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Abstract. The nonlinear abstract di↵erential equation

d

dt
(Ay) + By(t) = F (t, Ky), 0  t  ⌧,

where A, B, K are linear closed operators from a complex Banach space Y into a
Banach space X is considered. The main assumption reads that the point ⇠ = 0 is
a polar singularity of the resolvent (T � ⇠I)�1, where T = A(�A+B)�1, � being a
regular point of the operator pencil �A + B. Mainly the case of a simple pole and
of a second order pole are considered. Some examples of application to concrete
partial di↵erential equations are given. In particular, we show that the results work
for mathematical models of nonlinear electrical networks.

1. Introduction. We consider the nonlinear abstract di↵erential equa-
tion

d(Ay)
dt

+ By(t) = F (t,Ky), 0  t  ⌧ (1.1)

where A,B,K are closed linear operators from a Banach space Y into a
Banach space X. Here DA \DB ⇢ DK . Let the point � be a regular point
of the operator pencil �A+B: (�A+B)�1 2 L(X,Y ). Make the substitution
v(t) = e��t(�A+B)y(t) and introduce the notation T = A(�A+B)�1, N =
K(�A + B)�1, f(t, x) = e��tF (t, e�tx). Then equation (1.1) is transformed
into equation (1.2) with a more simple linear part:

d

dt
(Tv) + v(t) = f(t,Nv), 0  t  ⌧. (1.2)
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If the operators A,T are degenerate, then equations (1.1), (1.2) are called
degenerate. In the degenerate case the point ⇣ = 0 is a spectral point of
the operator T and a singular point of the resolvent (T � ⇣I)�1. We shall
suppose that ⇣ = 0 is a pole of multiplicity m for the resolvent. Let us
denote by X2 = KerTm the spectral subspace and by P2 : X ! X2 the
spectral projector [7]. The operator T2 = T|X2

2 L(X2) induced by T in X2

is eigennilpotent (see [7]), i.e., Tm
2 = 0, Tm�1

2 6= 0. The resolvent has the
Laurent expansion

(T � ⇣I)�1 = �P2

⇣
�

m�1X
n=1

Tn
2 P2

⇣n+1
+

1X
n=0

⇣nSn. (1.3)

The operator P1 = I � P2 2 L(X) is a projector on the subspace X1 =
P1(X) = <(Tm), which is an invariant subspace of the operator T . We have
the decompositions

X = X1+̇X2, T = T1+̇T2; Tk = T|Xk
(1.4)

The operator T1 induced by T in X1 has a bounded inverse T�1
1 2 L(X1).

We also observe that the decompositions (1.4) hold for an unbounded
operator T if its resolvent has a pole at ⇣ = 0. Then T is closed in X, T1 is
closed in X1 (DT1 = P1DT ), and T2 is bounded in X2.

Some results concerning solvability of equation (1.1) are well-known in the
literature and we refer to the book [3] by R.W. Carroll and R.E. Showalter
both for main theorems and a large bibliography. However, in those state-
ments only the case of a simple pole could be treated and their methods
heavily depend on the theory of monotone operators. On the other hand,
some degenerate semi-linear equations like (1.2) appear in various applied
sciences when � = 0 is a multiple pole for the resolvent (T � �I)�1. See
the monographs [1, 2] by S.L. Campbell, devoted mainly to equations in
finite-dimensional spaces X.

In this paper we consider equation (1.2) in the case of the multiple pole
(m > 1) of the resolvent (1.3). For the sake of brevity we completely in-
vestigate the case of m = 2, give some particular theorem for m > 2 and
postpone the general case to a later paper. New results for the case of m = 1
from Sections 3,4 are necessary to solve our problem in the case of m > 1. In
the simple pole case we also succeed in weakening the assumptions in [5, 6]
guaranteeing that (1.1) has a local solution. Moreover, in Theorems 4.1–4.3
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Figure 1.

we formulate some local conditions for f under which (1.2) has at least one
solution. The second order pole case is more complicated. In Section 5 we
examine a particular case where the subspace X2 (=P2(X)) is generated by
one eigenvector and one associated vector. One example of application is
described, too. Section 6 deals with the general case, even when the dimen-
sion of X2 is infinite. Finally, Section 7 contains some concrete applications
of the previous results to partial di↵erential equations and to the nonlinear
electrical networks outlined in Section 2.

2. An example from physics. Mathematical models of nonlinear
electrical networks usually contain equations of the form (1.1), (1.2) in a
finite-dimensional space X. The electrical transfer four-port represented in
Figure 1 has three inner branches with known impedances zk, unknown cur-
rents ik and tensions uk (k = 1, 2, 3). An input current i�(t) and an input
tension u�(t) are given functions. The four-port contains also a compensat-
ing branch %, in which a current i is controlled by currents i1, i2 according
to a nonlinear law i = %(i1, i2). We use the following Kirchho↵ equations:

i + i1 + i2 = i�, u1 = u�, u2 + u3 = u�. (2.1)

2.1. Let the element z1 be an inductance with a nonlinear resistor, z2 be
a nonlinear resistor, z3 be a linear capacitor:

u1 =
d

dt
(Li1) +  (t, i1), u2 = ri2 + '(t, i2), i3 =

d

dt
(Cu3). (2.2)

Here, ri2 is a linear part of the Ohm law for the branch z2; L, r, C are real
constants. Substitute i = % and u1, u2 (2.2) in Kirchho↵ equations (2.1).
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We obtain the following system of equations in the variables i1, i2, u3:

i2 + i1 = i�� %(i1, i2);
d

dt
(Li1) = u�� (t, i1); ri2 + u3 = u��'(t, i2).

This system is written in the vector form (1.1), where y = (i2, i1, u3)tr,
X = Y = C3, K = I,

A =

2
4 0 0 0

0 L 0
0 0 0

3
5 , B =

2
4 1 1 0

0 0 0
r 0 1

3
5 , F (t, y) =

2
4 i�(t)� %(i1, i2)

u�(t)�  (t, i1)
u�(t)� '(t, i2)

3
5 .

Note that when % = 0, = 0,' = 0 we have a linear network described by
the degenerate equation Ay0(t) + By(t) = f(t). This linear four-port was
considered in [8].

Choose � = 1 and pass to (1.2). We have

(A + B)�1 = N =

2
4 1 �L�1 0

0 L�1 0
�r rL�1 1

3
5 ; T =

2
4 0 0 0

0 1 0
0 0 0

3
5 ;

f(t,Nv) = e�tF (t, etNv).

At the point ⇣ = 0 the spectral subspace X2 of the operator T coincides
with its eigen subspace, dimX2 = 2. The resolvent (T � ⇣I)�1 has a simple
pole at the point ⇣ = 0. The spectral projector P2 is

P2 =

2
4 1 0 0

0 0 0
0 0 1

3
5 .

2.2. Now let the element z1 be a capacitor C with a nonlinear conduction
G1 and the elements z2, z3 be inductors with nonlinear resistors:

i1 = C
du1

dt
+ G1(t, u1); uk =

d

dt
(Lkik) + 'k(t, ik), k = 2, 3. (2.3)

Here C,Lk are constants. In the compensating branch the current i is con-
trolled by one current i2 with the help of a known function G2: i = G2(t, i2).
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Substituting i1, uk (2.3) into Kirchho↵ equations (2.1), we obtain the equa-
tion of form (1.1) for the vector y = (y1, y2, y3)tr = (u1, i2, i3)tr. Here we
have K = I,

A =

2
4 0 0 0

C 0 0
0 L2 L3

3
5 ;B =

2
4 1 0 0

0 1 0
0 0 0

3
5 ;

F (t, y) =

2
4 u�(t)

i�(t)�G1(t, y1)�G2(t, y2)
u�(t)� '2(t, y2)� '3(t, y3)

3
5 .

In replacing y ! v we choose � = 1. The function v(t) = e�t(A + B)y(t)
satisfies the equation

d

dt
(Tv) + v(t) = f(t,Nv) ⌘ e�tF (t, etNv) (2.4)

with

T =

2
4 0 0 0

C 0 0
0 0 1

3
5 , N = (A + B)�1 =

2
4 1 0 0
�C 1 0
CL2
L3

�L2
L3

1
L3

3
5 .

The spectral subspace X2 is the linear span of the eigenvector '0 = (0, 1, 0)tr

and the associated (rooted) vector '1 = (C�1, 0, 0)tr of the operator T at
the point ⇣ = 0. The resolvent (T � ⇣I)�1 has a pole of multiplicity m = 2
at the point ⇣ = 0. The matrix coe�cients in (1.3) are

P2 =

2
4 1 0 0

0 1 0
0 0 0

3
5 , T2 =

2
4 0 0 0

C 0 0
0 0 0

3
5 , T 2

2 = 0.

3. The simple pole case. Equation (1.2) with the initial condition

lim
t!+0

Tv(t) = x0 (3.1)

was studied in [5, 6] in the case when ⇣ = 0 is a simple pole of the resolvent
(T�⇣I)�1 (m = 1). In Sections 3, 4 of this paper we’ll obtain other existence
and uniqueness theorems in the simple pole case. In (1.4) we have T2 = 0,
X1 = <(T ), X2 = KerT , T1 = T|X1

2 L(X1), T�1
1 2 L(X1), Pk is the
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corresponding projector of X onto Xk. Here the operator T is bounded; the
case of an unbounded operator T will be considered in Sections 6, 7. We
shall denote v(t) = v1(t) + v2(t), vk(t) = Pkv(t). The assumption x0 2 <(T )
is required for correctness of initial condition (3.1). If the function v(t) is
continuous on [0, ⌧ ], then (3.1) is equivalent to the Cauchy condition for the
projection v1(t):

v1(0) = v10 = T�1
1 P1x0. (3.2)

Definition. By a solution of equation (1.2) on a segment [0, ⌧ ] we mean a
function v(t) 2 C([0, ⌧ ],X) satisfying equation (1.2) in the classical sense at
every point t 2 [0, ⌧ ]. In particular, Tv(t) is a di↵erentiable function.

Theorem 3.1. Let f : [0, ⌧ ] ⇥X ! X be continuous and suppose that the
projections Pkf(t, x) satisfy the conditions (for all x0, x00 2 X)

10. kP1f(t, x0)� P1f(t, x00)k  bkx0 � x00k
20. kP2f(t, x0)� P2f(t, x00)k  a(t)kx0 � x00k; limt!+0 a(t) = 0.

Then for all x0 2 <(T ) = X1 the initial value problem (1.2), (3.1) has a
unique solution v(t) on some interval 0  t  ⌧0 (0 < ⌧0  ⌧). The
projection P1v(t) is continuously di↵erentiable.

Proof. Equation (1.2) is equivalent to the following equations

d

dt
(T1v1(t)) + v1(t) = P1f(t,N(v1 + v2)) (3.3)

v2(t) = P2f(t,N(v1 + v2)). (3.4)

Integrate (3.3) under condition (3.2). Then we obtain the equation

v1 = �1(v1, v2), (3.5)

where �1(v1, v2)(t) ⌘ T�1
1 {P1x0 +

R t
0 [P1f(s,N(v1(s) + v2(s)))� v1(s)]ds}.

Introduce the function classes

S1 = {v1(t) : v1 2 C([0, ⌧ ],X1), v1(0) = T�1
1 P1x0} (3.6)

S2 = {v2(t) : v2 2 C([0, ⌧ ],X2)}. (3.7)

In these classes we consider the norm kvkkSk = sup0t⌧ kvk(t)kX . Clearly,
�1(S1, v2) ⇢ S1 for all v2 2 S2. Condition 10 implies that the estimate

k�1(v01, v2)(t)� �1(v001 , v2)(t)kX  tkT�1
1 k(1 + bkNk)kv01 � v001kS1
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(for all v2 2 S2) holds true. Consider problem (1.2), (3.1) on a segment
[0, ⌧1], where ⌧1 < min{⌧,K�1

1 }, K1 = kT�1
1 k(1+ bkNk). Then the mapping

�1 in (3.5) is a contraction on S1 = {v1} for every fixed function v2 2 S2.
There exists a unique solution v1(t) = v1(t, v2) of equation (3.5). This
solution satisfies the Lipschitz condition

kv1(t, v02)� v1(t, v002 )kS1 Mkv02 � v002kS2 , for all v02, v
00
2 2 S2.

The Lipschitz constant depends on ⌧1 and is equal to

M = M(⌧1) =
⌧1bkT�1

1 k · kNk
1� ⌧1K1

.

The Lipschitz property follows from the estimate
k�1(v1(t, v02), v

0
2)(t)� �1(v1(t, v002 ), v002 )(t)kX

 ⌧1K1kv1(t, v02)� v1(t, v002 )kS1 + ⌧1bkT�1
1 k · kNk · kv02 � v002kS2 .

Substitute the solution v1(t, v2) in (3.4) and obtain the equation in v2:
v2 = �2(v2), �2(v2) ⌘ P2f(t,N(v1(t, v2) + v2)).

Clearly, �2(S2) ⇢ S2. Taking into account the Lipschitz property of v1(t, v2)
and Condition 20 in the theorem, we have

k�2(v02)(t)� �2(v002 )(t)kX  a(t)kNk (1 + M(⌧1))kv02 � v002kS2 . (3.8)
Now we consider problem (1.2), (3.1) on a segment [0, ⌧0], where 0 < ⌧0  ⌧1,
sup0t⌧0 a(t) < ", "�1 = kNk(1 + M(⌧1)). It follows from the estimate of
type (3.8) on the segment [0, ⌧0] that k�2(v02) � �2(v002 )kS2(⌧0)  qkv02 �
v002kS2(⌧0), where q = kNk[1 + M(⌧0)] sup0t⌧0 a(t). The Lipschitz constant
M(⌧1) monotonically depends on ⌧1: ⌧0 < ⌧1 implies M(⌧0) < M(⌧1). Then
q < 1 and in the function class S2(⌧0) there exists a unique solution v2 of
the equation �2(v2) = v2. Hence, the function v(t) = v1(t, v2) + v2(t) is the
solution of (1.2), (3.1) on [0, ⌧0] to be found.

Corollary 3.1. Theorem 1 is valid if the condition 20 on P2f is replaced by
the Lipschitz condition kP2f(t, x0)� P2f(t, x00)k  a0kx0 � x00k, a0 < 1

kNk .

Indeed, the mapping �2 : S2 ! S2 satisfies the inequality
k�2(v02)(t)� �2(v002 )(t)kX  a0kNk(1 + M(⌧1))kv02 � v002kS2(⌧1).

Since lim
⌧1!+0

M(⌧1) = 0, there exists 0 < ⌧0 (⌧0  ⌧1) such that q = a0kNk[1+

M(⌧0)] < 1. Then, �2 is a contraction from S2 into itself. This completes
the proof of Corollary 3.1.

The conditions involving the projections Pkf(t, x), k = 1, 2, may be re-
placed by conditions on the function f(t, x), as the following theorem shows.
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Theorem 3.2. Let f : [0, ⌧ ]⇥X ! X be a continuous mapping, the point
⇣ = 0 be a simple pole of the resolvent (T � ⇣I)�1 and suppose ↵ > kP2k,
where P2 is the spectral projector onto KerT . If the function f satisfies the
Lipschitz condition

kf(t, x1)� f(t, x2)k 
1

↵kNkkx1 � x2k, 8xk 2 X,

then the initial value problem (1.2), (3.1) is uniquely solvable on some seg-
ment 0  t  ⌧0 for every vector x0 2 <(T ).

The theorem is valid because the conditions of Corollary 3.1 are satisfied.

4. Local restrictions in the simple pole case.
4.1. Up to now the conditions on the function f(t, x) were global in the

space X. Now we consider conditions which are fulfilled in some neighbour-
hood of the initial vector v10 given in (3.2). Denote

V1 = {v1 2 X1 : kv1 � T�1
1 P1x0k  ⇢1}, V2 = {v2 2 X2 : kv2k  ⇢2}. (4.1)

Theorem 4.1. Let the function fN (t, v) ⌘ f(t,Nv) be continuous on the
set [0, ⌧ ]⇥ (V1+̇X2). Let the projections Pkf satisfy the Lipschitz condition
in this set:

kPkf(t,Nv0)� Pkf(t,Nv00)kX  bkkv0 � v00kX , k = 1, 2, (4.2)

where b2 < 1. Then for x0 2 <(T ) problem (1.2), (3.1) has a unique solution
v(t) on some interval 0  t  ⌧0, where 0 < ⌧0  ⌧ .

Theorem 4.2. Let the function fN (t, v) ⌘ f(t,Nv) satisfy the conditions of
Theorem 4.1 on the bounded closed set [0, ⌧ ]⇥ (V1+̇V2) and the values of the
function P2f belong to the ball V2 defined by (4.1) : kP2f(t,N(v1+v2))k  ⇢2;
8t 2 [0, ⌧ ], vk 2 Vk. Then for x0 2 <(T ), problem (1.2), (3.1) has a unique
continuous solution v(t) on some non-trivial interval 0  t  ⌧0.

Here, the component v1(t) of the solution is continuously di↵erentiable.
We will prove Theorems 4.1 and 4.2 at the same time. In the function classes
Sk (3.6), (3.7) we consider the bounded closed sets S⇢k :

S⇢1 = {v1 2 S1 : kv1 � T�1
1 P1x0kS1  ⇢1};

S⇢2 = {v2 2 S2 : kv2kS2  ⇢2}.
(4.3)



EXISTENCE AND UNIQUENESS OF SOLUTIONS 381

Fix v1 2 S⇢1 and write equation (3.4) in the form v2 = �v1(v2), where
�v1(v2) ⌘ P2f(t,N(v1 + v2)). Under the conditions of Theorem 4.1 we have
�v1(S2) ⇢ S2 and under the conditions of Theorem 4.2 we have �v1(S⇢2) ⇢
S⇢2 . In virtue of (4.2), k�v1(v02)(t) � �v1(v002 )(t)kX  b2kv02(t) � v002 (t)kX ,
b2 < 1, 8t 2 [0, ⌧ ]. For this reason �v1(v2) is a contractive mapping in the
norm of S2. It acts in the whole S2 under the conditions of Theorem 4.1 or in
S⇢2 under the conditions of Theorem 4.2. For the functional equation (3.4)
there exists a unique continuous solution v2(t) = v2(t, v1) such that v2 2 S2

under the conditions of Theorem 4.1 or v2 2 S⇢2 under the conditions of
Theorem 4.2. The solution v2(v1) : S1 ! S2 (respectively v2 : S⇢1 ! S⇢2)
possesses the Lipschitz property:

kv2(v01)� v2(v001 )kS2  �kv01 � v001kS1 , � =
b2

1� b2
. (4.4)

Hence, the class of functions v2(v1) is uniformly bounded for all v1 2 S⇢1 .
Substitute the solution v2(v1) in equation (3.5) and seek the solution v1 of
the equation v1 = �(v1) ⌘ �1(v1, v2(v1)) in the function class S⇢1 defined
by (4.3). Continuity of f(t,Nv) and Lipschitz properties (4.2), (4.4) imply
the estimate

kP1f(t,N(v1(t) + v2(v1)(t)))k  d, 8t 2 [0, ⌧ ], for all v1 2 S⇢1

with d <1 some constant. For every v1, v01, v
00
1 2 S⇢1 we obtain

k�(v1)(t)� T�1
1 P1x0kX  ⌧K; K = kT�1

1 k(⇢+ kT�1
1 P1x0k+ d);

k�(v01)(t)� �(v001 )(t)kX  ⌧Mkv01 � v001kS1 ; M = kT�1
1 k(1 + b1)(1 + �).

Choose ⌧0 < min{⇢K�1,M�1}, 0 < ⌧0  ⌧ , and consider our problem on
the segment 0  t  ⌧0. Then � : S⇢1 ! S⇢1 is a contraction in the norm
of S1. There exists a unique solution v1(t) of (3.5) in the class S⇢1 . In this
case v1 2 C1([0, ⌧0],X1). The proof is complete.

Consider the example of electrical networks from Section 2.1.
Let i�, u� : [0, ⌧ ] ! C1, % : C2 ! C1,  : [0, ⌧ ] ⇥ C1 ! C1, ' :

[0, ⌧ ] ⇥C1 ! C1 be continuous functions and %, ,' possess the Lipschitz
property:

|%(⇠0, ⌘0)� %(⇠00, ⌘00)|  a%k(⇠0, ⌘0)� (⇠00, ⌘00)kC2 ,

|'(t, ⇠0)� '(t, ⇠00)|  a'|⇠0 � ⇠00|, for all t 2 [0, ⌧ ]; ⇠, ⌘ 2 C1.
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Assume that the Lipschitz constants a%, a' satisfy the estimate max{a%, a'}
< 1

2M , M2 = 1 + (1 + r)2 + (2 + r)2L�2.Then the system of di↵erential-
algebraic equations {(2.1), (2.2), i = %(i1, i2)} of the electrical network has
a unique solution with the initial condition i1(0) = i10 (for all i10 2 C1).
Actually, the matrices N,T and the function f , obtained in Section 2.1,
satisfy the conditions of Theorem 4.1. Since v = e�t(i1 + i2, Li1, ri2 +u3)tr,
the initial value (3.2) has the form P1v(0) = v1(0) = (0, Li1(0), 0)tr.

4.2. Now we examine problem (1.2), (3.1) with the help of the Fréchet
derivative of the function f(t, x) or its projection P2f .

Theorem 4.3. Assume that the stationary equation

v20 = P2f(0, Nv10 + Nv20) (4.5)

in the Banach space X has a solution v20 2 X2 (= KerT ) for given v10 =
T�1

1 P1x0 (3.2). Let S(⇠, r) = {x 2 X : kx� ⇠k  r} be a closed neighbour-
hood of the point ⇠ = N(v10+v20) and the function f(t, x) : [0, ⌧ ]⇥S(⇠, r)!
X be continuous. Let one of the two conditions hold true:

1) the function f(t, x) has the continuous Fréchet derivative @
@xf(t, x)

on the set [0, ⌧ ]⇥ S(⇠, r);
2) the component P1f(t, x) is a Lipschitz function and the component

P2f(t, x) has the continuous Fréchet partial derivative @
@xP2f(t, x)

on [0, ⌧ ]⇥ S(⇠, r).
If the initial value of the derivative at the center of the ball S is a contrac-

tive1 operator Q = Q(⇠) = @
@x [P2f(0, ⇠)]N|X2

2 L(X2), then problem (1.2),
(3.1) has at least one solution v(t) on a non-trivial interval 0  t  ⌧0. The
component P2v(t) is continuous, and the component P1v(t) is continuously
di↵erentiable.

Proof. The vector v0 = v10 + v20 is the initial value for the unknown solu-
tion v(t) of (1.2). Equation (3.4) will be solved with respect to an implicit
function v2(t, v1). To this purpose we apply the implicit function theorem
to the equation v2 � P2f(t,Nv1 + Nv2) = 0 in the space X = X1+̇X2.
There exists a continuous solution v2 =  (t, v1) with the initial condition
v20 =  (0, v10) and a continuous Fréchet derivative @ 

@v1
(t, v1) on some set

⌦ ⌘ [0, ⌧1]⇥ S(v10, %) ⇢ [0, ⌧ ]⇥X1, 0 < %  r. Substitute the solution v2 in

1Instead of contractivity of Q, it is su�cient that the spectrum of the operator Q don’t
contain the point ⇠ = 1.
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equation (3.3) and obtain

dv1(t)
dt

+ T�1
1 v1(t) = '(t, v1), ' ⌘ T�1

1 P1f(t,Nv1 + N (t, v1)). (4.6)

The right-hand side has the continuous Fréchet derivative @'
@v1

(t, v1) on the
set ⌦ if Condition 1) of our theorem is fulfilled. By virtue of the Cauchy
type theorem ([4], 10.4.5), there exists a unique solution v1(t) of equation
(4.6), satisfying the initial condition v1(0) = v10. If Condition 2) of the
theorem is valid, then the function @ 

@v1
is also continuous on ⌦. Therefore

 (t, v1) and '(t, v1) are local Lipschitz functions ([4], 10.4.6). We can apply
the existence and uniqueness theorem of Picard type to equation (4.6) with
the initial condition v1(0) = v10.

The function v(t) = v1(t) +  (t, v1) is a solution of our problem on some
non-trivial interval 0  t  ⌧0. The theorem is proved.

Remark 4.1. If the initial equation (4.5) has more than one solution v20

for given v10, then the initial value problem (1.2), (3.1) has more than one
solution (see Example 4.1). But the Cauchy problem for equation (1.2) with
the initial condition v(0) = v10 + v20 has a unique solution. In this case
equality (4.5) is a relation between components vk0 of the initial vector v0.
In order that a solution v20 of (4.5) be unique, it is su�cient that

kP2f(0, x0)� P2f(0, x00)k  a2kx0 � x00k, a2 <
1

kN2k
,

for all x0, x00 2 Nv10 + N(X2); X2 = KerT ; N2 = N|X2
.

(4.7)

Example 4.1. (Illustration of Theorem 4.3.) Suppose we are given the
system of di↵erential-algebraic equations with the initial condition:

d

dt
u(t) + u(t) = 1� u2 + y2; u(0) = 0 (4.8)

y = u2 + y2 + t. (4.9)

Write the system in the form (1.2), (3.1) in R2:

d

dt
(Tv) + v(t) = f(t, v); Tv(0) = (0, 0)tr, (4.10)

v =
✓

u
y

◆
, T =


1 0
0 0

�
, f =


1� u2 + y2

t + u2 + y2

�
.



384 ANGELO FAVINI AND ANATOLIY RUTKAS

Under the notation of Theorem 4.3 we have X2 = {(0, x2)tr} ⇠ R1,

N = I, P2 =


0 0
0 1

�
, T1 = 1, v10 = 0,

@

@x
[P2f(t, x)]N|X2

= 2y.

The equation y(0) = y2(0) of the form (4.5) has two solutions, namely
y1(0) = 0, y2(0) = 1. Correspondingly, there exist two points ⇠1 = (0, 0)tr,
⇠2 = (0, 1)tr from which solutions v(t) start. At these points Q(⇠1) =
0, Q(⇠2) = 2. The mappings [1�Q(⇠k)] : X2 ! X2 are invertible, Q(⇠2) not
being a contraction. The conditions of Theorem 4.3 are fulfilled for problem
(4.10) with respect to each point ⇠k. For this reason there exist two solu-
tions vk(t) of (4.10). The Cauchy condition vk(0) = ⇠k uniquely determines
the function vk(t). Equation (4.9) is of form (3.4). It has two solutions
y1,2(t, u) = 1

2 ⌥
1
2

p
1� 4u2 � 4t.

Note that the uniqueness condition (4.7) isn’t globally fulfilled in the
whole space X2. The corresponding inequality being locally satisfied in a
ball |y|  r, r < 1

2 doesn’t ensure uniqueness.

5. The second order pole case. Consider first a simple situation
where the subspace X2 = P2(X) is a linear span of one eigenvector and
one associated vector: X2 = span{'0,'1}, T'0 = 0, T'1 = '0;m = 2.
Using the representation P2v = ⇡20(P2v)'0 + ⇡21(P2v)'1 in the space X2,
we introduce the projectors ⇧2iv = ⇡2i(P2v)'i (i = 0, 1) in the space X
(P2 = ⇧20 + ⇧21). For convenience we write ⇡2iv = ⇡2i(P2v). Let us
introduce the following notation: f21(t, x) = ⇡21f(t, x) : [0, ⌧ ]⇥X ! C. We
have f21(t, x)'1 = ⇧21f(t, x).

Theorem 5.1. Let a function f(t, x) : [0, ⌧ ] ⇥ X ! X be continuous and
for each function g(t) 2 C1[0, ⌧ ] the component f21 generate the continuously
di↵erentiable function f21(t, g(t)N'1) ⌘  g(t) 2 C1[0, ⌧ ]. Suppose that

10. kP1f(t, x0)� P1f(t, x00)k  bkx0 � x00k
20. k⇧20f(t, x0)�⇧20f(t, x00)k  a(t)kx0 � x00k
30. ⇧21f(t,Nv) = ⇧21f(t,N⇧21v), for every v 2 X
40. ⇡21f(0, N(⇡20x0)'1) = ⇡20x0

50. k g0 �  g00kC1[0,⌧ ]  b1kg0 � g00kC1[0,⌧ ], b1 < 1.
Here b, b1 are constants; the function a(t) � 0 is bounded for t 2 [0, ⌧ ],
lim

t!+0
a(t) = 0. Then for all x0 2 <(T ) (= X1+̇KerT ) there exists a unique

solution v(t) of problem (1.2), (3.1) on some interval 0  t  ⌧0, 0 < ⌧0  ⌧ .
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Proof. We denote by P1v = v1,⇧20v = g0(t)'0,⇧21v = g1(t)'1 the com-
ponents of the vector v(t). Then equation (1.2) and condition (3.1) are
equivalent to the following problems:

d

dt
(T1v1(t)) + v1(t) = P1f(t,Nv(t)); lim

t!+0
T1v1(t) = P1x0; (5.1)

d

dt
g1(t) + g0(t) = ⇡20f(t,Nv(t)); lim

t!+0
g1(t) = ⇡20x0; (5.2)

g1(t) =⇡21f(t,Nv(t)); 0 = ⇡21x0. (5.3)

The last equality is equivalent to x0 2 <(T ). The remaining equalities are
rewritten in the following form:

v1(t) = �1(v1, g0, g1), �1 ⌘ T�1
1 {P1x0 +

Z t

0
[P1f(s,Nv(s))� v1(s)]ds;

(5.4)

g0(t) = �20(g0, v1, g1), �20 ⌘ �
d

dt
g1(t) + ⇡20f(t,Nv(t)); (5.5)

g1(t) = �21(g1(t)), �21 ⌘ ⇡21f(t, g1(t)N'1). (5.6)

In order to pass from (5.3) to (5.6) we used Condition 30 of the theorem.
We shall seek a solution v1, g0, g1 of the system (5.4)–(5.6) in the function

classes S1 (see (3.6)), S20, S21 respectively, where

S20 = {g0 2 C([0, ⌧ ],C)}; S21 = {g1 2 C1([0, ⌧ ],C), g1(0) = ⇡20x0}.
(5.7)

It follows from Condition 40 and continuity of f that �21(S21) ⇢ S21 (see
(5.6)). It follows from Condition 50 that �21 : S21 ! S21 is a contrac-
tion with respect to the norm of the space C1[0, ⌧ ]. Then there exists a
unique solution g1(t) 2 S21 of equation (5.6). Substituting this solution
in the system (5.4), (5.5), we have two equations with respect to functions
v1(t), v2(t) ⌘ g0(t)'0 with values in the space X1+̇⇧20(X2). These equa-
tions are analogous to equations (3.5), (3.4). Hence, system (5.4), (5.5) has
a unique solution v1(t), g0(t). The function v(t) ⌘ v1(t) + g0(t)'0 + g1(t)'1

is the solution to be found.
Note that the Hypothesis 40 of Theorem 5.1 on the relation between

f(t, x) and x0 is a necessary condition to solve problem (1.2), (3.1). The
Hypothesis 30 means that the component f21(t,Nv), corresponding to the
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associated vector '1, doesn’t depend on the projection of the argument v on
the supplement of span{'1}.

Example 5.1. Let us consider the system of three equations

dv1

dt
+ v1 =

t2 � 2p
1� t2

+ arccos t + sin v1;

d

dt
g1 + g0 = t2 sin v1; g1 =

1
4

Z t

0
sin g1(⌧)d⌧.

The system may be written in the form (1.2) in the space X = Y = C3,
where

T =

0
@ 1 0 0

0 0 1
0 0 0

1
A , '0 =

0
@ 0

1
0

1
A , '1 =

0
@ 0

0
1

1
A , v =

0
@ v1

g0

g1

1
A .

We look for a solution v(t) under the condition limt!+0 Tv(t) = (⇡2 , 0, 0)tr =
x0. The function  g(t) = f21(t,Ng'1) and the projectors appearing in the
theorem are as follows

P1 =

2
4 1 0 0

0 0 0
0 0 0

3
5 , P20 =

2
4 0 0 0

0 1 0
0 0 0

3
5 , P21 =

2
4 0 0 0

0 0 0
0 0 1

3
5 , N = I,

f21(t,Nv) =
1
4

Z 1

0
sin g1(⌧)d⌧, ⇡2kv = gk (k = 0, 1).

The conditions of Theorem 5.1 are valid on any segment [0, ⌧ ] ⇢ [0, 1).
Moreover, b = 1, a(t) = t2, ⇡20(P2x0) = 0, b1 = 1

2 . The solution v(t),
existing according to Theorem 5.1, is expressed by elementary functions and
satisfies the system (on the segment 0  t < 1):

v1 = arccos t, g0(t) = t2
p

1� t2, g1(t) ⌘ 0.

We can weaken some conditions of Theorem 5.1.

Corollary 5.1. Theorem 5.1 holds if 20 is replaced by the Lipschitz condi-
tion:

2. k⇧20f(t, x0)�⇧20f(t, x00)k  a0kx0 � x00k, a0 <
1
kNk .

Let us now consider local restrictions on the component P1f of the func-
tion f(t, x) in the ball V1 (see (4.1)).
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Theorem 5.2. Let all conditions of Theorem 5.1 except 10, 20 be fulfilled.
Assume also that for every t 2 [0, ⌧ ] the following conditions hold:

1. kP1f(t,Nv0)�P1f(t,Nv00)k  bkv0�v00k, for all v0, v00 : P1v0, P1v00 2
V1;

2. k⇧20f(t,Nv0) � ⇧20f(t,Nv00)k  a0kv0 � v00k, a0 < 1, for all
v0, v00 2 X2.

Then for all x0 2 <(T ) there exists a unique solution v(t) of problem (1.2),
(3.1) on some non-trivial interval 0  t  ⌧0. The projection P1v(t) = v1(t)
lies in the ball V1: kv1(t)� T�1

1 P1x0k  ⇢1, 0  t  ⌧0.

Using arguments like those used in the proof of Theorem 5.1, we infer
that there exists a unique solution g1 2 S1 of equation (5.6). Substitute
this solution in equations (5.4), (5.5). Let us now make use of the proof
of Theorem 4.1. For this purpose we fix v1 and denote v2 = v2(v1) ⌘
g0(t, v1)'0, �v1 ⌘ �20(g0; v1) : S20 ! S20. Then for the equation g0 =
�20(g0; v1) we get a solution g0(v1) in the class S20 of functions continuous on
the interval 0  t  ⌧ . At last we return to equation (3.5). There exists some
subinterval [0, ⌧0] ⇢ [0, ⌧ ] on which the equation v1 = �(v1) ⌘ �1(v1; g0(v1))
is uniquely solvable in the function class S⇢1 (see (4.3)).

6. The case of a spectral subspace of arbitrary dimension.
We start from a finite-dimensional subspace X2 and one-block eigennilpo-
tent T2 (1.4). Then in X2 there exists a generating vector ' = 'n (n =
m � 1) such that Tn'n = '0 is an eigenvector and the system of vectors
{'k = Tn�k'n}n

k=0 forms a basis for X2. With the help of the decomposi-
tion P2v =

Pn
k=0 ⇡2k(P2v)'k we introduce the one-dimensional projectors

⇧2kv = ⇡2k(P2v)'k in X. For convenience, we write ⇡2k(P2v) = ⇡2kv. No-
tice that the additive representation of the spectral projector P2 =

Pn
k=0 ⇧2k

by the one-dimensional projectors ⇧2k is not unique. We look for a solution
v = v(t) of equation (1.2) in the form

v = v1 + g0'0 + g1'1 + . . . + gn'n; v1 = P1v; gk = ⇡2kv. (6.1)

Using the sketch of proof of Theorem 5.1, we obtain the following proposition.

Theorem 6.1. Let f : [0, ⌧ ]⇥X ! X be a continuous function. Suppose:
1). The components ⇡2kf do not depend on the variables v1, g1, g2, . . . ,

gk�1 :

⇡2kf(t,Nv) = ⇡2kf(t,N
nX

j=k

⇧2jv), k = n, n� 1, . . . , 1.
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2). The projections P1f , ⇧20f satisfy the Lipschitz conditions: for all
x0, x00 2 X, 0  t  ⌧

kP1f(t, x0)� P1f(t, x00)kX  akx0 � x00kX , a 2 R+;

|⇡20f(t, x0)� ⇡20f(t, x00)|  b0kx0 � x00kX , b0 <
1
kNk .

3). For each k= 1, 2, . . . , n the function  k(t) ⌘⇡2kf(t,N
Pn

j=k gj(t)'j)
belongs to the class Ck[0, ⌧ ] for gj 2 Cj [0, ⌧ ], j = k, ..., n. The map-
ping ⇡2kf ⌘ �k(t, gk, gk+1, ..., gn) possesses the Lipschitz property
with respect to gk 2 Ck[0, ⌧ ] uniformly in the variables t 2 [0, ⌧ ],
gj 2 Cj [0, ⌧ ], j = k + 1, ..., n:

k�k(t, g0k, gk+1, ..., gn)� �k(t, g00k , gk+1, ..., gn)kCk  bkkg0k � g00kkCk , bk < 1.

Then the projection P1x0 of the initial vector x0 in (3.1) defines a unique
solution v(t) of problem (1.2), (3.1) on some subinterval [0, ⌧0] of the interval
[0, ⌧ ]. Furthermore, v1 2 C1[0, ⌧0], gk 2 Ck[0, ⌧0].

Clearly, in the case when the eigennilpotent contains more than one block,
a similar theorem may be formulated. In so doing, there are no new di�-
culties. However, another approach is needed if the spectral subspace X2

is infinite-dimensional. Such an existence and uniqueness theorem has been
obtained in [9]. Here we shall present another approach on the subject.

It is assumed that dimX2  1 and resolvent (1.3) has a pole of multi-
plicity m = 2. Thus X2 = KerT 2, T 2

2 = 0. Let the eigennilpotent T2 be
normally decomposed (see [9]). This means that the kernel E1 = KerT has
a direct closed complement E2 with respect to the spectral subspace X2; the
T -image E11 = T (E2) is closed and has a direct closed complement E10 with
respect to the kernel E1:

X2 = E1+̇E2, E1 ⌘ KerT = E11+̇E10. (6.2)

Introduce the projectors ⇧k : X2 ! Ek (k = 1, 2); ⇧1j : E1 ! E1j (j = 0, 1).
Define them on the whole space X: ⇧k = ⇧kP2, ⇧1j = ⇧1j⇧1. In view of
these definitions, P2 = ⇧1 + ⇧2 (⇧1⇧2 = 0), ⇧1 = ⇧11 + ⇧10(⇧11⇧10 = 0).
The kernel of the linear mapping T|E2

= S : E2 ! E11 is trivial (KerS = 0).
Hence, by virtue of the Banach theorem, there exists the bounded inverse
S�1 2 L(E11, E2). It is clear that P2T = ⇧11TP2 = S⇧2. Introduce the
projectors P1 = I � P2, ⇧ = ⇧10 + ⇧2. Any vector v is represented in
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the form v = z + h11 + h10 + h2, where z = P1v, h = P2v, hk = ⇧kh,
h1,k�1 = ⇧1,k�1h (k = 1, 2).

It follows from the initial relation (3.1) that

z0 = z(0) = P1v(0) = T�1
1 P1x0; T1 = T|X1

. (6.3)

A necessary condition for the vector x0 to satisfy (3.1) is

P2x0 = ⇧11x0 ($ ⇧x0 = 0$ P2x0 2 E11). (6.4)

If condition (6.4) is valid, then one may uniquely obtain

h0
2 ⌘ h2(0) = S�1P2x0(= ⇧2v(0)). (6.5)

It follows from equation (1.2) for t = 0 that the initial value h1(0) ⌘ h0
1 must

satisfy the following initial relation

⇧f(0, N(z0 + h0
1 + h0

2)) = ⇧(h0
1 + h0

2). (6.6)

Theorem 6.2. Let the eigennilpotent T2 = T|X2
be normally decomposed2

and T 2
2 = 0. Suppose that x0 satisfies (6.4) and there exists at least one

vector h0
1 2 E10 satisfying the initial relation (6.6) with z0, h0

2 from (6.3),
(6.5). Let for some neighbourhood S̄(v0) of the point v0 = z0 + h0

1 + h0
2 the

mapping f(t,Nv) ⌘ fN (t, v) : [0, ⌧ ] ⇥ S̄(v0) ! X be continuous and have
the continuous Fréchet derivative @f

@v . If the operator

{⇧@f

@v
(0, Nv0)�⇧}|E1

⌘ G : E1 ! E(= E10+̇E2) (6.7)

is invertible and G�1 2 L(E,E1), then there exists a continuously di↵er-
entiable solution v(t) of (1.2), (3.1) on some segment [0, �]. If the initial
relation (6.6) has a unique solution h0

1, then the initial value problem (1.2),
(3.1) is uniquely solvable.

Proof. The initial value problem (1.2), (3.1) is equivalent to the system of
three problems

1.a)
d

dt
(T1z(t)) + z(t) = P1f(t,Nv), b) T1z(0) = P1x0;

2.a)
d

dt
(Sh2(t)) + h11(t) = ⇧11f(t,Nv), b) Sh2(0) = ⇧11x0;

3.a) ⇧v(t) = ⇧f(t,Nv), b) ⇧x0 = 0.

2A finite-dimensional nilpotent is always normally decomposed.
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Condition 3.b) on the vector x0 is equivalent to (6.4). The initial values
z0, h0

2 of functions z(t), h2(t) are obtained from 1.b), 2.b) and have the form
(6.3), (6.5). Applying the implicit function theorem to 3.a), one may express
the function h1(t) = h11(t)+h10(t) in terms of z(t), h2(t). Thus there exists
a segment [0, ⌧1] ⇢ [0, ⌧ ] and a neighbourhood S̄1(v0) ⇢ S̄(v0) such that
h1 = F (t, z, h2), for all (t, v) 2 [0, ⌧1] ⇥ S̄1(v0). Moreover, F (t, z, h2) is

continuous and the partial Fréchet derivatives
@F

@z
,
@F

@h2
,
@F

@t
are continuous

too. Substitute h1 in 1.a), 2.a):

d

dt
z(t) = T�1

1 P1f(t,N(z + F (t, z, h2) + h2))� T�1
1 z(t), (6.8)

d

dt
h2(t) = S�1⇧11f(t,N(z + F (t, z, h2) + h2))� S�1⇧11F (t, z, h2). (6.9)

The right-hand sides of these equations have continuous partial Fréchet
derivatives with respect to the variables z and h2 (and hence in u = z +h2).
For this reason the right-hand sides are locally lipschitz functions of t, u
in some neighbourhood of the point (t, u) = (0, z0 + h0

2) (see [4], Section
10.4). Applying the classic local existence and uniqueness theorem, we find
a unique solution z(t), h2(t) of Cauchy problem (6.3), (6.5), (6.8), (6.9). We
have obtained two components of the solution v(t).The last component is
h1(t) = F (t, z, h2).

Remark 6.1. Theorem 6.2 remains true in the case when T is an unbounded
closed operator.

This is proved in the same way as Theorem 6.2 except that the equation

d

dt
x1(t) = �T�1

1 x1 + P1f(t,N(T�1
1 x1(t) + F (t, T�1

1 x1, h2) + h2))

in x1(t) = T1z(t) is used instead of the equation (6.8) in z(t).

7. Applications.
7.1. Consider the problem

@

@t
(1 +

@2

@x2
)g � @2g

@x2
= f0(t, g), t � 0, x 2 [0,⇡];

g(t, 0) = g(t,⇡) = 0, lim
t!+0

(g +
@2g

@x2
) = w0(x).

(7.1)
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Here f0(t, ⇠) is a scalar continuously di↵erentiable function on [0, ⌧ ] ⇥ R1.
Put X = Y = C[0,⇡], K = I, Au(x) = u + d2u

dx2 , Bu = �d2u
dx2 . The

domain D = DA = DB consists of functions u(x) 2 C2[0,⇡] such that
u(0) = u(⇡) = 0. Define a mapping F (t, u) : [0, ⌧ ] ⇥ X ! X by the rule
F (t, u)(x) = f0(t, u(x)). Put y(t) = g(t, x). Then problem (7.1) is equivalent
to the problem in the space X for equation (1.1) and the initial condition
limt!+0 Ay(t) = w0. Passing to equation (1.2) with �0 = 0 we have

N = B�1, B�1u = �
Z x

0
d⇠

Z ⇠

0
u(s)ds +

x

⇡

Z ⇡

0
d⇠

Z ⇠

0
u(s)ds,

T = AB�1 = B�1 � I, f(t, u) = F (t, u); v(t) = By(t).

The initial condition in (7.1) is transformed into the form (3.1): lim
t!+0

Tv(t) =
w0. The spectral subspace X2 and the spectral projector P2 are

X2 = KerT = span{sinx}, P2u =
2
⇡

sinx

Z ⇡

0
u(⇠) sin ⇠d⇠.

Clearly, the mapping f : [0, ⌧ ] ⇥ X ! X is continuous and has the con-
tinuous Fréchet derivative @

@uf(t, u). Let the function f0(t, ⇠) in (7.1) sat-
isfy the condition | @@⇠f0(0, ⇠)|  q < 1

2 , for all ⇠ 2 R1. This happens for
functions f0 like f0(t, x) = tp'(t, x) + M , where M is a constant. Since
N2 = B�1

|X2
= IX2 , kP2k  2, condition (4.7) holds. Theorem 4.3 and Re-

mark 4.1 imply that if the initial function w0(x) 2 C[0, 1] satisfies the con-
dition

R ⇡
0 w0(x) sinxdx = 0, then problem (7.1) has a unique solution g(t, x)

(0  t  ⌧0, 0  x  ⇡, 0 < ⌧0  ⌧).

7.2. As it has been shown in Section 2.2, the electrical network in Fig. 1
is described by equation (2.4). Let vk(0), x0k be the components of vec-
tors v(0), x(0) 2 C3 = X. Then the initial condition Tv(0) = x0 of
form (3.1) is equivalent to the equalities v1(0) = x02, v3(0) = x03, x01 =
0. In this case the projectors and functionals introduced in Section 5 are
P1z = (0, 0, z3)tr,⇡20z = z2,⇡21z = Cz1, z1 = v1, z2 = v2 � Cv1, z3 =
CL2
L3

v1 � L2
L3

v2 � 1
L3

v3,⇡21f = Ce�tu�(t),⇡20f = e�t{i�(t) � G1(t, etz1) �
G2(t, etz2)}, P1f = (0, 0, f3)tr, f3 = {u�(t) � '2(t, etz2) �'3(t, etz3)}. Let
the continuous functions 'j(t, ⇠), Gk(t, ⇠) satisfy the conditions

|'j(t, ⇠1)� 'j(t, ⇠2)|  bj |⇠1 � ⇠2|, 8t 2 [0, ⌧ ]; ⇠1, ⇠2 2 C, j = 2, 3;
|Gk(t, ⇠1)�Gk(t, ⇠2)|  ak(t)|⇠1 � ⇠2|, 8t 2 [0, ⌧ ]; ⇠1, ⇠2 2 C, k = 1, 2,

(7.2)
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where limt!+0 ak(t) = 0. Then clearly, conditions 10, 20 of Theorem 5.1
are valid. Since the function  g(t) ⌘ ⇡21f(t, g(t)N'1) is equal to e�tu�(t),
Condition 50 is fulfilled for every b1 2 (0, 1) if the input tension u�(t) is
su�ciently smooth: u�(t) 2 C1[0, ⌧ ]. Condition 30 holds since the right-
and left-hand sides of 30 are equal to the vector (e�tu�(t), 0, 0)tr. At last,
Condition 40 is equivalent to the equality Cu�(0) = x02. Applying Theorem
5.1, we obtain

Proposition. Let the nonlinear elements of the electrical network in Section
2.2 be continuous and satisfy conditions (7.2). If the initial relations

Cu1(0) = x02, L2i2(0) + L3i3(0) = x03

hold, then in the electrical network there exists a unique distribution of cur-
rents and tensions ik(t), uk(t).

7.3. Consider the mixed problem

@

@t

@2u(x, t)
@x2

+ u(x, t) = f0(t, u),
@2u

@x2
u(x, 0) = w0(x)

u(0, t)� u(1, t) +
1
2
@u(1, t)
@x

= 0,
@u

@x
(0, t) = 0

(7.3)

in the domain 0  x  1, t � 0. If f0(t, ⇠) is a continuously di↵erentiable
function on [0, ⌧ ] ⇥R1, then this problem can be written in abstract form
(1.2), (3.1) in the space C[0, 1] = X = Y . For this purpose we put u(x, t) =
v(t) and introduce the operator T in C[0, 1] in the following way:

Tu =
d2u(x)

dx2
, u(x) 2 C2[0, 1], u(0)�u(1)+ 1

2u0(1) = 0, u0(0) = 0. (7.4)

Now problem (7.3) can be written as

d

dt
(Tv(t)) + v(t) = f(t, v), (Tv)(0) = w0, (7.5)

where f(t, v) : [0, ⌧ ]⇥ C[0, 1]! C[0, 1], f(t, u)(x) = f0(t, u(x)).
The operator T in (7.5) is closed and non-selfajoint. The resolvent (T �

⇠I)�1 has a pole of order m = 2 at the point ⇠ = 0. The spectral subspace X2

of the operator T is generated by the eigenfunction e1(x) = 1 and the associ-
ated function e2(x) =

p
5

2 (3x2 � 1); Te2 = 3
p

5e1, T e1 = 0. The invariant
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subspace X1 in (1.4) is a complement of the subspace X2 = span{e1, e2}.
The following result was obtained in [9]. The subspace X1 is also a com-
plement of the linear span of two functions v1(x) =

p
3(2x � 1), v2(x) =

1
2

q
7
11 (10x3�15x2+6x+2). The spectral projector P2 : X ! X2 (P2X1 = 0)

acts by the rule:

P2v(x) = ⇧1v + ⇧2v, ⇧kv = ak(v)ek(x),

a1(v) =
4
5

q
11
7

Z 1

0
v(x)v2(x)dx, a2(v) =

4p
15

Z 1

0
v(x)v1(x)dx.

Under the same notation as in Section 6 (Theorem 6.2), for problem (7.5),
we have

z0 = z0(s) = (T�1
1 x1)(s) = z0(0) +

Z s

0
d⇠

Z ⇠

0
x1(⇠)d⇠, 8x1 2 X1,

S�1↵ =
1

3
p

5
↵e2(x), 8↵ = ↵e1 2 E1 = KerT,

⇧1 = ⇧11, ⇧10 = 0, ⇧ = ⇧2, v = z + h1 + h2.

Condition (6.4) is of the form ⇧2w0 = 0 orZ 1

0
w0(x)(2x� 1)dx = 0. (7.6)

For the initial function v0 = v0(x) = v|t=0 we know the projection

(P1 + ⇧2)v0 = z0 + h0
2 = T�1

1 P1w0 + S�1⇧1w0=̇µ(x). (7.7)

Equation (6.6) has the integral formZ 1

0
f0(0, d + µ(x))(2x� 1)dx =

1
30
⇢, (7.8)

⇢ = ⇢(w0) =
Z 1

0
w0(x)(10x3 � 15x2 + 6x + 2)dx, (7.9)

in the unknown d = ⇧1v0. Invertibility of the operator G in (6.7) is equiva-
lent to the following condition being satisfied:Z 1

0

@f0

@v
(0, v0(x))(2x� 1)dx 6= 0, v0 = d + µ(x). (7.10)

Applying Theorem 6.2 and Remark 6.1, we obtain the following proposi-
tion.
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Proposition. The mixed problem (7.3) has a continuously di↵erentiable so-
lution u(x, t) (0  t  ⌧0  ⌧, 0  x  1) if

1) f0(t, u) : [0, ⌧ ]⇥R1 ! R1 is a continuously di↵erentiable function;
2) the initial function w0(x) is orthogonal to the function 2x� 1 in the

sense of (7.6);
3) integral equation (7.8) is solvable with respect to d;
4) the function @f0

@v (0, v0(x)) isn’t orthogonal to (2x� 1) in the sense of
(7.10).

As an example, consider the function f(t, v) = �(t)v2 (�(0) = �0 6= 0).
Condition 1) is fulfilled if �(t) 2 C1[0, ⌧ ]. Condition 2) is only a requirement
on the initial function w0. If ⇢(w0) 6= 0 (see (7.9)), then there exists a
unique solution d = 1

2�0
� 15

⇢

R 1
0 µ2(x)(2x�1)dx of equation (7.8), where the

function µ(x) is defined by (7.7). One can immediately verify Condition 4).
Note that the solution u(t, x) is unique as d is unique.
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