j 2 B(aj , �) because

�(zj
m) =

R
⌦ x|rzj

m|2 dxR
⌦ |rzj

m|2 dx
! x�,j .

We now observe that by (40) we have

S
N
2

Q
N�2

2
M

= lim
m!1

Z
⌦

|ruj
✏m

|2 dx

= lim
m!1

�
tj✏m

��pkvj
✏m
kp

p

Z
⌦

Q(x)|zj
m|p dx = Q�1

M

S
N
2

Q
N�2

2
M

Q(x�,j)



multiple solutions of nonhomogeneous elliptic equation 811

which necessarily implies that x�,j = aj .

6. Proof of Theorem 2. The method used to prove Theorem 1 can also be
employed to show the existence of k distinct positive solutions of problem (1d). We
commence by showing that problem (1d) has a minimum solution.

Lemma 6. Suppose that condition (Q) holds. Then problem (1d) has a minimum
solution u✏ satisfying Z

⌦
|ru✏|2 dx  ✏C

for some constant C > 0 depending on g, and moreover there exists a constant µ > 1
such that Z

⌦
|rv|2 dx � µ

N + 2
N � 2

Z
⌦

Q(x)u
4

N�2
✏ v2 dx

for all v 2 H1
� (⌦).

Proof. Let v� be a solution of the problem
⇢ ��v = 0 in ⌦

v = g on @⌦.
(41)

It is known that v� satisfies
Z

⌦
|rv�|2 dx  Ckgk

H
1
2

for some C > 0. We define a functional I : H1
� (⌦) ! R by

I(w) =
1
2

Z
⌦

|rw|2 dx� 1
p

Z
⌦

Q(x)(w + ✏v�)p dx.

It is easy to see that the following minimization problem:

inf{I(w) : kwk < ⇢} < I(0) = � ✏p

p + 1

Z
⌦

Q(x)vp
� dx, ⇢ > 0,

has a solution w✏ 2 H1
� (⌦). The minimizer w✏ is a positive solution of the problem

⇢ ��w = Q(x)(w+ + ✏v�)p�1 in ⌦
w = 0 on @⌦.

Hence we have Z
⌦

|rw✏|2 dx =
Z

⌦
Q(x)(w✏ + ✏v�)p�1w✏ dx. (42)
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On the other hand

I(w✏) =
1
2

Z
⌦

|rw✏|2dx� 1
p

Z
⌦

Q(x)(w✏ + ✏v�)pdx  1
p
✏p
Z

⌦
Q(x)vp

�dx,

and this combined with (42) and (A.2) gives

1
N

Z
⌦

Q(x)(w✏ + v�)p�1w✏ dx  ✏

p

Z
⌦

Q(x)
�
(w✏ + ✏v�)p�1 � ✏p�1vp�1

�
�
v� dx

 C✏

Z
⌦

Q(x)
�
✏wp�2

✏ v� + ✏p�1vp
�
�
dx

which implies using the Young inequality
Z

⌦
wp

✏  C✏p
Z

⌦
vp
� dx

for some constant C > 0. Let ũ✏ = w✏ + ✏v�. Then ũ✏ is a positive solution of
problem (1d). As in [1] we can show using the method of sub- and supersolutions
([13]) that problem (1d) has a minimum positive solution u✏ such that u✏  ũ✏ on
⌦. Using this fact, as in [1], we can derive the second assertion of this lemma. ⇤

Since problem (1d) has a minimum solution with properties stated in Lemma 6
we can show, repeating the arguments used in the proof of Theorem 1, that problem
(1d) has k positive solutions.

7. Appendix. We list here some algebraic inequalities used in this paper. We
always assume that a � 0, b � 0 and 2 < p < 1.

p
�
(a + b)p�1 � bp�1

�
a� 2

�
(a + b)p � bp � pbp�1a

�
� l

�
(a + b)p�1 � bp�1 � (p� 1)bp�2a

�
a,

(A.1)

where l = min{p� 2, p
3},

0  (a + b)p�1 � ap�1 � bp�1  C(ap�2b + bp�1) (A.2)

for some constant C > 0,

(p� 2)
�
(a + b)p�1 � ap�1 � (p� 1)ap�2b

�
� (p� 1)

�
(a + b)p�2a

� ap�1 � (p� 2)ap�2b
�
� �

�
(a + b)p�1 � ap�1 � (p� 1)ap�2b

�
,

(A.3)

where � 2 (0,min{1, p� 2}),
�
(a + b)p�1 � ap�1 � bp�1 � (p� 1)ap�2b

�
 C

�
bp�1 + ap�2�✓b1+✓

�
(A.4)
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for some C > 0 and ✓ 2 (0, p� 2).

Proof. We only prove (A.1) and (A.3). If b = 0 then (A.1) holds. If b > 0 then
(A.1) is equivalent to

p
�
(1 + s)p�1 � 1

�
s� 2

�
1 + s)p � 1� ps

�
� l

�
(1 + s)p�1 � 1� (p� 1)s

�
s

for s � 0. To show this we set

K(s) = p
�
(1 + s)p�1 � 1

�
s� 2

�
(1 + s)p � 1� ps

�
� l

�
(1 + s)p�1 � 1� (p� 1)s

�
s.

We check that K(0) = 0, K0(0) = 0 and

K00(s) = (p� 1)
�
(p� 2)(p� l)(1 + s)p�3s + 2l � 2l(1 + s)p�2

 
.

If p � 3, then

(p� 2)(p� l)(1 + s)p�3s� 2l
�
(1 + s)p�2 � 1

�
= (p� 2)(p� l)(1 + s)p�3s� 2l(p� 2)(1 + ✓s)p�2s � 0

provided 2l  p� l; that is, l  p
3 .

If p < 3, then

(p� 2)(p� l)(1� s)p�3s� 2l(1 + s)p�2 + 2l

= (1 + s)p�3
�
(p� 2)(p� l)s� 2l(1 + s)

�
+ 2l

= (1 + s)p�3
�
(p� 2)(p� l)s� 2ls

�
� 2l(1 + s)p�3 + 2l

= (1 + s)p�3s
�
(p� 2)(p� l)� 2l

�
+ 2l

�
1� (1 + s)p�3

�
� 0

provided 2l  (p � 2)(p � l); that is, l  p � 2. Hence, if l  min{p
3 , p � 2)}, then

K(s) � 0 for s � 0 and inequality (A.1) follows. To establish (A.3) it is su�cient
to consider the function

H(s) = (p� 2� �)[(p� 1)(1 + s)p�2 � 1� (p� 1)s]

� (p� 1)[(1 + s)p�2 � 1� (p� 2)s]

for s � 0 and show that H(s) � 0 for s � 0.
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