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1. Introduction. The main purpose of this work is to investigate the existence
of multiple positive solutions of the following problem:
—Au = Q(z)|ulP~2u + eh(z) in Q (L)
u =0 on 012, "

where Q is a bounded smooth domain in RY (N > 3), p = ﬁ—ﬁfz is a critical Sobolev
exponent, h € L?(Q), with h > 0, Z 0 on 2, Q € C(Q) is positive and € > 0 is a
parameter.

In recent years several authors have studied problems of this nature (see for
example [3], [4], [16], [14], [15]. In particular, in the case where Q(z) = 1 on {2,
Tarantello ([17]) proved the existence of at least two positive distinct solutions for
e > 0 small. This result has been extended by Rey ([16]) who proved that problem
(1,,) has at least cat © + 1 positive distinct solutions for € > 0 small.

In this paper we are concerned with the effect of the shape of the graph of @ on
the number of positive solutions. Throughout this paper we assume the hypothesis

Q) QeC(),Q > 0onQand there exist points ai,...,a, € Q where Q
takes on strict local maxima; i.e., Q(a;) = maxzcq Q(x) and Q(z) < Q(a;) for x in
a neighbourhood Uj of a;, j = 1,... ,k, and moreover for x € U;

;2),

In what follows we use the notation Qs = max,cq @(z). The main results of this
paper are the following:

N

Q(z) — Qag) = o(|lz — aj|
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798 DAOMIN CAO AND J. CHABROWSKI

Theorem 1. Suppose that Q satisfies (Q). Then there exists €, > 0 such that for
€ € (0,¢5], problem (1,,) has, besides a minimum positive solution which tends to 0
in HY(Q) as e — 0, at least k positive distinct solutions u; . satisfying

2 _N=2 N _N N
|VUZ‘75| - QM * 5 6ai and |ui,6’p - QM2 S 5&1'

in the sense of measure as € — 0, where 0, is the Dirac measure assigned to a; and
S is the best Sobolev constant for a continuous embedding of H(Q) into LP(£2).

The second result is concerned with the Dirichlet problem with nonzero boundary
data

—Au = Q(x)|u/P?u in
(su=awl 0 W

u(z) = eg(x) on 0%,

where g € H2(8Q)NL>®(8Q), g > 0, # 0 on Q2 and € > 0 is a small parameter and
082 is smooth.

Theorem 2. Suppose that condition (Q) holds. Then there exists €, > 0 such that
for each € € (0,¢,], problem (14) has, besides a minimum positive solution which
tends to 0 in H*(Q) as € — 0, at least k distinct positive solutions v¢, i =1,... k,
in H*(Q) satisfying

N
2

Voil? = Q% S%6. and il — Q2 S%s
€ M a; € M Qg

in the sense of measure as € — 0.

We mention here some earlier work dealing with the effect of the shape of @
on the number of solutions. Cao and Noussair ([7]), under assumptions similar to
those of Theorem 1, have established the existence of at least k positive and & nodal
solutions for the homogeneous problem

—Au=Q(z)uP2u+eu in Q
u=20 on Of.

Their result generalizes to some extent the work of Escobar ([12]), who proved the
existence of at least one positive solution for each € € (0, A1), where A1 is the smallest
eigenvalue of —A with zero Dirichlet boundary values. A similar result has also been
established for the problem

{ —Au+ = Q(x)|u/"2u in RV
u € HYRY)

with 2 < 1 < 22 in [6] for A > 0 large or for fixed A > 0 and [ close to 22 in [9].
The paper is organized as follows. In Section 2 we reduce problem (1,) to prob-
lem (4). Problem (4) will be solved by constrained minimization subject to artificial
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constraints. However, in order to obtain the existence of k critical points we mini-
mize a variational functional for problem (4) on suitably chosen subsets of artificial
constraints which can be constructed using the assumption that ¢ has k strict local
maxima on {2. The main point is to show that infima of these localized minimizing
problems belong to the range of the level sets of the variational functional for prob-
lem (4) for which the Palais—-Smale condition holds (see Sections 3 and 4). Applying
the Ekeland variational principle, we construct in Section 5 minimizing sequences
satisfying the Palais—Smale condition. In Section 6 we briefly show how results of
Sections 2-5 can be used to obtain k distinct positive solutions of the Dirichlet
problem (1) with nonzero boundary conditions.

2. Preliminaries. In this paper we use standard notation and terminology. We
denote by H!(€2) a Sobolev space defined as a completion of C2°(Q2) with respect

to the norm
Hu\:(/ Vul?de)?.
Q

Its dual space is denoted by H~1(€). The norm in the space L4(Q), 1 < g < oo, is

denoted by
Jully = ( / ] da) .
Q

We always denote in a given Banach space X a weak convergence by “—” and a
strong convergence by “—”. The duality pairing between X and its dual X* is
denoted by (-, -).

We say that a C! functional F' : X — R satisfies the Palais-Smale condition
at level ¢ (the (PS). condition for short) if each sequence {u,,} C X such that
F(up,) — c and F'(u,,) — 0 in X* is relatively compact in X.

For r > 0 and z, € RY we let B(zo,7) = {x € RN : |z — 25| < 7} and
S(zo,7) = {x € RN : |2 — 20| =1}

According to results in [8] (see Lemma 3 there) there exists €, > 0 (small) such
that for each 0 < € < ¢, problem (1,,) has a minimum positive solution u. which
satisfies

N|=

[ vul o= - vu [ Qe ds 2)

Q Q

for all u € H!(Q) and some constant x> 1. Furthermore, u, satisfies the estimate
[uell < CellRlla 3)

for some constant C' > 0.
One of the main objectives of this paper is to look for solutions of (1,,) which are
of the form u = v 4+ u., where v is a positive solution of the following problem:

{—szw((w)p- —u™) in 0 (@)

v=>0 on 0f).
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A similar idea will be used in Section 6 to solve the Dirichlet problem (14). We set
flot) = { Q) ((t + u)P~t —up™t) forzxeQ, t>0
U Q(fﬂ)(_(—t + ue)Pt + u]g_l) forx e Q, t<O0;

that is, fc(z,t) = —fe(x,—t). Solutions to problem (4) will be found as critical
points of a variational functional I, : H(2) — R given by

1
:—/ \Vu|2d:6—/FE(:L",u)dx
2 Ja Q

F(z,t) = /o fe(z,8)ds = %Q(x)((]t! + ue)? — u? —puf‘l\t\).

From now on it is assumed that 6 > 0 is chosen so that Q(z) < Q(a;) for z €
B(a;,0) —{a;} CU;yi=1,...,k (see assumption (Q)). Let

Me = {u € Hy(Q) — {0} : (I;(u), u) = 0}.
Lemma 1. Let [ = min{p —2,Z}. Then there exists a constant C, > 0 such that
l

1 2
%(1 - ;) /Q ]Vu| dz > Ceo (5)

where

I(u) >

for allu € M, and € € (0,¢,).
Proof. Let u € M,. Then by inequality (A.1) in the Appendix and (2) we have

1 9 1 P _ P — puP Hul) de
= 5/9|Vu’ dx — B/{)Q(x)((m + ue) ¢ —pul”| D d
- L T Qpllul+ur —uz )i

—2((Ju] + ue)? — u? — puP~|ul) } do (6)
> / Q) {((jul + w ™ = w2~ ul = (p = Du*Jul*} da
l 1
= Vul? — (p — 1)Q(x)ul~u? d:L‘>—1——/Vu2dx.
o [V = o= D@ o> La- 1) [ (7

Since u € M., we have by (A.2) and the Sobolev inequality that
[ 19 ds = [ @@l s+ [ Q)((ul + )~ = a2t = P ) ul o
0 Q Q
< / Q(z)|ulP dz + C'/ Q(x)(\u|p + uf*2u2) dx (7)
Q Q

< (C—f—l)QMS_%(/ ]Vu|2dx)% —i—CQMHuer_Q/ |Vu|? dx
Q Q
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for some constant C' > 0 independent of e. We may now assume, taking €, smaller
if necessary, that (1 — C’QMSP%HUEHPQ) > 1 for all 0 < € < €. This combined
with (7) yields

/ YVl de > Cy (8)
Q
for all u € M, and some constant C; > 0. The assertion follows from (6) and (8).

3. Localization of constraints. We minimize the functional I, on some subsets
of constraints M,. For this we need a functional 3 : H(Q) — {0} — RY defined by

~ JoxlVul? da

flu) = o IVuldz

We set M ; = {u € M, : B(u) € B(a;,d)}, j=1,... k. It is easy to see that M ; is
nonempty for each j. Indeed, let u, € C?(B(a;,d)) be such that supp u, C B(0,3)
and u, # 0. Since (I'(tuo),tuc) > 0 for t > 0 small and (I.'(tuo),tuo) < 0 for
t > 0 large we can find t, > 0 such that t,u, € M.. It is easy to show that
B(tous) € B(aj,d). We now consider the following variational problems:

me; = inf{l(u) :ue Mc;} and mc; = inf{l.(u) : v € M., f(u) € S(a;,9)},

i=1,...,k

Lemma 2. Suppose that condition (Q) holds. Then there exists a constant v > 0
such that for all € € (0, €] we have
gX
mm- > 7272 + v, (9)
NQ,7

where €, is a constant from Lemma 1.

Proof. In the contrary case there exists a sequence {¢,,} C (0, €], such that €, — 0
and Y
Sz

N—2

NQ,/

for some 1 < i < k. Hence we can find a sequence {u,,} C H(Q) with u,, € M.,
satisfying

mem,i — C S

v|Z

S

I, (um) = ¢ < ——F=%
NQ,/

as m — oo and [(un,) € S(ai,d) for each m. This means that

/ ]Vum|2dx — / Q(:U)((|um| + uem)p_1 — uf;1)|um| dr =0 (10)
Q 0
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and
1 2 1 P p p—1
5 Q\Vum\ dw—z—j QQ(fv)((lumHuem) —ul  —pul tup|) de = c+o(1), (11)

where o(1) always denotes a quantity satisfying o(1) — 0 as m — oo. It follows
from (10) and (11) that

3 [ Q@) (fm + 1, )7 = a2 da

1
— ; / Q(x)((\um\ + te,, )P —uf —pu€;1|um\) dx =c+o(1),
Q

which implies

~ [ Q@ unl + e, 7de s 5 [ Qe da
Q Q

1 1 (12)
:c—i-}—j/QQ(:L‘)ufmd:L‘+E/QQ(:U)(]um]—i—uem)p1u5m dx + o(1).

An application of the Holder inequality to the last integral on the right side of (12)
gives

/QQ(:U)(|um| bue WPdz < C (13)

for some constant C' > 0 independent of m. Combining (10) and (12) we obtain

/Q |V, (z)]? de < C (14)

for some constant C' > 0 independent of m. As in the proof of Lemma 1 we show
that there exists a constant L > 0 such that

/ Q(z)|um|P dx > L and / Vi, |? dz > L (15)
Q Q

for all m. Let
Jo [Vum|*de | 1.

I Qurlumda)

and set v,, = t;nU;,. Then v, satisfies

/|va|2d:c:/QM|vm|pd:c.
Q Q

=
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On the other hand it follows from (10) and (A.2) that

) dz
for some constant C' > 0 independent of m, which implies

Jo |Vum|? dz <1 C S5 (Jlue, tm] [P~ + [, [P~ luml)
Jo Qultm|P de — Jo Quilum|P dx '

Taking into account the definition of ¢,, and (15) we derive from the last estimate,
by choosing a subsequence, if necessary, that

Hm tp, =to <1, t,>0. (16)

m— 00

We now show that ¢, = 1. Since ||uc,, || — 0 we deduce from (10), taking a subse-
quence if necessary, that

lim |V, |?de = lim /Q(m)|um|pd$
Q m—00 Q

m— 00
Hence

c—hmI (Up,)

= hm{ /|Vum\ dac——/Q |um\+u€m)p—u€m—puf;1|um\) dx}

1
=5 lim /|Vum\2dx< —72.
m— NQM2
Thus N
S_
tim [ [V dz = lim /Q Ve |P d < —2 (17)
Let wy, = = . Then ||wy,||, = 1, and moreover

TomT p

- s =Q 2

||Um||2 (fQ [um|P dz) * M(fQ Qulum? dz)?
% 2 Jo|Vum[*dz 2
ol et

12M
Q

(/ Vup|?dz) "ty ”
Q

/’Vw \de:fngmlqur Jo [Vum|? dz _ Jo [Vum|* da
Q

i’t&lt\)
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4
Using (17) we deduce from this that lim, .o [, |[Vw,|? dz < t2°S. Since S is the
best Sobolev constant we necessarily have t, = 1, and {wy, } is a minimizing sequence
for S. It follows from [14] that there exists z, € § such that

|Vwm]2 — 80, and |wy,|P — O, (18)

in the sense of measure, where 0, is a Dirac measure assigned to x,. Since (u,,) €
S(a;, ), we have

_ Jo 2| Vum|* dx _ Jo 2| Vwm|* d s
Jo IVt |? da Jo IVwn,|? dz °

Hence z, € S(a;,0). Since t, = 1 we obtain by (17) and (18)

B(um)

N
SN_2 = lim |Vt |? da
Q > m—oo fq
S5
= lim 7 loml? /Q Q@) fwn|? dr = Q3 2 Q)
m—0o0 2
M

that is, @y = Q(zo), which is impossible, and this completes the proof. [

We now estimate m,. ;. We follow the method from the paper [3]. Let ¢ be a
C?(RM) radial function such that ¢(z) = 1 for € B(0,2), ¢(z) = 0 for z €
RY — B(0,6), 0 < ¢(z) <1 on RY and |[V¢(z)| < 3 on RY. As in [3] we set

_N-2

Ura, () = A+ |z —a;)"77, A>0

and

Ux,a, () = Una; (2)0(z — aj)
,aj |’U>\7a‘7_(.)¢<_ _aj)Hp.

In Lemma 3 below we use the following asymptotic properties of vy ,; which are
taken from the paper [3]:

N—-2

/ [VUre,|?de=5+O(\"2 ) for A small, (19)
RN
AX+o(N) N >5
/ vf\’aj dr = ¢ AXlog A +0o(\) N=4 (20)
“ AV +O0(N) N=3
N-—2

K dx dx
for A small, where A = 22, K» = (fRN W> N K3 = [on TF =)~ 2

N N
/’U)]\\ZQQ dr = O()\Tllog)\’) for A\ small, (21)
Q

/ B ldr =27 (K +0(1)) for A small , (22)
Q J
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dx dx N+2
K — / / TN
RN u.+\x|)”*2( RN U-+\xP)N)
Finally, with the aid of condition (Q) we derive the following asymptotic relation:
| @@k, do=Qur [ 4, do= [ (Qu - Q@) do
Q Q Q :

= Qu+o(\T).
Lemma 3. Suppose that condition (Q) holds. Then for every fized ¢ € (0,€,) we
have

where

(23)

Sz .
0<me; < —, =1,... k. (24)
NQ,/

Proof. For ¢t > 0 we write

I(tvxa,) = /mm i [ Qs
— —/ Q(z) ((tvr,a; + ue)? — ul — (tvxq, )P — ptul ™ vy 4,) dz.
pJa ‘ '

Since for A > 0 small (Iel(tv,\,a ), tvx.q;) < 0 for t > 0 large and (/. "(tvy, a; ) tUxa;)
> 0 for t > 0 small, it is easy to see that for A > 0 small enough we can find ) o; > 0
such that ty q,;vx.q; € Mc and B(txq;Vx,q,) € B(a;,0). Therefore to prove (24) it is
sufficient to show that

S5
max I (tvyq;) < ~— (25)
>0 : NQ,S

for A > 0 small. Arguing as in [3] we can find £, > 0 such that max;> I(tvy,a,) =
Ie(f,\m,aj), and moreover ty € [ti,t] for some 0 < t; < t, independent of \ (for
A > 0 small). Hence we have

t2 tP
max I (tvy,q,) < max{—/ VU, | dz — —/ Qz)f , dx}
t>0 : 2 Jq ‘ P Ja Y (26)

B tel[%i%z] / Q@) ((tora; +ue) —uf = (tora;)” = ptule)_lwvaj)dx}a

and by (19) and (23)
111>a§<{ /\Vma]| d:p—/Q jd:r:}

_ o+ 2 fQ’V”A,aj’ dx 25
N/S;‘VU/\,(Z]" dm(fQ Q(J:)U;f\@j dflf) (27)

S+0O\7)
N_2 = n—z T O A7),
))(QM+0(A 7 )) NQ,? ( )

1 N—2
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On the other hand it follows from [2] that
[ Q@) ((t0ra, + 7 = = (b0, )7 ptos o, ) do
Q

N ~
> p/ Q(:E)ue(tw\,aj)pfl dx — C/ Quud * (tvya,) V-2 du,
Q Q

where C' > 0 is a constant independent of A and ¢. Using asymptotic relations (21)
and (22) we deduce from the last inequality that

ter[rtlli,rllh] /Q Q@) ((tv’\’aj +ue)? —uf — (tUA,aj ) DU a; Ui)_l) dx

N N
>t [ Qeuad ) do - 08 Qulud £ [ of7ar 29
Q A Q ) a
> AT +O(AT|logA|) > an" T
for some constants ¢ > 0 and ¢ > 0. By virtue of (26), (27) and (28) we get

N
Sz N N—2

—2 N—2
max[e(tw\,aj) < —n~—=2 — C 4 +O(A 2 ) + 0()\ 4 ) < N_2
t>0 JVCQAf ]VCQ;F_

for A > 0 small, and this completes the proof.

4. Palais—Smale condition. In Lemma 4 below we determine the range of
energy levels of the functional I. for which the Palais—-Smale condition holds.

Lemma 4. Suppose that Q satisfies (Q). Then I. satisfies the (PS). condition for
N
=3
NQ,,?
The proof of this lemma is similar to that of Theorem 2.1 in [3] and therefore is
omitted.
The following lemma is needed to examine the minimizing sequences for m ;.

Lemma 5. Suppose that Q satisfies condition (Q). Let 1 < j < k be fixzed. Then
for every uw € M ; there exists X > 0 and a differentiable function t = t(w) defined
for w € HY(Q) with ||jw|| < X such that t(0) = 1. Moreover v = t(w)(u—w) € M. ;,
and for ¢ € HX(Q) we have

¢ € (—oo,

2 [ Vuvy do — Glu, )
Jo(IVul? = (p - 1)Q($)u€_2u2) dx

(t'(0),4) = : (29)

where

Glu) = (p—1) /Q Q) (u] + ue)P~2utp da
- /Q Q@) ((ful + uy?~ — w2 Ly d.

|ul
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Proof. We follow some ideas from the paper [17] (Lemma 2.4). However, the proof
of Lemma 5 is more involved. We define a function F : [0,00) x H!(Q) — R by

F(t,w):t/Q|V(u—w)\2dx—/QQ(x)((ue—i—t\u—w\)p_l—uf_1)|u—w|da:.

Since u € M., we have F(1,0) = 0, and moreover

iFu 0) = /Q(yw? — (p— 1)Q(a)(ue + |ul)P?u?) dx

/Q (lul + ue)P~" — w2~V |ul dz — (p — 1) /Q (e + Jul)P~2u? d
- /Q Q@) [((lul + )P~ — w2~ u] — (p — V2] da
1) / Q) ((Ju] + ue)P~2u® — wP~2u?) da (30)
— -2 / Q) (Ju] + )™ — ™ — (p— 1yu~Ju])[u] de
Q
1) / Q) (Ju] + ue)P~2u2 — u?=* — (p — 2)ul=2[ul)|u| dx
<o / Q@) (Jul + )P~ — uP~t — (p — 1)u?2[uf)[u] da
Q

for some o € (0, min{1,p — 2}). In the last step we have used inequality (A.3) in
the Appendix. We claim that there exists a constant L > 0 such that

/ |Vu|*dr > L and / (IVul® = (p — 1)Q(z)u?*u?)dz > L (31)
Q Q

for all u € M. Indeed, it follows from (2) and inequality (A.4) that

1 2 2 _(p— 2)uP~%u?) dx
(1__)/ 1V da;</Q(|Vu| (» — DQ(z)uf " u®)d

/ Q@) ((ful + )" — w2 — (p— 1yu?2[u])|u| da

(32)
<C /Q Q) ([ul? + uP 20 |u[>+0) da

5 240
< C[(/Q\Vulzdw)z + ||Ue||p_2_9(/Q|Vu\2dx) =]

for some C' > 0, 6 € (0,p — 2). The claim (31) easily follows from (32). Combining
(30), (31) and (32) we obtain

%F(l 0) < /Q(lwr2 —(p = 1)Q(2)ul~*u?) dx < —oL(1 — i) <0.
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Therefore by the implicit function theorem there exists a function ¢ defined on a ball
{w e HYQ) : |Jw|| < A}, where A > 0 is small, such that t(0) = 1, t(w)(u—w) € M..
By the continuity of (3, taking A smaller if necessary, we have [(t(w)(u — w)) €
B(aj,0). Finally, the implicit differentiation of F(t(w),w) = 0 gives formula (29).

5. Proof of Theorem 1. In order to prove Theorem 1 we consider a minimizing
sequence {u, } for m. ;. A starting point is to show that a minimizing sequence {u?, }
can be chosen so that I’ (u?,) — 0 in H~1(Q). This will be shown using the Ekeland
variational principle ([11]) and Lemma 5.

Proposition 1. Suppose that condition (Q) holds. Then for each € € (0,¢,] there
exist sequences {vl,} C M., j = 1,...,k, such that v}, > 0 and I.(v})) — m;
and I'(vl) — 0 in H=Y(Q) as m — oo.

Proof. Let I'; denote the boundary of the set M, j; that is, T'; = {u € M, : B(u)
€ S(aj,0)}. Then M, ; = M. ; UT';. According to Lemmas 2 and 3 we have
me; =inf{I.(u) :u € M, ;} <inf{l.(u); u € T';}. (33)

Let {vl,} C M., be a minimizing sequence for m,. ;. Replacing vl by |v] |, if
necessary, we may assume that v}, > 0 in Q. By virtue of Ekeland’s variational
principle, for each 1 < j < k we can find a sequence {u?,} C M, ; such that

[ ) = ) <t o =l < (31)
Ie(uf,) < Ie(w) + & llw — |

for every w € M, ; and w # u/,. For simplicity we suppress the superscript j in u?;
i.e., we write u,, = u/,. According to Lemma 5, for each u,, there exist a constant
On > 0 and a function t,,(w) defined in a ball {||w| < 6,,} C HL(Q) such that
t (W) (U, — w) € M ;. Let 0 < 0 < 0,,, u € HL () with u # 0, and set wy = ”97“”.
For a fixed m we consider vy = t,,,(wg)(um — wp). Since vy € M, ;, by (34) we have

1
Ie(vo) — Le(um) = _EH”@ — U |-
Applying the Taylor expansion we get
, 1
{Le(um), vo = um) +o[lve — umll) = ——Ilve — uml.
Consequently we have

(I (), —wo + (tm (wo) — 1) (um — we)) = —%Hve — tml| + o([lvg — uml]),
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and hence , )
(Ie(um), —wg) + (tm(we) — D){I{(tm), U — we)
>~ Lliog — 4 o0 — ) )
——||lvg — um | + o([lvg — um||).
= ——llve 0
Since (I'(vg), tm (we)(um — wg)) = 0, we deduce from (35) that
tm(wg) — 1
(T2 )y — ) + L 1) — T2 ), o (100) (1 — w0)
tm (we)
1
>~ |lvg — - .
2 = —lvo = um|| + o([lve — um|))
This estimate can be rewritten in the form
U 1 lvg — wpm |
(I (), ) < —QHW — U || + O(T)
[Jul| m (36)
tm -1
4 L0 2 L) — 12 ) ).
Since ||vg — U || < 0 + Clt,(wg) — 1| and by (29) and (32)
. [tm(wg) — 1] ) ~
— K
tim 2D =2y o)+ 0

for some constants C' > 0 and C' > 0 independent of 6 and m, we deduce from (36),

letting 8 — 0, that

, u_m> < ¢
[t |

Here we have used the fact that vy — wu,, in H1(Q) and I’(vg) — I'(u) as 6 — 0.
Inequality (37) yields that [ 1{(wm)||f-1(q) — 0 as m — oco. Since lvd, —ul,|| — 0

(I (um) (37)

m.

as m — oo, we see that ||I."(v],)|| -1 () — 0 as m — oo which completes the proof.

Proof of Theorem 1. According to Proposition 1, for each j, j = 1,... , k, there
exists a minimizing sequence {uf,} C M, ; such that I.(u/,) — m.; and I/(u?,) —
0 in H~1(Q) as m — oo. By virtue of Lemmas 2 and 3 we have
Sz .
Mej < — 7=z <Mej, ] = 1,... ,]{?.

NQ,/

Therefore by Lemma 4 {u?, } satisfies the Palais—Smale condition and we may assume
that w/, — v in H}(Q) and w? > 0 in Q. Hence I.(u) = m, ; and B(u!) € B(a;,9).
Since I'(u?) =0, j = 1,... , k, u! are weak solutions of problem (4) and @/ = u/ +u,,
j =1,...,k, are distinct positive solutions of problem (1,). To show the second
part of our assertion it is sufficient to prove that

N
2

Va2 = Qyy 7 S¥6,, and ul]? — @y, S¥4,, (38)
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as € — 0 in the sense of measure. Since u, — 0 in H}(Q) as ¢ — 0, the assertion
will follow from (38). We follow the argument used in the proof of Lemma 2. Since
I (u) = me; and (I'(uf),u!) = 0, we can show that

/ Q(x)[u|P dz > L and / VP de > L (39)
Q Q

for some constant L > 0 and all € € (0, ¢,]. Let
12
b Jo ]VugL dx )p—i27
Jo Qu(ul)P dx

and we set v/ = tJu?. Then v satisfies

/]Vv£|2d$:/QM(vg)pdx.
Q 0

As in the proof of Lemma 2 we show that for some sequence {e,,} C (0,¢,) with
€m — 0, tgm — t} and 0 < ¢ < 1. Also, as in the proof of Lemma 2 we can derive
the following relation:

lim \Vu] % dr = hm Q(z)(ul P dx = SN: . (40)
m o0 m— Q QM2
Finally, we let 2/, = HJ— Then
, 2 Vul |?2d 2 2-2)
/ V2 |2 dx = QF, JolVul, | de z = Qs |VUJ |2d$ (tim) T
Q

(f QM ue )p dx v
and by (40) we have
lim |ngn\2dx — 7S

m—00

We necessarily have ¢, = 1. Therefore by the result of P.L. Lions ([14], Theorem
4.1—see also Coron [10], Théoreme 2) |Vz{,|* — S6,, ; and |2, [P — &,, , in the
sense of measure for some z, ; € B(a;, ) because
Jo V2, da

$o7j.

We now observe that by (40) we have

S%
—— = lim |Vu3 |2d:v
QM2 m—oo [

N

= Jim (2,) 702,15 [ QWP de = Q3 —5= Qo)
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which necessarily implies that z, ; = a;.

6. Proof of Theorem 2. The method used to prove Theorem 1 can also be
employed to show the existence of k distinct positive solutions of problem (1,;). We
commence by showing that problem (1) has a minimum solution.

Lemma 6. Suppose that condition (Q) holds. Then problem (14) has a minimum
solution ue satisfying

/ |Vue|? dr < eC
Q

for some constant C' > 0 depending on g, and moreover there exists a constant u > 1

such that
/]Vv[2da:>u /Q 24

Proof. Let v, be a solution of the problem

for allv e HL(Q).

{—szo in Q

41
v=g on 0f). (41)

It is known that v, satisfies
[ Vel <Clal,y
Q
for some C' > 0. We define a functional I : H!(Q) — R by
I(w) =

1 1
§/Q|Vw|2dx—2—9/£)Q(33)(w+evo)pdfc.

It is easy to see that the following minimization problem:

inf{I(w) : ] < p} < I(0) = -

1 x)vldx, p>0,
p

has a solution w. € H!(Q). The minimizer w, is a positive solution of the problem

—Aw = Q(z)(wT 4+ ev,)P~!  in Q
w=20 on 0f2.

Hence we have
/ |Vw|? do = / Q(z)(we + €vo )P tw, da. (42)
Q Q



812 DAOMIN CAO AND J. CHABROWSKI

On the other hand

IHw,) = %/Q|Vw€|2dx - ]19/962(:{:)(10E + ev)Pdx < %EP/QQ(I)vgdx,

and this combined with (42) and (A.2) gives

%/QQ(JJ)(UJG + vo)p—lw6 dz < ;/Q(Q(x)((w6 4 evo)p_l _ 6p—1v1£_1)vo da

< Ce/ Q(z) (ew? v, + e~ 0) dz
Q

which implies using the Young inequality

/wfﬁCep/vfd:L‘
Q Q

for some constant C' > 0. Let @, = w. + €v,. Then . is a positive solution of
problem (14). As in [1] we can show using the method of sub- and supersolutions
([13]) that problem (14) has a minimum positive solution u. such that u. < @, on
Q). Using this fact, as in [1], we can derive the second assertion of this lemma. O

Since problem (14) has a minimum solution with properties stated in Lemma 6
we can show, repeating the arguments used in the proof of Theorem 1, that problem
(14) has k positive solutions.

7. Appendix. We list here some algebraic inequalities used in this paper. We
always assume that ¢ > 0, b >0 and 2 < p < .

p((a+ 0Pt =P a—2((a+b)P — W — pb’ 'a)

> 1((a+ 0P~ — 0P~ — (p— 1)0P~2a)a, (A1)

where | = min{p — 2, £},
0< (a+bP ! —aP~! =P~ <C(aP 204 P71 (A.2)

for some constant C' > 0,
P2+~ = D) oD@

—aP™ = (p—2)a’7?b) > o((a+ b’ —aPt — (p—1)aP?b),
where o € (0,min{1,p — 2}),

((a+b)P~t —aP™t =Pt — (p—1)a? %) <C (P~ ' + ap_2_9b1+9) (A.4)
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for some C' > 0 and 6 € (0,p — 2).

Proof. We only prove (A.1) and (A.3). If b = 0 then (A.1) holds. If b > 0 then
(A.1) is equivalent to

p(L+s)P "t =1)s—2(1+s)P —1—ps) > 1((1+s)P " =1—(p—1)s)s
for s > 0. To show this we set
K(s)=p((Q1+s)P ' =1)s—2(1+s)P —1—ps) —L((1+s)P ' —=1—(p—1)s)s.
We check that K (0) = 0, K’(0) = 0 and
K'(s)=(@-1D{p-2)(p—1)(1+s)P s +20—2l(1+ s)P*}.
If p > 3, then
(P=2)p =D+ )" s —2((1+5)P %~ 1)
=(p—2)p—1D(1+)P3s—2(p—2)(1+6s)P 25 >0

provided 2/ < p —[; that is, [ < £.
If p < 3, then
(p—2)(p—1(1 —5)P3s — 21(1 +5)P72% 421
=1+ ((p—2)(p—1)s—2U(1+s)) +2I
=(1+s)P3((p—2)(p—1)s —2ls) —21(1 + s)P3 + 21
=(1+s)P~ 35((p 2)(p —)=20)+21(1—(1+s)P?) >0
provided 2/ < (p —2)(p — 1); that is, [ < p — 2. Hence, if [ < min{%,p — 2)}, then

K(s) > 0 for s > 0 and inequality (A.1) follows. To establish (A.3) it is sufficient
to consider the function

H(s)=(p—-2-0)p—1(1+s)P>—1—(p—1)s]
— (=D +s)P2=1—(p—2)s]

for s > 0 and show that H(s) > 0 for s > 0.
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