A LOCAL PARTIAL REGULARITY THEOREM FOR WEAK SOLUTIONS OF DEGENERATE ELLIPTIC EQUATIONS AND ITS APPLICATION TO THE THERMISTOR PROBLEM

XIANGSHENG XU*

Department of Mathematics and Statistics, Mississippi State University
Mississippi State, MS 39762

(Submitted by: J.A. Goldstein)

Abstract. A partial regularity theorem is established for weak solutions of elliptic equations of the form \(\text{div}(A(y)\nabla \psi) = 0 \). Here we allow the possibility that the eigenvalues of \(A(y) \) are not bounded away from 0 below. This result is then used to prove an everywhere regularity theorem for weak solutions of the initial-boundary-value problem for the system \(\frac{\partial u}{\partial t} - \Delta u = \sigma(u)|\nabla \varphi|^2 \), \(\text{div}(\sigma(u)\nabla \varphi) = 0 \) in the case where \(\sigma \) may decay exponentially.

1. Introduction. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^N \), \(N \geq 2 \), with Lipschitz boundary \(\partial \Omega \) and let \(A(y) = (a_{ij}(y)) \) be a measurable, symmetric, nonnegative matrix defined on \(\Omega \), with smallest eigenvalue \(\lambda(y) \), and biggest eigenvalue \(\Lambda(y) \leq c\lambda(y) \), where \(c \geq 1 \) and \(\lambda(y) \) is a measurable function on \(\Omega \). Consider the boundary value problem

\[
-\text{div}(A(y)\nabla \psi) = 0 \quad \text{in } \Omega, \\
\psi = \psi_0 \quad \text{on } \partial \Omega,
\]

where \(\psi_0 \) is a given function in \(W^{1,2}(\Omega) \). A function \(\psi \) is said to be a weak solution of (1.1)–(1.2) if

(i) \(\psi \in W^{1,p}(\Omega) \) for some \(p \geq 1 \);
(ii) \(\psi - \psi_0 \in W^{1,1}_0(\Omega) \), \(\lambda(y)|\nabla \psi|^2 \in L^1(\Omega) \); and
(iii) (1.1) is satisfied in the sense of distributions.

Received for publication October 1997.
AMS Subject Classifications: 35B65, 35K65.
* This work was supported in part by an NSF grant (DMS9424448).
Theorem A. Let \(A(y), \lambda(y) \) be given as above. Assume

(H1) \(\lambda(y) \in L^\infty(\Omega), \frac{1}{\lambda(y)} \in L^k(\Omega) \) for some \(k > N/2 \).

Then there exists a weak solution \(\psi \) to (1.1)–(1.2) with the following regularity properties

(P1) \(\psi \in L^\infty_{loc}(\Omega) \);

(P2) If \(x \in \Omega \) is such that

\[
\limsup_{R \to 0^+} \int_{B(x,R)} \left(\frac{1}{\lambda(y)} \right)^k \, dy < \infty,
\]

then

\[
\lim_{R \to 0^+} \sup_{B(x,R)} \psi = 0,
\]

where \(\sup_{B(x,R)} \psi - \inf_{B(x,R)} \psi \).

That is, \(\psi \) is continuous at \(x \). Since (1.3) holds for almost every \(x \) in \(\Omega \), one has that \(\psi \) is continuous almost everywhere on \(\Omega \).

The weak solution in Theorem A is regular off a singular set whose Lebesgue measure is zero. Thus this is a partial regularity result. The problem of studying extensions of everywhere regularity results to degenerate elliptic equations was first considered in the late 60’s and early 70’s (see [9, 10, 16, 17]). The conditions these authors found for the weight \(\lambda \), in order to have local Hölder continuity, is that \(\left(\int_B (\lambda(y))^{\frac{1}{k}} \, dy \right)^{\frac{1}{k}} \left(\int_B (\lambda(y))^{-s} \, dy \right)^{\frac{1}{s}} \leq c \) for all balls \(B \) in \(\Omega \), where \(c > 0, \frac{1}{k} + \frac{s}{k} < \frac{2}{N} \). In [5] this condition was weakened to the following

\[
\left(\int_B \lambda(y) \, dy \right) \left(\int_B (\lambda(y))^{-1} \, dy \right) \right) \leq c
\]

for all balls \(B \) in \(\Omega \), i.e., \(\lambda \) is an \(A_2 \)-weight in \(\Omega \). We do not believe that (H1) implies that \(\lambda \) is an \(A_2 \)-weight, even though we have not been able to construct a counter example.

Our interest in Theorem A arose from the study of the following initial boundary value problem

\[
\frac{\partial u}{\partial t} - \Delta u = \sigma(u)|\nabla \varphi|^2 \quad \text{in } \Omega_T \equiv \Omega \times (0,T),
\]

\[
\text{div}(\sigma(u)\nabla \varphi) = 0 \quad \text{in } \Omega_T,
\]

\[
u(x,t) = u_0(x,t) \quad \text{on } \partial \Omega_T,
\]

\[
\varphi(x,t) = \varphi_0(x,t) \quad \text{on } S_T \equiv \partial \Omega \times (0,T).
\]
Here, $T > 0$, $\partial_p \Omega_T$ is the parabolic boundary of Ω_T, and $u_0(x,t), \varphi_0(x,t)$, $\sigma(u)$ are known functions of their arguments, satisfying the following conditions:

\begin{enumerate}[(H2)]

 \item $\sigma \in C(\mathbb{R})$ is such that $0 < \sigma(s) \leq M$ on \mathbb{R} for some $M > 0$.
 \item $u_0 \in C([0, T]; L^2(\Omega)) \cap L^2(0, T; W^{1,2}(\Omega)), \frac{\partial u_0}{\partial t} \in L^2(0, T; W^{-1,2}(\Omega))$, and $\varphi_0 \in L^2(0, T; W^{1,2}(\Omega)) \cap L^\infty(\Omega_T)$.
\end{enumerate}

This problem is often called the thermistor problem and it can be proposed as a model for the electrical heating of a conductor (see [15, 1]). Then u is the temperature of the conductor, and φ the electrical potential. The first equation describes the diffusion of heat, while the second equation represents the conservation of electrical charges. The function $\sigma(u)$ is the electrical conductivity. Its precise form is determined by the particular physical application one has in mind. See, e.g., [3] for various forms suggested for σ in industrial applications.

Concerning the weak formulation of the initial boundary value problem, we remark that several weak notions of solutions have been developed to study the system (1.4)–(1.5) (see [19, 20, 23]). Observe that under (H2)–(H3) the following definition is meaningful.

Definition. The pair (u, φ) is a classical weak solution of the initial boundary value problem on Ω_T if the following conditions are satisfied:

1. (Integrability hypotheses) $u \in C([0, T]; L^2(\Omega)) \cap L^2(0, T; W^{1,2}(\Omega)), \varphi \in L^2(0, T; W^{1,2}(\Omega)) \cap L^\infty(\Omega_T)$.
2. (Equations) u, φ satisfy
 \begin{align}
 \frac{\partial u}{\partial t} - \Delta u &= \text{div}(\varphi \sigma(u) \nabla \varphi) \quad \text{in } \Omega_T, \tag{1.8} \\
 \text{div}(\sigma(u) \nabla \varphi) &= 0 \quad \text{in } \Omega_T \tag{1.9}
 \end{align}
 in the sense of distributions.
3. (Initial boundary conditions) $u - u_0 \in L^2(0, T; W^{1,2}_0(\Omega))$, $u(x, 0) = u_0(x, 0)$ in $L^2(\Omega)$, and $\varphi - \varphi_0 \in L^2(0, T; W^{1,2}_0(\Omega))$.

Note that our definition shows that

$$u - u_0 \in W_2(0, T) \equiv \{v \in L^2(0, T; W^{1,2}_0(\Omega)) : \frac{\partial v}{\partial t} \in L^2(0, T; W^{-1,2}(\Omega))\}.$$

Of course, $W_2(0, T) \subset C([0, T]; L^2(\Omega))$, and thus the initial condition in (3) makes sense. Also note that

$$\text{div}(\sigma(u) \varphi \nabla \varphi) = \sigma(u) |\nabla \varphi|^2 \quad \text{in } \Omega_T \tag{1.10}$$
in the weak sense.

For simplicity, we shall further assume that

\[u_0 \geq 0 \quad \text{on } \Omega_T. \]

(1.11)

Consequently, \(u \geq 0 \) on \(\Omega_T \). We are ready to state our second result.

Theorem B. Let (H2), (H3) and (1.11) be satisfied. Assume:

(H4) \(\lim_{s \to -\infty} \sigma(s) = 0. \)

(H5) \(\lim_{r \to 0} \frac{\sigma(s r)}{\sigma(s)} = 1 \) uniformly on \(\mathbb{R} \).

Then problem (1.4)–(1.7) has a classical weak solution \((u, \varphi)\) in \(\Omega_T \). In addition,

(P3) \(u \) is locally Hölder continuous in \(\Omega_T \).

In many electrical devices, too high a temperature can cause very undesirable side effects. Thus it is interesting to know under what conditions on \(\sigma \) we can obtain a bounded temperature. Once one knows that \(u \) is bounded, one can derive high regularity for the solution via a bootstrap argument [23]. The difficulty in establishing the boundedness of \(u \) lies in the fact that the system is quadratically nonlinear and degenerate. The first regularity result is obtained in [1, 25] where it is assumed that \(\sigma \) is at least Hölder continuous and satisfies \(m_1 \leq \sigma \leq M_1 \) on \(\mathbb{R} \) for some \(0 < m_1 \leq M_1 \). That is, the second equation in the system is uniformly elliptic in the spatial variables. However, in many physical applications [18, 3], one has that \(\sigma(s) \to 0 \) as \(s \to \infty \). This complicates the mathematical analysis of the problem a great deal. Recently, we [21] obtained the Hölder continuity of \(u \) under the assumption

\[c_1 e^{-\beta|s|} \leq \sigma(s) \leq c_2 e^{-\beta|s|} \quad \text{on } \mathbb{R} \]

(1.12)

for some \(c_1, c_2, \beta > 0 \). The key observation in this case is that \(\sigma(u) \) is an \(A_2 \)-weight, and hence the results of [5, 8] are applicable. Clearly, (H4) and (H5) are more general than (1.12). In [23, 24], the author began to study the partial regularity theory of system (1.4)–(1.5), giving a description of the set of possible singularities. Let us call a point \(z = (x, t) \) singular if \(u \) is not \(L^\infty_{\text{loc}} \) in any neighborhood of \(z \); the remaining points, where \(u \) is locally essentially bounded, will be called regular points. The main result of [24] is that if the assumptions of Theorem B are satisfied with (H4) and (H5) being replaced by

\[M \geq \sigma(s) \geq \frac{1}{c} e^{-\beta|s|} \quad \text{on } (-\infty, \infty) \]
for some $M, c > 0$, and $\frac{2}{N\|\sigma \varphi_0\|_{\infty, \Omega}} > \beta > 0$, then there exists a suitable weak solution (u, φ) to (1.4)–(1.7) such that the parabolic Hausdorff dimension of the set where u may blow up is at most N. A different partial regularity result is presented in [23]. We refer the reader to [2, 22] for results on the corresponding stationary problem.

Clearly, Theorem B improves the main result in [23]. The strategy here is to first show that the partial regularity theorem in [24] still holds under (H4)–(H5). Then we further establish that the singular set in that theorem is actually empty. This is where Theorem A plays a crucial role.

Finally, we make some remarks about the notation. The letter c is used to denote the generic constant. Furthermore, if $r > 0, z = (x, t) \in \mathbb{R}^N \times (0, \infty)$, and u, φ are locally integrable, then

$$Q(z, r) = \{(y, \tau) : |y - x| < r, t - r^2 < \tau < t\}, \quad u_{z, r} = \int_{Q(z, r)} u \, dy \, d\tau,$$

$$\varphi_{x, r} = \int_{B(x, r)} \varphi(y, \tau) \, dy, \quad B(x, r) = \{y : |y - x| < r\}.$$

When the notation we use is standard, no explanation is given.

2. Proof of Theorem A. The proof of Theorem A relies on the following two lemmas whose proofs are modifications of some of the arguments in [7].

Lemma 2.1. Let the assumptions of Theorem A be satisfied. Assume that $\psi \in W^{1,2}_{\text{loc}}(\Omega) \cap L^\infty(\Omega)$ is a subsolution of (1.1) in Ω, i.e.,

$$-\operatorname{div}(A(y)\nabla \psi) \leq 0 \quad \text{in } \Omega \quad (2.1)$$

in the sense of distributions. Then for any $x \in \Omega, R > 0$ with $B(x, R) \subset \Omega$ and $p > 1$, we have

$$\sup_{B(x, R/2)} \psi \leq c\left(\int_{B(x, R)} \left(\frac{1}{\lambda(y)}\right)^k \, dy\right)^{\frac{N}{(2k-N)p}} \left(\int_{B(x, R)} (\psi^+)^p \, dy\right)^{\frac{1}{p}}, \quad (2.2)$$

where $c = c(N, p, k, \|\lambda(y)\|_{\infty, \Omega})$.

Proof. Fix an x in Ω. For any $0 < R_1 < R_2 \leq \text{dist}(x, \partial \Omega) \equiv$ the distance between x and $\partial \Omega$, we can select a function $\xi \in C^\infty_0(B(x, R_2))$ with the following properties:

$$\xi = 1 \quad \text{on } B(x, R_1),$$

$$|\nabla \xi| = c/(R_2 - R_1) \quad \text{on } B(x, R_2),$$

$$\xi \geq 0 \quad \text{on } B(x, R_2).$$
Define, for $n > 0, \epsilon > 0$, the test function $(\psi^+ + \epsilon)^n \xi^2$. Use it in (2.1) to obtain

\begin{align}
 n \int_{B(x,R_2)} \lambda(y)(\psi^+ + \epsilon)^{n-1}|\nabla \psi^+|^2 \xi^2 \, dy \\
 \leq n \int_{B(x,R_2)} A(y)\nabla\psi(\psi^+ + \epsilon)^{n-1} \nabla \psi^+ \xi^2 dy \\
 = -\int_{B(x,R_2)} A(y)\nabla \psi(\psi^+ + \epsilon)^n 2\xi \nabla \xi \, dy.
\end{align}

(2.3)

Here, we used the fact that $A(y)\nabla \psi \cdot \nabla \psi^+ = A(y)\nabla \psi^+ \cdot \nabla \psi^+$. Now send ϵ to 0 to deduce

\begin{align}
 n \int_{B(x,R_2)} \lambda(y)(\psi^+)^{n-1}|\nabla \psi^+|^2 \xi^2 \, dy &\leq -\int_{B(x,R_2)} A(y)\nabla \psi(\psi^+)^n 2\xi \nabla \xi \, dy \\
 &= -\int_{B(x,R_2)} A(y)\nabla \psi(\psi^+)^n 2\xi \nabla \xi \, dy.
\end{align}

An application of Hölder’s inequality yields

\begin{align}
 \int_{B(x,R_2)} \lambda(y)(\psi^+)^{n-1}|\nabla \psi^+|^2 \xi^2 \, dy &\leq \frac{c}{n^2} \int_{B(x,R_2)} (\psi^+)^{n+1} |\nabla \xi|^2 \, dy. \tag{2.4}
\end{align}

Set $q = \frac{2k}{1 + k}$. Since $k > N/2$, we have $\frac{2N}{N+2} < q < 2$. Consequently, q^*, the Sobolev conjugate of q, $= \frac{Nq}{N-q} = \frac{2Nk}{Nk+N-2k} > 2$. By the Sobolev inequality,

\begin{align}
 (\int_{B(x,R_2)} |(\psi^+)^{n+1} \xi|^{\frac{q}{2}} \, dy)^{\frac{2}{q}} &\leq c(\int_{B(x,R_2)} |\nabla ((\psi^+)^{n+1} \xi)|^q \, dy)^{\frac{1}{q}} \\
 &\leq c(\int_{B(x,R_2)} \left(\frac{1}{\lambda(y)}\right)^{q/2} \lambda(y)^{q/2} |\nabla ((\psi^+)^{n+1} \xi)|^q \, dy)^{\frac{1}{q}} \tag{2.5} \\
 &\leq c(\int_{B(x,R_2)} \left(\frac{1}{\lambda(y)}\right)^{\frac{q}{2}} \lambda(y)^{\frac{q}{2}} \cdot (\int_{B(x,R_2)} \lambda(y) |\nabla ((\psi^+)^{n+1} \xi)|^2 \, dy)^{\frac{1}{2}}. \\
 &\leq c(\int_{B(x,R_2)} \left(\frac{1}{\lambda(y)}\right)^k \, dy)^{\frac{1}{k}}.
\end{align}

Set

$$D(R_2) = \left(\int_{B(x,R_2)} \left(\frac{1}{\lambda(y)}\right)^k \, dy\right)^{\frac{1}{k}}.$$
Recall (2.4) to obtain
\[
\left(\int_{B(x, R_1)} (\psi^+)^{(n+1)\sigma^*} dy \right)^{\frac{2}{\sigma(n+1)}} \leq \left(\frac{cD(R_2)}{R_2 - R_1} \left[(\frac{n+1}{n})^2 + 1 \right] \right)^{\frac{1}{n+1}} \left(\int_{B(x, R_2)} (\psi^+)^{n+1} dy \right)^{\frac{1}{n+1}}.
\]

(2.6)

Now set \(\chi = q^*/2 > 1 \). Taking \(p > 1, R \in (0, \text{dist}(x, \partial \Omega)) \), we let \(n + 1 = \chi^mp, R_2 = r_m \equiv (1 + 2^{-m})\frac{R}{2}, R_1 = r_{m+1}, m = 0, 1, \ldots \), so that, by inequality (2.6),
\[
\|\psi^+\|_{\chi^m+1, n, B(x, r_m+1)} \leq \left(\frac{cD(r_m)}{R^2} \right)^{\frac{1}{\chi^m+1}} 4^{\frac{m}{\chi^m+1}} \|\psi^+\|_{\chi^m, n, B(x, r_m)}
\]
\[
\leq \left(\frac{cD(R)}{R^2} \right)^{\frac{1}{\chi^m+1}} 4^{\frac{m}{\chi^m+1}} \|\psi^+\|_{\chi^m+1, n, B(x, R)}.
\]

(2.7)

Consequently, taking \(m \to \infty \) yields
\[
\|\psi^+\|_{\infty, B(x, R/2)} \leq c\left(\frac{D(R)}{R^2} \right)^{\frac{1}{\chi+1}} \|\psi^+\|_{\chi^m, B(x, R)}.
\]

(2.8)

We complete the proof by recalling the definitions of \(D(R), \chi \).

Lemma 2.2. Let the assumptions of Theorem A be satisfied and \(\psi \in W^{1,2}_{\text{loc}}(\Omega) \cap L^\infty_{\text{loc}}(\Omega) \) be a weak solution of (1.1) on \(\Omega \). Then for any \(x \in \Omega, R > 0 \) such that \(B(x, 5R) \subset \Omega \), we have
\[
(1 - \frac{1}{2e^c(\frac{1}{n})^k dy})^2(M(5R) - m(5R)) \geq M(2R) - m(2R),
\]

(2.9)

where \(c = c(N, k, \|\lambda(y)\|_{\infty, \Omega}), M(r) = \text{ess sup}_{B(x, r)} \psi, m(r) = \text{ess inf}_{B(x, r)} \psi \) for \(r > 0 \).

Proof. Let \(x \in \Omega, 0 < R < \frac{1}{2} \text{dist}(x, \partial \Omega) \) be given. Consider
\[
w_1 = \ln \frac{M(5R) - m(5R)}{2(M(5R) - \psi)} + \epsilon, \quad w_2 = \ln \frac{M(5R) - m(5R)}{2(\psi - m(5R))} + \epsilon
\]
on \(B(x, 5R) \), where \(\epsilon > 0 \). Clearly, \(w_1, w_2 \in W^{1,2}_{\text{loc}}(B(x, 5R)) \cap L^\infty_{\text{loc}}(B(x, 5R)) \).

It is easy to verify that
\[
- \text{div}(A(y) \nabla w_1) \leq 0 \quad \text{on} \ B(x, 5R), \quad (2.10)
\]
\[
- \text{div}(A(y) \nabla w_2) \leq 0 \quad \text{on} \ B(x, 5R). \quad (2.11)
\]
Assume that
\[|\{y \in B(x, 4R) : \psi(y) \leq (M(5R) + m(5R))/2\}| \geq \frac{1}{2}|B(x, 4R)|. \]
(Otherwise we have that \(|\{y \in B(x, 4R) : \psi(y) \geq (M(5R) + m(5R))/2\}| \geq \frac{1}{2}|B(x, 4R)|\). In this case all subsequent arguments will be carried out with the function \(w_2\). Set \(S = \{y \in B(x, 4R) : w_1^+ = 0\}\). Then we have
\[
|S| = |\{y \in B(x, 4R) : w_1 \leq 0\}|
\geq |\{y \in B(x, 4R) : \psi(y) \leq (M(5R) + m(5R))/2\}| \geq \frac{1}{2}|B(x, 4R)|.
\]
In light of Poincaré’s inequality in [7, p.164], we can derive
\[
\left(\int_{B(x,4R)} |w_1^+|^{\frac{2k}{1+k}} dy \right)^{\frac{1+k}{2k}} \leq cR \left(\int_{B(x,4R)} |\nabla w_1^+|^{\frac{2k}{1+k}} dy \right)^{\frac{1+k}{2k}},
\]
where \(c = c(N)\). Now let \(\Phi = 2(M(5R) - \psi) + \epsilon\). Obviously,
\[
div(A(y)\nabla \Phi) = 0 \quad \text{in} \quad B(x, 5R).
\]
Pick a function \(\xi \in C_0^\infty(B(x, 5R))\) so that
\[
\xi = 1 \quad \text{on} \quad B(x, 4R),
\]
\[|\nabla \xi| \leq c/R \quad \text{on} \quad B(x, 5R),
\]
\[\xi \geq 0 \quad \text{on} \quad B(x, 5R).
\]
Note that \(w_1 = \ln(M(5R) - m(5R)) - \ln \Phi\). We can use \(\frac{1}{\Phi} \xi^2\) as a test function in (2.14) to get
\[
\int_{B(x,4R)} \lambda(y)|\nabla w_1|^2 dy \leq cR^{N-2}.
\]
We estimate, with the aid of (2.15), that
\[
\left(\int_{B(x,4R)} |\nabla w_1^+|^{\frac{2k}{1+k}} dy \right)^{\frac{1+k}{2k}}
\leq \left(\int_{B(x,4R)} \left(\frac{1}{\lambda(y)} \right)^{\frac{k}{1+k}} \lambda(y)^{\frac{k}{1+k}} |\nabla w_1^+|^{\frac{2k}{1+k}} dy \right)^{\frac{1+k}{2k}}
\leq \left(\int_{B(x,4R)} \left(\frac{1}{\lambda(y)} \right)^k dy \right)^{\frac{2}{k}} \left(\int_{B(x,4R)} \lambda(y)|\nabla w_1^+|^2 dy \right)^{\frac{1}{2}}
\leq \frac{c}{R} \left(\int_{B(x,4R)} \left(\frac{1}{\lambda(y)} \right)^k dy \right)^{\frac{2}{k}}.
\]
Appealing to Lemma 2.1 and keeping in mind (2.13) and (2.16), we derive

\[
\text{ess sup}_{B(x,2R)} w_1 = \text{ess sup}_{B(x,2R)} \frac{M(5R) - m(5R)}{2(M(5R) - \psi)} + \epsilon \\
\leq c \left(\int_{B(x,4R)} \left(\frac{1}{\lambda(y)} \right)^k dy \right)^{\frac{N(1+k)}{2k(N-k)}} \left(\int_{B(x,4R)} |w_1|^\frac{2k}{\tau+k} dy \right)^{\frac{k}{2k}} \\
\leq c \left(\int_{B(x,4R)} \left(\frac{1}{\lambda(y)} \right)^k dy \right)^{\frac{N+2}{2k(N-k)}}
\]

Send \(\epsilon \) to 0 to get

\[
\psi(y) \leq M(5R) - \frac{1}{2c} \left(\int_{B(x,4R)} \left(\frac{1}{\lambda(y)} \right)^k dy \right)^{\frac{2kN}{2k(N-k)}} (M(5R) - m(5R)) \text{ on } B(x,2R).
\]

Subtracting \(m(2R) \) from both sides of the inequality yields the desired result. The proof is complete.

Proof of Theorem A. Denote by \(I \) the \(N \times N \) identity matrix. For each \(m \in \{1, 2, \cdots\} \), consider

\[
\begin{align*}
-\text{div}(A_m(y) \nabla \psi_m) &= 0 \quad \text{in } \Omega, \\
\psi_m &= \psi_0 \quad \text{on } \partial \Omega,
\end{align*}
\]

where \(A_m(y) = A(y) + \frac{1}{m} I \). It is well-known that for each \(m \) the problem (2.19)–(2.20) has a unique solution in the space \(W^{1,2}(\Omega) \cap L^\infty_{\text{loc}}(\Omega) \). Use \(\psi_m - \psi_0 \) as a test function in (2.19) to get

\[
\int_{\Omega} (\lambda(y) + 1/m) |\nabla \psi_m|^2 dy \leq c \int_{\Omega} (\lambda(y) + 1/m) |\nabla \psi_0|^2 dy \leq c.
\]

We are ready to estimate

\[
\int_{\Omega} |\nabla \psi_m|^\frac{2k}{\tau+k} dy = \int_{\Omega} \left(\frac{1}{\lambda(y)} \right)^{\frac{k}{\tau+k}} \lambda(y) |\nabla \psi_m|^\frac{2k}{\tau+k} dy \\
\leq \left(\int_{\Omega} \left(\frac{1}{\lambda(y)} \right)^k dy \right)^{\frac{1}{k+1}} \left(\int_{\Omega} \lambda(y) |\nabla \psi_m|^2 dy \right)^{\frac{k}{k+1}} \leq c.
\]
Thus \(\{\psi_m\} \) is bounded in \(W^{1,\frac{2k}{2+k}}(\Omega) \). We can extract a subsequence of \(\{\psi_m\} \), still denoted by \(\{\psi_m\} \), so that

\[
\psi_m \rightharpoonup \psi \text{ weakly in } W^{1,\frac{2k}{2+k}}(\Omega),
\]

\[
\psi_m \rightarrow \psi \text{ strongly in } L^{\frac{2k}{2+k}}(\Omega) \text{ and a.e. on } \Omega.
\]

We can infer from Lemma 2.1 that

\[
\|\psi_m\|_{\infty, B(x,R/2)} \leq c \left(\int_{B(x,R)} \left(\frac{1}{\lambda(y)} + 1/m \right)^{k} dy \right)^{\frac{N(1+k)}{2k(N-\xi)}} \left(\int_{B(x,R)} |\psi_m|^{\frac{2k}{1+k}} dy \right)^{\frac{1+k}{2k}}
\]

for any \(x \in \Omega, R > 0 \) with \(B(x,R) \subset \Omega \). This immediately implies that \(\psi \in L^{\infty}_{\text{loc}}(\Omega) \). Now let \(x \in \Omega \) be such that

\[
\limsup_{R \rightarrow 0^+} \int_{B(x,R)} \left(\frac{1}{\lambda(y)} \right)^k dy < \infty.
\]

Then

\[
G(x) \equiv (\sup_{0 < R \leq \text{dist}(x,\partial\Omega)} \int_{B(x,R)} \left(\frac{1}{\lambda(y)} \right)^k dy)^{\frac{2+N}{N(2k-N)}}
\]

is finite. By virtue of Lemma 2.2, we obtain

\[
\text{osc}_{B(x,2R)} \psi_m \leq \left(1 - \frac{1}{2cG(x)} \right) \text{osc}_{B(x,5R)} \psi_m
\]

for \(R > 0 \) such that \(B(x,5R) \subset \Omega \). Invoking Lemma 8.23 in [7, p.201], we arrive at

\[
\text{osc}_{B(x,R)} \psi_m \leq c \left(\frac{R}{R_0} \right)^{\alpha}
\]

for all \(0 < R \leq R_0 \equiv \text{dist}(x,\partial\Omega) \), where \(c, \alpha \) are two positive numbers depending only on the term \(cG(x) \) in (2.27). Passing to the limit in (2.28) gives

\[
\text{osc}_{B(x,R)} \psi \leq c \left(\frac{R}{R_0} \right)^{\alpha}.
\]

Hence, \(\psi \) is continuous at \(x \). It is an elementary exercise to show that \(\psi \) is a weak solution of (1.1)–(1.2). This concludes the proof of Theorem A.

3. Proof of Theorem B. Before we prove Theorem B, we collect a few preliminary results.

The following simple lemma is useful in our later development.
Lemma 3.1. For \(x, y \in \mathbb{R}^N \), define \(P(x, y) = a|x|^2 + bx \cdot y + c|y|^2 \), where \(a, b, c \) are real numbers with \(a \geq 0, c \geq 0 \). Then \(P(x, y) \geq 0 \) for all \(x, y \in \mathbb{R}^N \) if and only if \(b^2 - 4ac \leq 0 \).

The proof of this lemma is elementary, and we shall omit it here.

Next we cite a lemma from [23].

Lemma 3.2. Let (H2) and (H3) be satisfied and \((u, \varphi)\) be a classical weak solution of (1.4)–(1.7). Then there exists a positive constant \(c = c(M, \|\varphi\|_{\infty, \Omega_T}) \) such that

\[
\int_{Q(z,r)} \sigma(u)|\nabla \varphi|^2 \, dy \leq cr^N \tag{3.1}
\]

for all \(z = (x, t) \in \Omega_T, 0 < r \leq (1/2)\text{dist}_p(z, \partial_p \Omega_T) \). Here \(\text{dist}_p(z, \partial_p \Omega_T) \) denotes the parabolic distance between \(z \) and \(\partial_p \Omega_T \).

The following theorem is essential to the proof of Theorem B.

Theorem 3.3. Let (H2) and (H3) be satisfied and \((u, \varphi)\) be a classical weak solution of (1.4)–(1.7) with \(u \in L^\infty_{\text{loc}}(\Omega_T) \). Assume that

\[
\liminf_{s \to \infty} \frac{1}{\sigma(s)\|\varphi\|^2_{\infty, \Omega_T}} \equiv \beta > 0. \tag{3.2}
\]

Then for all \(z \in \Omega_T, 0 < r \leq (1/2)\text{dist}_p(z, \partial_p \Omega_T), 0 < \alpha < \beta \), we have

\[
\sup_{t-(1/4)r^2 \leq \tau \leq t} \int_{B(x,(1/2)r)} e^{\alpha|u|} \, dy \leq cr^N e^{c \int_{Q(z,r)} u \, dy \, ds},
\]

where \(c = c(N, \beta, M, \|\varphi\|_{\infty, \Omega_T}) \).

This theorem can be viewed as a local version of a result in [3].

Proof. Let \(z \in \Omega_T, 0 < r \leq (1/2)\text{dist}_p(z, \partial_p \Omega_T) \) be given. Consider the problem

\[
\frac{\partial v}{\partial r} - \Delta v = \text{div}(\sigma(u)\nabla \varphi) \quad \text{in} \ Q(z,r), \tag{3.3}
\]

\[
v = 0 \quad \text{on} \ \partial_p Q(z,r). \tag{3.4}
\]

Clearly, this problem has a unique classical weak solution \(v \) in the space

\[
W_2(t-r^2, t) \equiv \{ w \in L^2(t-r^2, t; W^{1,2}_0(B(x,r)) : w_r \in L^2(t-r^2, t; W^{-1,2}(B(x,r))) \}.
\]
Remember that \(u \geq 0 \) a.e. on \(\Omega_T \) and that the right hand side of (3.3) is nonnegative in the sense of distributions. By the weak comparison principle, we have

\[
0 \leq v \leq u \quad \text{a.e. on } Q(z, r). \tag{3.5}
\]

Choose \(f \in C^1(\mathbb{R}) \) so that

\[
f > 0, f' > 0 \quad \text{on } \mathbb{R}. \tag{3.6}
\]

For each \(K > 0 \), \((f(v) - f(K))^+ \) is a legitimate test function, and upon utilizing it in (3.3), we obtain, with the aid of the chain rule, that

\[
\begin{align*}
&\int_{B(x,r) \times \{r-t^2, r\} \cap \{v \geq K\}} (f(s) - f(K))^+ dsdy \\
&+ \int_{B(x,r) \times \{r-t^2, r\} \cap \{v \geq K\}} (f'(v)|\nabla v|^2 + \sigma(u)\varphi\nabla \varphi f'(v)\nabla v)dyds = 0
\end{align*}
\tag{3.7}
\]

for \(t - r^2 \leq \tau \leq t \). On the other hand, use \((f(v) - f(K))^+ \varphi \) as a test function in (1.5) to get

\[
\begin{align*}
&\int_{B(x,r) \times \{r-t^2, r\} \cap \{v \geq K\}} (f(v)\sigma(u)|\nabla \varphi|^2 + \sigma(u)\varphi\nabla \varphi f'(v)\nabla v)dyds \\
&= f(K)\int_{B(x,r) \times \{r-t^2, r\} \cap \{v \geq K\}} \sigma(u)|\nabla \varphi|^2 dyds \leq cf(K)r^N.
\end{align*}
\tag{3.8}
\]

The last step is due to (3.1). Adding (3.8) to (3.7) yields

\[
\begin{align*}
&\int_{B(x,t) \times \{r\}} 0 (f(s) - f(K))^+ dsdy + \int_{B(x,r) \times \{r-t^2, r\} \cap \{v \geq K\}} (f'(v)|\nabla v|^2 \\
&+ 2\sigma(u)f'(v)\varphi\nabla \varphi \nabla v + \sigma(u)f(v)|\nabla \varphi|^2 dyds \leq cf(K)r^N.
\end{align*}
\tag{3.9}
\]

According to Lemma 3.1, the integrand in the second integral in (3.9) is nonnegative if \(f \) is so chosen that

\[
4(\sigma(u)f'(v)\varphi)^2 - 4\sigma(u)f(v)f'(v) \leq 0 \quad \text{on } B(x, r) \times (t - r^2, \tau) \cap \{v \geq K\}. \tag{3.10}
\]

Set \(L = \|\varphi^2\|_{\infty, \Omega_T} \). Then (3.10) is an easy consequence of the inequality

\[
\frac{f'(v)}{f(v)} \leq \frac{1}{\sigma(u)L} \quad \text{on } B(x, r) \times (t - r^2, \tau) \cap \{v \geq K\}. \tag{3.11}
\]
We take \(f(s) = e^{\alpha s} \), where \(\alpha \in (0, \beta) \). Clearly, \(f(s) \) satisfies (3.6). Since
\[
\liminf_{s \to \infty} \frac{1}{\sigma(s)L} > \alpha, \tag{3.12}
\]
we can find \(K > 0 \) so that
\[
\frac{1}{\sigma(u)L} > \alpha \tag{3.13}
\]
on \(B(x, r) \times (t - r^2, \tau) \cap \{ u \geq K \} \supset B(x, r) \times (t - r^2, \tau) \cap \{ v \geq K \} \). The last step is due to (3.5). Fix such a \(K \). We conclude from (3.9) that
\[
\sup_{t - r^2 \leq \tau \leq t} \int_{B(x, r)} \int_0^v (e^{\alpha s} - e^{\alpha K})^+ ds dy \leq ce^{\alpha K} r^N. \tag{3.14}
\]
Consequently,
\[
\sup_{t - r^2 \leq \tau \leq t} \int_{B(x, r)} e^{\alpha v} dy \leq cr^N + e^{\alpha K} \sup_{t - r^2 \leq \tau \leq t} \int_{B(x, r)} v dy. \tag{3.15}
\]
For \(\epsilon > 0 \), define
\[
\theta_\epsilon(s) = \begin{cases}
1 & \text{if } s > \epsilon \\
\frac{s}{\epsilon} & \text{if } |s| \leq \epsilon \\
-1 & \text{if } s < -\epsilon.
\end{cases}
\]
Using \(\theta_\epsilon(v) \) as a test function in (3.3), we derive that
\[
\sup_{t - r^2 \leq \tau \leq t} \int_{B(x, r)} \int_0^v \theta_\epsilon(s) ds dy + \int_{Q(z, r)} \theta_\epsilon'(v) |\nabla v|^2 dy ds \\
\leq 2 \int_{Q(z, r)} \sigma(u) |\nabla \varphi|^2 \theta_\epsilon(v) dy ds \leq 2 \int_{Q(z, r)} \sigma(u) |\nabla \varphi|^2 dy ds. \tag{3.16}
\]
Dropping the second integral in (3.16) and then sending \(\epsilon \) to 0, we get
\[
\sup_{t - r^2 \leq \tau \leq t} \int_{B(x, r)} |v| dy \leq 2 \int_{Q(z, r)} \sigma(u) |\nabla \varphi|^2 dy ds. \tag{3.17}
\]
It follows from (3.15), (3.17) and (3.1) that
\[
\sup_{t - r^2 \leq \tau \leq t} \int_{B(x, r)} e^{\alpha v} dy \leq cr^N. \tag{3.18}
\]
We easily see that \(w \equiv u - v \) satisfies
\[
\frac{\partial w}{\partial t} - \Delta w = 0 \quad \text{in } Q(z, r),
\]
\[
w = u \quad \text{on } \partial_p Q(z, r).
\]
(3.19) (3.20)

Thus, by Lemma 1 in [13],
\[
\sup_{Q(z,(1/2)r)} |w| \leq c \int_{Q(z,r)} |w| dy \, ds \leq c \int_{Q(z,r)} u \, dy \, ds.
\]
(3.21)

We estimate
\[
\sup_{t-(1/4)r^2 \leq \tau \leq t} \int_{B(x,(1/2)r)} e^{\alpha |u|} \, dy \leq e^{\alpha \sup_{Q(z,1/2r)} |w|} \sup_{t-r^2 \leq \tau \leq t} \int_{B(x,r)} e^{\alpha u} \, dy \\
\leq cr^N e^{\int_{Q(x,r)} u \, dy \, ds}.
\]
(3.22)

This completes the proof.

Lemma 3.4. Assume that \(\sigma \) satisfies (H5). Then:

(a) For each \(K > 0 \) there exist \(0 < m_K \leq M_K \) with \(m_K \leq \frac{\sigma(s+\tau)}{\sigma(s)} \leq M_K \) for all \(s \in (-\infty, \infty) \), \(\tau \in [-K, K] \).

(b) \(\sigma(s) \geq \sigma(0) m_1 b^s \) for all \(s \geq 0 \), where \(b = m_1 < 1 \).

Proof. (a) is proved in [20]. To see (b), for each \(s \geq 0 \) there is a nonnegative integer \(m \) such that \(m \leq s < m + 1 \). Thus, we may write \(s = m + s_0 \), where \(s_0 = s - m \in [0, 1) \). We conclude from (a) that
\[
\sigma(s) = \sigma(m + s_0) \geq m_1 \sigma(m) \geq m_1^2 \sigma(m - 1) \geq \cdots \geq m_1^m \sigma(0).
\]

Note that \(m_1 \leq 1, m \leq s \). We derive \(\sigma(s) \geq \sigma(0) m_1 m_1^s \). This completes the proof.

Once we have established Theorem A and Theorem 3.3, we are ready to prove Theorem B.

Proof of Theorem B. We consider a sequence of approximate problems.

\[
\frac{\partial u_n}{\partial t} - \Delta u_n = \sigma_n(u_n)|\nabla \varphi_n|^2 \quad \text{in } \Omega_T,
\]
(3.23)
\[
\text{div}(\sigma_n(u_n) \nabla \varphi_n) = 0 \quad \text{in } \Omega_T,
\]
(3.24)
\[
u_n = u_0 \quad \text{on } \partial_p \Omega_T,
\]
(3.25)
\[
\varphi_n = \varphi_0 \quad \text{on } S_T \ (n = 1, 2, \ldots),
\]
(3.26)
where $\sigma_n(s) = \sigma(s) + \frac{1}{n}$. Then by virtue of results in [20, 23] for each fixed n, there exists a classical weak solution (u_n, φ_n) to (3.23)–(3.26) with $u_n \in L^\infty_{\text{loc}}(\Omega_T)$. Furthermore, we have
\[
\|\varphi_n\|_{\infty, \Omega_T} \leq c, \quad \int_{\Omega_T} |\nabla \varphi_n|^2 \, dx \, dt \leq c,
\]
\[
\sup_{[0,T]} \int_{\Omega} u_n^2(x,t) \, dx + \int_{\Omega_T} |\nabla u_n|^2 \, dx \, dt \leq c
\]
uniformly in n. Again, by [20] we can conclude that there is a a subsequence of $\{u_n, \varphi_n\}$, still denoted by $\{u_n, \varphi_n\}$, so that
\[
u_n \to u \text{ weakly in } L^2(0,T; W^{1,2}(\Omega)) \text{ and strongly in } L^2(\Omega_T),
\]
\[
\varphi_n \to \varphi \text{ weak}^* \text{ in } L^\infty(\Omega_T), \text{ weakly in } L^2(0,T; W^{1,2}(\Omega))
\]
and a.e. on Ω_T
(3.28)
and that (u, φ) is a classical weak solution of (1.4)–(1.7). The main result in [23] asserts that if $z = (x,t) \in \Omega_T$ is such that $\limsup_{r \to 0^+} \int_{Q(z,r)} u \, dy \, ds$ is sufficiently large then u is Hölder continuous in a neighborhood of z. Thus it is enough to establish the Hölder continuity of u in neighborhoods of those z's for which
\[
\limsup_{r \to 0^+} \int_{Q(z,r)} u \, dy \, ds < \infty.
\]
(3.29)
To this end, observe that $\lim_{s \to \infty} \sigma(s) = 0$ and $\sigma_n(s) = \sigma(s) + 1/n$. We can infer from the proof of Theorem 3.3 that for all $z = (x,t) \in \Omega_T, 0 < r \leq \left(1/2\right)\text{dist}_P(z, \partial_p \Omega_T), 0 < \alpha$, we have
\[
\sup_{t-(1/4)r^2 \leq \tau \leq t} \int_{B(x,(1/2)r)} e^{\alpha|u|} \, dy \leq c r^N e^{c \|\varphi\|_{\infty, \Omega_T}} e^{ \int_{Q(z,r)} u \, dy \, ds},
\]
(3.30)
where $c = c(N, \alpha, M, \|\varphi\|_{\infty, \Omega_T})$. It follows from Lemma 3.4 that
\[
\sigma(s) \geq ce^{-\gamma s} \text{ on } [0, \infty)
\]
(3.31)
for some $c, \gamma > 0$. This combined with (3.30) shows that for any $k > N/2$ there exists a positive number c such that
\[
\sup_{t-(1/4)r^2 \leq \tau \leq t} \int_{B(x,(1/2)r)} \left(\frac{1}{\sigma(u)}\right)^k \, dy \leq c r^N e^{c \|\varphi\|_{\infty, \Omega_T}} e^{ \int_{Q(z,r)} u \, dy \, ds}
\]
(3.32)
all \(z \in \Omega_T, 0 < r \leq (1/2) \text{dist}_p(z, \partial \Omega_T) \). This enables us to utilize the proof in [24] to conclude that \(u \) is Hölder continuous in a neighborhood of \(z \) if both

\[
\limsup_{r \to 0} \sup_{t-r^2 \leq \tau \leq t} \int_{B(x,r)} u^2(y, \tau) \, dy < \infty \tag{3.33}
\]

and

\[
\liminf_{r \to 0} \sup_{t-r^2 \leq \tau \leq t} \int_{B(x,r)} (u - u_{x,r}(\tau))^2 \, dy = 0. \tag{3.34}
\]

Now fix \(z = (x, t) \in \Omega_T \) so that (3.29) is satisfied. Then by virtue of (3.32),

\[
P(z) \equiv \text{ess sup}_{0 < r < \text{dist}_p(z, \partial \Omega_T)} \left(\sup_{t-(1/4)r^2 \leq \tau \leq t} \int_{B(x,(1/2)r)} \left(\frac{1}{\sigma(u)} \right)^{k \frac{N+2}{2(N-k)}} \, dy \right)
\]

is finite. For \(0 < r < \text{dist}_p(z, \partial \Omega_T) \) define

\[
\omega(z, \tau) = \text{ess sup}_{t-r^2 \leq \tau \leq t} \left(\text{ess sup}_{B(x,r)} \varphi(y, \tau) - \text{ess inf}_{B(x,r)} \varphi(y, \tau) \right).
\]

Note that \(\varphi(\cdot, \tau) \in W^{1,2}(\Omega) \cap L^\infty(\Omega) \) for a.e. \(\tau \in (0, T) \). We also have

\[
\text{div}(\sigma(u) \nabla \varphi) = 0 \quad \text{on} \quad \Omega
\]

for a.e. \(\tau \in (0, T) \). Thus we are in a position to apply Lemma 2.2, thereby obtaining

\[
\omega(z, 2r) \leq (1 - \frac{1}{2cP(z)}) \omega(z, 5r) \tag{3.36}
\]

for all \(r > 0 \) such that \(Q(z, 5r) \subset \Omega_T \). Therefore,

\[
\omega(z, r) \leq cr^\gamma \tag{3.37}
\]

for some \(c, \gamma > 0 \) depending only on the \(cP(z) \) in (3.36) and \(\text{dist}_p(z, \partial \Omega_T) \). Once this is established, we can employ the proof of Theorem 7 in [23] to obtain

\[
\int_{Q(z,r)} (u - u_{z,r})^2 \, dy \, ds \leq cr^\varepsilon \tag{3.38}
\]
for some $c, \varepsilon > 0$ independent of r. In light of Theorem 2.1 in [24], there exists a positive constant $c = c(M, \|\varphi\|_{\infty, \Omega_T})$ such that

$$
\sup_{t-r^2 \leq \tau \leq t} \int_{B(x,r)} (u - u_{z,2r})^2 \, dy + \int_{Q(z,r)} |\nabla u|^2 \, dyd\tau
\leq \frac{c}{r^2} \left(\int_{Q(z,2r)} (u - u_{z,2r})^2 \, dyd\tau + \int_{Q(z,2r)} (\varphi - \varphi_{x,2r}(\tau))^2 \, dyd\tau \right)
$$

(3.39)

for all $z = (x,t) \in \Omega_T, 0 \leq r \leq (1/2)\text{dist}_p(z, \partial \Omega_T)$. This, along with (3.38) and (3.37), implies (3.34), while (3.33) follows from (3.29) and (3.30). The proof is complete.

REFERENCES

