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Abstract. We investigate the global structure of positive radial solutions of a
semilinear elliptic equation �u + K(|x|)�(u) = 0, and study the uniqueness of
ground state solutions of this equation. Our discussion is based on a Pohozaev-
type identity and some detailed investigation for the oscillatory and asymptotic
behavior of the solutions and their variational functions.

1. Introduction. In this paper we investigate the structure of positive
radial solutions and study the uniqueness of ground state solutions of the
semilinear elliptic equation

�u + K(t)�(u) = 0, x 2 Rn, (1.1)

where t = |x|, and n � 3. This problem has been extensively studied
by many authors for the nonlinearity independent of t. See, for example,
Co↵man [1], Kwong [9], Kwong and Zhang [11], McLeod [12], McLeod and
Serrin [13], and Peletier and Serrin [17-18], where they treated the non-
linearity f(u) which is negative for small u, and positive for large u. See
also Erbe and Tang [3] where f(u) is positive in u > 0. Corresponding work
on the uniqueness of ground states for quasilinear elliptic equations can be
found in Franchi et al. [6], Peletier et al. [19], and most recently Erbe and
Tang [4], and Pucci and Serrin [20].
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When �(u) = up, and p > 1, problem (1.1) arises from di↵erential geome-
try and physics, and the problem of the existence and uniqueness of ground
state solutions has been a subject of extensive studies since the first general
and systematic study of Ni [14]. See also Kawano et. al. [8], Ni et al. [16],
Yanagida [21] and and Yanagida et al. [22]. When p = n+2

n�2 , the problem is
called a conformal scalar curvature problem, and is related to the problem of
finding conformal Riemannian metrics with prescribed scalar curvature K.

Let ⌦ be a finite ball in Rn. We shall also be concerned with the unique-
ness of radial solutions of the problem

�u + K(t)�(u) = 0, u > 0 in ⌦,

u = 0 on @⌦.
(1.2)

This problem was studied by Ni and Nussbaum [15], and recently by Erbe
and Tang [5], for more general nonlinearity f(t, u) that is positive for t > 0
and u > 0, and satisfies some growth conditions. The case when K(t) = 1
and �(u) has a subcritical growth for large u, was studied in Erbe and Tang
[3, 4], and Kwong and Li [10].

Our discussion is based on a Pohozaev-type identity and some detailed
investigation for the oscillatory and asymptotic behavior of the solutions and
their variational functions. Our paper is organized as follows. In Section 2,
we state our main results. In Section 3, we present some general properties
of radial solutions. We classify the radial solutions into three types, and
give a characteristic description for each type of solution. In Section 4, we
complete the proof of the main results.

2. Main results. Since we are interested in radial solutions, we study
the initial value problem of an ordinary di↵erential equation

u00 +
n� 1

t
u0 + K(t)�(u) = 0, t > 0,

u(0) = ↵ > 0, u0(0) = 0.
(2.1)

We shall maintain the assumptions that K(t) 2 C1(0,1), and �(u) 2
C1[0,1), throughout the remainder of this paper. It was proved in [17]
that (2.1) has a unique solution when ↵ > 0. We denote this solution by
u(t,↵). If ↵ > 0, then u(t,↵) is positive for t slightly larger than zero. When
it vanishes at some t > 0, we define b(↵) to be the first zero of u(t,↵) in
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(0,1). Therefore, u(t,↵) > 0 for t 2 (0, b(↵)), and u(b(↵),↵) = 0. If u(t,↵)
is positive in (0,1), then we define b(↵) =1.

We introduce some notations from Kawano et al. [8], and Erbe and Tang
[3], [4]. We say that

(i) u(t,↵) is a crossing solution if b(↵) <1;
(ii) u(t,↵) is a slowly decaying solution if u(t,↵) > 0 in [0,1) and

limt!1 tn�2u(t,↵) =1;
(iii) u(t,↵) is a ground state solution, or a fast decaying solution if u(t,↵)

> 0 in [0,1), limt!1 tn�2u(t,↵) exists, and is finite and positive.
(iv) The structure of positive radial solutions to problem (1.1) is of Type

S if u(t,↵) is a slowly decaying solution for every ↵ > 0; is of Type
M if there exists a unique positive number ↵⇤ > 0 such that u(t,↵)
is a crossing solution for every ↵ 2 (↵⇤,1); u(t,↵) is a fast decaying
solution if and only if ↵ = ↵⇤; and u(t,↵) is a slowly decaying solution
for every ↵ 2 (0,↵⇤).

Note that if u is a ground state solution, then it necessarily holds that
limt!1 u = 0. But for a slowly decaying solution u, it is possible that
limt!1 u > 0. Define

N = {↵ : ↵ > 0, u(t,↵) is a crossing solution};
Df = {↵ : ↵ > 0, u(t,↵) is a fast decaying solution};
Ds = {↵ : ↵ > 0, u(t,↵) is a slowly decaying solution}.

Proposition 2.1. Suppose K(t)�(u) > 0 for t > 0 and u > 0. Then
N [Ds [Df = (0,1).

Proof. It is well-known that u(t,↵) is strictly decreasing in t > 0 whenever
it is positive. Thus, we have either b(↵) < 1, or u(t,↵) > 0 in [0,1). It
remains to show that in the second case limt!1 tn�2u(t,↵) exists, and the
limit is either a positive finite number or 1. We do this by showing that
the function tn�2u(t,↵) is increasing in t > 0.

Suppose u(t) = u(t,↵) > 0 in [0,1). Let v(s) = tn�2u(t), s = tn�2.
Then v(s) > 0 for all s > 0. By a routine calculation we obtain

dv

ds
= u(t) + 1

n�2 tu0,

where 0 = d
dt , and

d2v

ds2
= [ 1

n�2 tu00 + n�1
n�2u0] · 1

n�2 · t3�n = � 1
(n�2)2 t4�nK(t)�(u).
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Thus,
d2v

ds2
< 0, for s > 0.

Since v(s) > 0 in s > 0, we must have

dv

ds
> 0, for s > 0.

Observing that dv/dt = (n � 2)tn�3dv/ds, it holds that dv/dt > 0. This
completes the proof. ⇤

To state our main results, we need the following assumptions on K and �:
(K1) K(t) > 0, and K0(t)  0 in (0,1).
(K2) tK0(t) + (2n� 2)K(t) � 0 for large t, and

R1
tK(t)dt =1.

(�1) 0 < �(s) < s�0(s), for all s > 0.
(�2) Let �(u) =

R u
0 �(⌧)d⌧ . There exists an ⌘� > 0 such that (n�2)s�(s)�

2n�(s) � 0 in (0, ⌘�); and if (n�2)s�(s)�2n�(s) ⌘ 0 on this interval,
then K0(t) < 0 for some t 2 (0,1).

(H) Let h � 1, and u = u(t,↵). Define

 h(t) = K(t)(u�0(u)� h�(u))� h�1
2 t�(u)K0(t). (2.2)

If there exists a t0 in (0, b(↵)) such that  h(t0) � 0, then  h(t) � 0
in (t0, b(↵)). If b(↵) =1, then  h(t) is not identically zero in ( ,1)
for any  > 0.

Some remarks on these assumptions will be made in Section 3.

Theorem 1. Assume (K1–K2), (�1)–(�2), and (H) hold. Then the struc-
ture of positive solutions of (2.1) is either of Type S or of Type M. Moreover,
problem (1.1) has at most one ground state solution, and infinitely many
slowly decaying solutions, and problem (1.2) has at most one positive radial
solution in any finite ball ⌦.

Using Theorem 1, we can easily derive the following two results, which
generalizes Theorems 1 and 2 of [3].

Proposition 2.2. Let K(t) = tl, �2 < l  0, and �̄(u) = u�0(u)/�(u).
Assume (�1) and (�2) hold, and �̄(u) is nonincreasing in u and is not a
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constant. Then problem (1.1) has at most one ground state solution, and
problem (1.2) has at most one radial solution.

Proof. Since K(t) = tl, and �2 < l  0, it is easy to verify that (K1) and
(K2) are satisfied. Observe that  h(t) can be simplified to

 h(t) = tl�(u)(�̄(u)� h� h�1
2 l). (2.3)

We see that (H) is satisfied if �̄(u) is nonincreasing in u, and �̄(u) is not a
constant. The proof is completed.

Corollary 2.3. Let K(t) = tl. Let �(u) = up for u � 1; and �(u) = uq for
0  u < 1. Assume �2 < l  0, and 1 < p < n+2

n�2 < q. Then problem (1.1)
has at most one ground state solution, and problem (1.2) has at most one
radial solution.

Proof. The function �(u) defined here is not continuously di↵erentiable
at u = 1. However, it is not di�cult to see that our proof of Theorem 1
given below remains valid if the condition �(u) 2 C1[0,1) is replaced with
local Lipschitz continuity. We have seen that (K1) and (K2) are satisfied.
Obviously, (�1) is fulfilled. If we take ⌘� = 1, then

(n� 2)s�(s)� 2n�(s) = (n� 2� 2n
q+1)sq+1 > 0,

in (0, ⌘�), and (�2) is satisfied. Finally, we have �̄(u) = p for u � 1; and
�̄(u) = q for 0  u < 1. So all conditions of Proposition 2.2 are fulfilled, and
the proof is completed.

3. General properites of radial solutions. The variation of u(t,↵)
is defined by �(t,↵) = @u(t,↵)/@↵, and satisfies

�00 + n�1
t �0 + K(t)�0(u)� = 0, �(0) = 1, �0(0) = 0. (3.1)

Let L be the linear operator given by

L(�) =
d2�

dt2
+ n�1

t

d�

dt
+ K(t)�0(u)�, t � 0. (3.2)

Then L(�) = 0. For a given real number h � 1, we introduce a function

Gh(t) = Gh(t, u,↵) = u(t,↵) + h�1
2 tu0(t,↵). (3.3)

Some functions similar to Gh(t) were introduced in Kwong [9], Kwong and
Zhang [11], McLeod [12] and McLeod and Serrin [13].
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Lemma 3.1. Let u = u(t,↵). We have
(i) (Erbe and Tang [5])

L(Gh(t)) =  h(t), (3.4)

where  h(t) is given in (2.2).
(ii) ([5])

[tn�1(G0h(t)�(t,↵)�Gh(t)�0(t,↵))]0 = tn�1�(t,↵) h(t). (3.5)

(iii) (Ni and Yotsutani [16]) Define

Q(t) = Q(t, u,↵) = �tnu
02 � (n� 2)tn�1uu0 � 2tnK(t)�(u). (3.6)

Then

Q(t) =
Z t

0
⌧n�1K(⌧)[(n�2)u�(u)�2n�(u)]d⌧�2

Z t

0
⌧nK0(⌧)�(u)d⌧. (3.7)

Proof. The proof of (i) and (ii) was given in [5] for more general cases, and
(iii) was given in Proposition 4.3 of [16]. ⇤

The next lemma is an analogue of Lemma 2.8 of Erbe and Tang [4], giving
characteristic properties of each type of solution.

Proposition 3.2. Assume (�1) holds and K(t) > 0 for t > 0. We have
(i) if ↵ 2 N , then Q(b(↵)) < 0;
(ii) if ↵ 2 Ds, then for any t = T > 0, there is a T1 > T such that

Q(T1) > 0;
(iii) if ↵ 2 Df , and

lim
s!1

s2K(s)�(s2�n) = 0, (3.8)

then limt!1Q(t) = 0.

Proof. The proof of (i) is trivial. Observe that (�1) implies �(u) < 1
2u�(u).

Therefore the proof of (ii) is the same as that of Lemma 2.8 in [4], except
we take m = 2 and replace f(u) with K(t)�(u) there. To prove (iii), note
that if u is a ground state solution, then

lim
t!1

[�tnu
02 � (n� 2)tn�1uu0] = 0,



global structure of positive radial solutions 669

and (3.8) implies
lim

t!1
�2tnK(t)�(u) = 0.

It follows that limt!1Q(t) = 0.

Remark. Condition (3.8) is mild. It follows from (�1) when n � 4, and it
is satisfied for all n � 3, if (�1) holds and limt!1 tK(t) = 0. In any case, it
is fulfilled if (K1), (�1) and (�2) hold.

As an application of Proposition 3.2, we present a structure theorem below
for the nonlinearity which is of a simple form.

Proposition 3.3. Assume K(t) > 0 for t > 0, and is not a constant. Let
�(u) = u(n+2)/(n�2). We have

(i) if K0(t)  0 for t > 0, then u(t,↵) is a slowly decaying solution;
(ii) if K0(t) � 0 for t > 0, then u(t,↵) is a crossing solution.

Proof. Substituting �(u) by u
n+2
n�2 in (3.7) yields

Q(t) = �n� 2
n

Z t

0
⌧nK0(⌧)u(⌧)

2n
n�2 d⌧.

If K0(t)  0 for t > 0, then Q(t) � 0 in (0, b(↵)), implying that u is not a
crossing solution. Moreover, limt!1Q(t) exists and is positive. Thus, u is
a slowly decaying solution and proves (i). The proof of (ii) is similar, and
we omit it.

Remark a. It is well-known that if K(t) ⌘ 1, then each positive radial
solution of the conformal scalar curvature problem

�u + K(|x|)u
n+2
n�2 = 0, x 2 Rn, (3.9)

is a ground state solution. This observation shows that the second part of
condition (�2) is necessary in studying uniqueness problem of ground states.
Remark b. Let (t) be a nonnegative, nonincreasing, and nonconstant
function defined in [0,1) with (0) < 1. Let u be a positive radial solution
of (3.9). It was proved in Ding and Ni [2] that

(i) if K(t) = 1+(t), then u(t,↵) is a slowly decaying solution behaving
like t

2�n
2 as t!1,

(ii) if K(t) = 1� (t),
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then u(t,↵) is a crossing solution.
Note that (t) can be taken arbitrarily small and with compact support.

This result, similar to our Proposition 3.3, shows that the structure of solu-
tions of (1.1) is quite delicate and very sensitive to small perturbations.

Next, we prove a result concerning the asymptotic behavior of slowly
decaying solutions.

Proposition 3.4. Assume K(t) > 0 for t > 0, and �(u) > 0 for u > 0. Let
u = u(t,↵) be a slowly decaying solution. Then we have

(i) if there exists a tK > 0 such that

tK0(t) + (2n� 2)K(t)  0, for all t > tK , (3.10)

then limt!1 u > 0;
(ii) if

R1
tK(t)dt =1, then limt!1 u = 0.

Proof. (i) Suppose to the contrary that limt!1 u = 0. Then by using
L’Hospital’s rule we have

lim
t!1

t(n�1)u0 = �(n� 2) lim
t!1

t(n�2)u = �1,

since t(n�1)u0 is decreasing and limt!1 t(n�2)u =1. Define

M(t) = M(t, u,↵) = t2n�2[u0(t,↵)2/2 + K(t)�(u(t,↵))]. (3.11)

Then limt!1M(t) =1. On the other hand, it is easy to verify that

M 0(t,↵) = t2n�3�(u)[(2n� 2)K(t) + tK0(t)]. (3.12)

By (3.10) we see that M 0  0 for t > tK , which contradicts lim
t!1

M(t) =1.
(ii) Let w(t,↵) = (n� 2)u + tu0. It follows from the proof of Proposition

2.1 that w > 0 in t > 0. A straightforward computation yields

w0(t) = �tK(t)�(u).

Now, suppose to the contrary that limt!1 u > 0. Then we can find constants
c > 0 and t� > 0 such that

w0(t)  �ctK(t), for t > t�

Integrating both sides of this inequality from t� to T > t�, and letting T
tend to 1, we obtain limt!1w = �1. Hence, limt!1 tu0 = �1. But the
last identity implies limt!1 u = �1. We obtain a contradiction.
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Lemma 3.5. Under the assumptions of Theorem 1, we have
(i) Ds is nonempty, and (0, ⌘� ] ⇢ Ds.
ii) N and Ds are open sets, and Df is a closed set.

Proof. (i) Let 0 < ↵ < ⌘� and u = u(t,↵). Then 0 < u < ⌘� , and
(n � 2)u�(u) � 2n�(u) � 0 in (0, b(↵)). Applying identity (3.7), it follows
that Q(t) > 0 in (0, b(↵)). Thus, u is not a crossing function and b(↵) =1.
Applying identity (3.7) again, it is easy to see that limt!1Q(t) > 0, and
therefore u must be a slowly decaying solution.

(ii) The continuous dependence of solutions of (2.1) on initial data implies
that N is an open set. In view of Proposition 2.1, it remains to show that Ds

is an open set. Let ū = u(t, ↵̄) be a slowly decaying solution. By Proposition
3.4 (ii), we can find a T⌘ su�ciently large such that

u(T⌘, ↵̄) < ⌘�/2, and Q(T⌘, ↵̄) > 0.

Thus, if ↵ is su�ciently close to ↵̄, then

0 < u(T⌘,↵) < ⌘�/2, and Q(T⌘,↵) > 0.

Since u(t,↵) is decreasing whenever it is positive, we have

u(t,↵) < ⌘�/2, if t > T⌘, and u(t,↵) > 0.

Applying identity (3.7) we obtain

Q(t,↵) > Q(T⌘,↵) > 0, if t > T⌘, and u(t,↵) > 0, (3.13)

which implies that u(t,↵) > 0 for all t > T⌘. Since otherwise, say, at
t = T0 > T⌘, one has u(T0,↵) = 0, then Q(T0,↵) < 0, contradicting (3.13).
It also follows from (3.13) that

lim
t!1

Q(t,↵) > Q(T⌘,↵) > 0.

Therefore u(t,↵) must be a slowly decaying solution. The proof is completed.

4. Proof of Theorem 1. First we give an outline of the proof. Since
(0, ⌘�) ⇢ Ds, we can define

↵⇤ = sup{↵ > 0 : ↵0 2 Ds, if 0 < ↵0 < ↵} (4.1)
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If ↵⇤ = 1, then the structure of solutions of (2.1) is of Type S, and every
solution u(t,↵) is a slowly decaying solution. If

↵⇤ <1, (4.2)

then u(t,↵⇤) is a ground state solution, because Ds and N are open sets.
In this case, we shall show that every solution u(t,↵) with ↵ > ↵⇤ is a
crossing solution. Once this assertion is proved, the uniqueness of ground
state solutions readily follows.

To complete the proof of Theorem 1, we shall apply the theory of linear
second order ordinary di↵erential equations to analyze the oscillatory and
asymptotic behavior of �(t,↵⇤). In what follows, we assume that (4.2) holds.
For simplicity of notations, we let u⇤ = u(t,↵⇤) and �⇤ = �(t,↵⇤). The
following two technical lemmas are crucial in our proof.

Lemma 4.1. Assume (K1) and (�1)–(�2) hold. Then �⇤ vanishes exactly
once in (0,1).

Lemma 4.2. Under the assumptions of Theorem 1, there exists a constant
�⇤0 > 0 such that

lim
t!1

�⇤ = ��⇤0. (4.3)

We divide the rest of this section into three subsections. We prove Lem-
mas 4.1 and 4.2 in Subsections 4.1 and 4.2, respectively. The proof of The-
orem 1 is completed in 4.3.

4.1. Proof of Lemma 4.1. The proof is based on the following two
claims.
Claim 1. If (K1) and (�1) hold, then �⇤ vanishes at least once in (0,1).
Claim 2. If (K1) and (�1)–(�2) hold, then �⇤ vanishes at most once in
(0,1).

Proof of Claim 1. Let h = 1 in (3.5), and integrate the resultant identity.
We have

tn�1(u⇤
0
�⇤ � u⇤�⇤

0
) =

Z t

0
⌧n�1K(⌧)�⇤[u⇤�0(u⇤)� �(u⇤)]d⌧. (4.4)

Suppose to the contrary that �⇤ > 0 for all t 2 (0,1). Then

tn�1(u⇤
0
�⇤ � u⇤�⇤

0
) > 0, in (0,1),
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which, in turn, implies that u⇤/�⇤ (and so also (tn�2u⇤)/(tn�2�⇤)) is strictly
increasing in (0,1). Since limt!1 tn�2u⇤ exists and is finite, there is a
number 0  d⇤ <1 such that

lim
t!1

tn�2�⇤ = d⇤. (4.5)

By L’Hospital’s rule one has

lim
t!1

tn�1�⇤
0
= (2� n)d⇤  0. (4.6)

By (4.5), (4.6) and the fact that u⇤ is a ground state solution, we obtain

lim
t!1

tn�1(u⇤
0
�⇤ � u⇤�⇤

0
) = 0.

However, if we let t ! 1 in (4.4) and use the assumptions (K1) and (�1),
then we obtain

lim
t!1

tn�1(u⇤
0
�⇤ � u⇤�⇤

0
) > 0.

We get a contradiction, and the claim is proved.

Proof of Claim 2. It su�ces to show that u⇤ intersects every solution
u(t,↵), 0 < ↵ < ↵⇤ exactly once in t 2 (0,1). Since a slowly decaying
solution is ultimately larger than the ground state solution u⇤, and u(t,↵)
is a slowly decaying solution when 0 < ↵ < ↵⇤, we see that u⇤ and u(t,↵)
must intersect in t 2 (0,1) when 0 < ↵ < ↵⇤.

First we show that u⇤ and u(t,↵) intersect at most once if ↵ > 0 is
su�ciently small. If it is not true, then we can find a sequence {↵i}1i=1 such
that limi!1 ↵i = 0, and every u(t,↵i) intersects u⇤ at least twice. Denote
the second intersection point by (ai, u⇤(ai)). Since ↵i ! 0 as i ! 1, and
u0(t,↵i) < 0 in (0,1), we have limi!1 ai = 1. Without loss of generality,
we may assume ↵i < min{↵⇤, ⌘�/2}, i = 1, 2, · · · . It follows that

u(ai,↵i) = u⇤(ai), and u0(ai,↵i) < u⇤
0
(ai) < 0, i = 1, 2, · · · . (4.7)

Let ui = u(t,↵i). By identity (3.7), and conditions (K1) and (�2) we get

Qi(ai) = Q(ai,↵i) =
Z ai

0
⌧n�1K(⌧)[(n� 2)ui�(ui)� 2n�(ui)]d⌧

� 2
Z ai

0
⌧nK0(⌧)�(ui)d⌧ > 0. (4.8)
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Let Q⇤(t) = Q(t,↵⇤). Recall that limt!1Q⇤(t) = 0. Using identity (3.7)
again yields

Q⇤(ai) = �
Z 1

ai

⌧n�1K(⌧)[(n� 2)u⇤�(u⇤)� 2n�(u⇤)]d⌧

+ 2
Z 1

ai

⌧nK0(⌧)�(u⇤)d⌧ < 0.
(4.9)

Obviously, (4.8) and (4.9) lead to Qi(ai) > Q⇤(ai). Combining this inequality
with (3.6) and (4.7) we obtain

(n� 2)[u⇤
0
(ai)� u0i(ai)]u⇤(ai)an�1

i + [u⇤
0
(ai)2 � u0i(ai)2]an

i > 0.

Factoring [u⇤
0
(ai)� u0i(ai)] out, and using (4.7) again, one has

(n� 2)u⇤(ai)an�2
i + 2u⇤

0
(ai)an�1

i > 0. (4.10)

On the other hand, since u⇤ is a ground state solution, applying L’Hospital’s
rule, we have

lim
t!1

[(n� 2)tn�2u⇤(t) + 2tn�1u⇤
0
(t)] = �(n� 2) lim

t!1
tn�2u⇤(t) < 0.

This contradicts (4.10) and shows that there is an ✏ such that 0 < ✏  ↵⇤,
and u⇤ and u(t,↵) intersect at most once if 0 < ↵ < ✏. Let ✏̄ be the largest
number in (0,↵⇤] so that this assertion is valid. It remains to prove ✏̄ = ↵⇤.

Suppose to the contrary that ✏̄ < ↵⇤. Then there is a sequence {�j}1j=1

such that ✏̄ < �j < ↵⇤, limj!1 �j = ✏̄, and u(t,�j) crosses u⇤ at least twice.
Since �j < ↵⇤ and u⇤ < u(t,�j) for large t, u(t,�j) and u⇤ must intersect a
third time, say, at t = cj . Then limj!1 cj =1, and

u⇤(cj) = u(cj ,�j), u⇤
0
(cj) < u0(cj ,�j) < 0, j = 1, 2, · · · . (4.11)

For simplicity of notation, let uj = u(t,�j), M⇤(t) = M(t, u⇤,↵⇤) and
Mj(t) = M(t, uj ,�j), where M is defined in (3.11). Then

M⇤(cj) > Mj(cj). (4.12)

Recall that limt!1M(t) =1, when u is a slowly decaying solution. While

lim
t!1

M⇤(t) <1,
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since lim
t!1

tn�1u⇤
0

is finite, and lim
t!1

t2n�2�(u⇤(t)) = 0 by (�2). Denote
M⇤ = lim

t!1
M⇤(t) <1. Choose TM su�ciently large that M(TM , ✏̄) > 4M⇤,

and tK0(t) + (2n � 2)K(t) � 0 for t > TM (see (K2)). Without loss of
generality, we can assume cj > TM and Mj(TM ) > 2M⇤ for all j = 1, 2, · · · .
Since Mj is increasing in (TM ,1) by (3.12), we must have Mj(cj) > 2M⇤,
which contradicts (4.12). The proof is completed.

4.2. Proof of Lemma 4.2. Recall that �⇤ is a solution of the linear
second order equation

(tn�1v0)0 + tn�1K(t)�0(u⇤(t))v = 0. (4.13)

Let us introduce another equation

(tn�1w0)0 = 0,

which has two linearly independent solutions w1(t) ⌘ 1, and w2(t) ⌘ t2�n.
Since u⇤ ⇠ t2�n, as t!1, in other words, limt!1 u⇤/t2�n is a nonzero

finite constant, it follows from (�2) that the growth of �0(u⇤(t)) is larger
than 4/(n� 2). Because K(t) is bounded above, we have

w1w2t
n�1K(t)�0(u⇤(t)) = o(t(2�n)+(n�1)�4) = o(t�3),

which, in turn, implies that
Z 1

w1w2t
n�1K(t)�0(u⇤(t))dt <1. (4.14)

Applying Theorem 9.1 of Hartman (page 379 of [7]), we conclude that the
linear equation (4.13) has two independent solutions, say, v1(t) and v2(t),
such that vi ⇠ wi, i = 1, 2, as t !1. Note that �⇤ is a linear combination
of v1(t) and v2(t). Let ⌫1 and ⌫2 be two constants such that

�⇤ = ⌫1v1(t) + ⌫2v2(t). (4.15)

It su�ces to show that ⌫1 6= 0.
Suppose to the contrary that ⌫1 = 0. Then �⇤ ⇠ t2�n as t ! 1. Let

G⇤h(t) = Gh(t,↵⇤). It holds for all h � 1 that

lim
t!1

tn�1(G⇤
0

h (t)�⇤(t)�G⇤h(t)�⇤
0
(t)) = 0. (4.16)
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Let ⌧⇤ be the unique zero of �⇤ in (0,1). Let ⇣h be the first zero of G⇤h(t), if
G⇤h(t) does vanish in (0,1). Note that ⇣h may not be defined for all h > 1.
By the definition of G⇤h(t), we can show that there is a number h̄ > 1 such
that

⌧⇤ = ⇣h̄, (4.17)

and
tn�1(G

0⇤
h̄ (t)�⇤(t)�G⇤h̄(t)�⇤

0
(t)) = 0, at t = ⌧⇤. (4.18)

By the condition (H) we see that

 h̄(⌧⇤) � 0. (4.19)

In fact, if  h̄(⌧⇤) < 0, then  h̄(t) < 0 in (0, ⌧⇤). By using Sturm’s compar-
ison theorem it follows that G⇤

h̄
(t) vanishes in (0, ⌧⇤), contradicting (4.17).

Combining (4.19) and condition (H) we obtain  h̄(t) � 0, and  h̄(t) is not
identically zero in (⌧⇤,1). Applying identity (3.5), and using (4.18), we
obtain

lim
t!1

tn�1(G
0⇤
h̄ (t)�⇤(t)�G⇤h̄(t)�⇤

0
(t)) =

Z 1

⌧⇤
tn�1�⇤(t) h̄(t)dt < 0.

But this contradicts (4.16). The proof is completed.
4.3. Proof of Theorem 1. Let u = u(t,↵), u⇤ = u(t,↵⇤), and 0 < � <

n� 2. Define
z(t) = z(t,↵,�) = t�(u(t,↵⇤)� u(t,↵)). (4.20)

Then z(t) satisfies

z00 + (n� 1� 2�)
z0

t
+ �(�+ 2� n)

z

t2
+ t�K(t)[�(u⇤)� �(u)] = 0. (4.21)

If there are ↵ > 0 and t0 > 0 such that

z0(t0) = 0, and 0 < u(t0) < u⇤(t0), (4.22)

then

z00(t0) = {�(n� 2� �)/t20 �K(t0)[�(u⇤(t0))� �(u(t0))]/[u⇤(t0)� u(t)]}z
= [�(n� 2� �)/t20 �K(t0)�0(✓(t0))]z,
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where u(t0)  ✓(t0)  u⇤(t0). Since �0(u⇤(t)) = o(t�4) as t ! 1, we see
that if t0 is su�ciently large and (4.22) is valid, then

z00(t0) > 0. (4.23)

Recall that �⇤ has a unique zero at t = ⌧⇤ and behaves like a negative
constant for t large, we have t��⇤(t)! �1 as t!1. It follows that when
t = T ⇤ > ⌧⇤ is su�ciently large,

t��⇤(t) < 0, (t��⇤(t))0 < 0,

where t��⇤(t) = lim↵!↵⇤ z(t)/(↵⇤ � ↵). Now, if ↵ > ↵⇤ is su�ciently close
to ↵⇤ and u(t,↵) is not a crossing solution, then z(T ⇤) > 0, z0(T ⇤) > 0.
Therefore, z(t) increases in a right neighborhood of T ⇤. If z(t) decreases for
some t > T ⇤, then there exists some t0 > T ⇤ such that z(t0) > 0, z0(t0) = 0,
and z(t) has a local maximum at t0. But this contradicts (4.22) and (4.23).
If z(t) is increasing for all t > T ⇤, then

z(t) > z(T ⇤) > 0 for t > T ⇤, and lim
t!1

z(t) > z(T ⇤) > 0,

which contradicts the assumption that u is not a crossing solution. This
contradiction shows that there exists an ⇢ > 0 such that u(t,↵) is a crossing
solution if ↵⇤ < ↵ < ↵⇤ + ⇢. Thus, for ↵⇤ < ↵ < ↵⇤ + ⇢, the first zero b(↵)
of u is well defined, and

lim
↵!↵⇤+

b(↵) =1.

Therefore, b(↵) is decreasing in a right neighborhood of ↵⇤. By using an
argument similar to that in the proof of Theorem 1 of [5] we can show that
b0(↵) 6= 0. Thus, b0(↵) < 0 whenever ↵ > ↵⇤ and b(↵) is defined.

Define ↵1 = sup{↵ > ↵⇤ : ↵0 2 N if ↵⇤ < ↵0 < ↵}. Then b(↵) is
defined and strictly decreasing in (↵⇤,↵1). Therefore, lim↵!↵�1

b(↵) < 1,
which in turn implies ↵1 = 1. In summary, we have shown that N =
(↵⇤,1), b0(↵) < 0, if ↵ 2 N, and Df = ↵⇤, and Ds = (0,↵⇤). So the
assertion of Theorem 1 readily follows. The proof is completed.
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