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Abstract. The existence and nonexistence of positive classical solutions is dis-
cussed for ��u = K(x)(1 � |x|)�↵u� in the unit ball B with Dirichlet boundary
condition u|@B = 0. Our main tools are based on the variational method and Po-
hozaev’s identity. The singularity of coe�cients on the boundary will be handled
with the symmetry of functions and some approximation procedures.

1. Introduction. Let B be the unit ball {x 2 RN ; |x| < 1} in RN and
consider the nonlinear elliptic problem of the form:

(E)

8>>><
>>>:
��u(x) =

K(x)
(1� |x|)↵

u�(x)

u(x) � 0
u(x) = 0

x 2 B,

x 2 B,

x 2 @B,

where ↵ > 0, � > 1 and K(·) is a given non-negative continuous function on
B. As a matter of course, this kind of problems which allow the case ↵  0
has been investigated so many peoples so far.

The peculiarity of our case 0 < ↵ lies in the fact that the coe�cient of
the nonlinear term possesses a singularity on the boundary @B.

This problem was already studied by Senba-Ebihara-Furusho [6] within
the framework of the theory of ODE. They showed the existence of positive
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radial solutions in C2(B) \ C1(B) for the case 0 < ↵ < 2 and 1 < � <
(N +2)/(N�2). Hayashida-Nakatani [3] also studied some problems similar
to ours and discussed some mathematical backgrounds for (E).

The main purpose of this paper is to discuss the existence and nonexis-
tence of positive solutions of (E) from the viewpoint of the theory of nonlin-
ear PDE. As for the existence of nontrivial solutions, we shall be concerned
again with radial solutions. However, our method can cover more singular
cases (i.e., 0 < ↵ < (� + 1)/2 + 1) than those in Senba-Ebihara-Furusho
[6]. Our argument is based chiefly on the variational method (especially
the mountain pass lemma) and contains some approximation procedures to
avoid some di�culties caused by the singularity of coe�cients on the bound-
ary. In deriving a priori estimates for solutions of approximate equations,
we shall make use of the symmetry of solutions.

In order to discuss the nonexistence of positive solutions, we rely on the
well-known Pohozaev’s identity, however, the way of its use is di↵erent from
those ever known. Ebihara-Furusho [1] also discussed the nonexistence of
radial solutions within the theory of ODE in a similar situation to ours.
However, our argument does not require the symmetry of K(·) and solutions.

Our main results are stated in the next section, and their proofs will be
given in §3 and §4.

2. Main results. Throughout this paper, the following condition will
be imposed on K(·).

(K)

8><
>:

K(·) 2 C(B),
K(x) � 0
K(x) > 0

for all x 2 B,

for all x 2 @B.

Then our main results are stated as follows.

Theorem 1 (Existence). Let K(·) be radially symmetric and satisfy con-
dition (K). Let 0 < ↵ < (� + 1)/2 + 1, and 1 < � < (N + 2)/(N � 2),
then (E) has at least one (radially symmetric) positive solution u belonging
to C2(B) \ C1(B).

Theorem 2 (Nonexistence). Let condition (K) be satisfied and let 1 < � +
1  ↵. Then (E) does not admit any positive solutions belonging to C2(B)\
C1(B).
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Remark 1. (i) Consider the problem (E) with B replaced by the annulus
Ba = {x 2 RN ; a < |x| < 1} (0 < a < 1), which is denoted by (E)a.
Then Theorems 1 and 2 hold true with (E) and B replaced by (E)a and Ba

respectively. Moreover we can drop out the subcritical condition 1 < � <
(N + 2)/(N � 2) from the assumptions in Theorem 1.

(ii) Ebihara-Furusho [1] dealt with the same equation as (E) in the exterior
of B and remarked that ↵ < � + 1 is a necessary condition for the existence
of radially symmetric solutions. However, our result does not require the
radial symmetry for solutions nor for K(·).

(iii) It would be interesting to investigate the existence (or nonexistence)
of (not necessarily classical) solutions of (E) for the case (� +1)/2+1  ↵ <
� + 1.

3. Proof of Theorem 1. The main tool for the existence of solutions
here is the “mountain pass lemma”. However, if one tries to apply this
lemma directly to our problem, there arises some delicate di�culties caused
by the singularity of coe�cients on the boundary, such as the verification of
the Palais-Smale condition etc. To avoid these di�culties, we introduce the
following approximate equations:

(E)"

8>>><
>>>:
��u"(x) =

K(r)
(1 + "� r)↵

u�
" (x)

u"(x) � 0
u"(x) = 0

x 2 B,

x 2 B,

x 2 @B,

where r = |x| and " 2 (0, 1) is a parameter. Since we are concerned with
radially symmetric solutions, we shall work in the Banach space X defined
by

X =
�
u 2 H1

0 (B) ; u(x) is radially symmetric, i.e., u(x) = ũ(r)
 

with norm

kuk2X =
Z

B
|ru|2dx = CN

Z 1

0
|ũr(r)|2rN�1dr,

with
CN =

Z
@B

1dS.
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The functionals associated with approximate equations (E)" are given by

J"(u) = kuk2X/2� b"(u),

b"(u) =
1

� + 1

Z
B

K0(r)
(1 + "� r)↵

|u|�udx,

where K0(r) = K(|x|). Then, by virtue of condition (K) and the fact that
" > 0 and � < (N +2)/(N�2), standard arguments assure that J"(u) belong
to C1(X) and satisfy the Palais-Smale condition in X (see Rabinowitz [5]).

Furthermore we can show the following lemma which will play an impor-
tant role in what follows.

Lemma 1. Let 0  ↵ < (� +1)/2+1, and 0 < � < (N +2)/(N � 2). Then
there exists a constant C1 independent of " satisfying

|b"(u)|  C1kuk�+1
X , 8u 2 X. (1)

Proof. For any s, t 2 [1/2, 1] with t < s, we find

|ũ(s)� ũ(t)| =
����
Z s

t
ũr(r)dr

���� 
Z s

t
|ũr(r)|dr,


 Z 1

1/2
|ũr(r)|2dr

!1/2

|s� t|1/2,


✓

2(N�1)

CN

◆1/2

kukX |s� t|1/2.

Hence,

|ũ(r)| = |ũ(r)� ũ(1)| 
✓

2(N�1)

CN

◆1/2

kukX(1� r)1/2, 8r 2 [1/2, 1]. (2)

Therefore, by Sobolev’s embedding theorem, we can find a constant C1 in-
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dependent of " such that

|b"(u)|  (� + 1)�1 ·
(Z

|x|1/2

K0(r)
(1 + "� r)↵

|u|�+1dx

+
Z

1/2|x|1

K0(r)
(1 + "� r)↵

|u|�+1dx

)

 (� + 1)�1 · max
0r1

K0(r)

(
2↵

Z
B
|u|�+1dx

+
✓

2(N�1)

CN

◆(�+1)/2

kuk�+1
X CN

Z 1

1/2
(1� r)(�+1)/2�↵dr

)

 C1kuk�+1
X . ⇤

In view of (1), we can easily find positive numbers �, C� independent of
" such that

inf
u2S�

J"(u) � C� > 0 8" 2 (0, 1], (3)

where S� = {u 2 X ; kukX = �}. Furthermore, by virtue of the assumption
K0(·)|@B > 0, there exists an element u1 2 X satisfying b1(u1) > 0. Since
u1(t) = t · u1 satisfies

J1(u1(t)) = t2
ku1k2X

2
� t�+1b1(u1),

there exists a su�ciently large t0 > 0 such that J1(t0u1) < 0. Noting that
J"(u) is monotone decreasing as " # 0, we conclude that J"(t0u1) < 0 for
all " 2 (0, 1]. Thus we can apply the usual mountain pass lemma (see
Rabinowitz [5]) to J"(·). Hence, if we define C(") by

C(") = inf
p2P

max
u2p

J"(u) � C� > 0, (4)

where P denotes the family of all continuous curves in X connecting 0 and
t0u1, then C(") is the critical value of J", i.e., there exists u" 2 X such that
J"(u") = C(") and J 0"(u") = 0 in X. Therefore u" satisfies
Z

B
ru"(x) ·r'(x)dx +

Z
B

K0(r)
(1 + "� r)↵

|u"(x)|�'(x)dx = 0 8' 2 X. (5)
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By virtue of the fact that " > 0 and � < (N + 2)/(N � 2), the boot-strap
method (Moser’s iteration scheme) such as in Ôtani [4] assures the L1-
estimate for u". Hence K0(r)(1 + " � r)�↵|u"|� belongs to L2

s(B) = {v 2
L2(B) ; v(x) is radially symmetric}. Since � maps L2

s(B) \ C10 (B) into
itself, it is easy to see that (ru,rv)L2 = 0 for all u 2 L2

s(B) \H1
0 (B) = X

and v 2 L2
s(B)? \ H1

0 (B). Thus we find that u" satisfies (5) for all ' 2
H1

0 (B), whence follows

��u"(x) =
K0(r)

(1 + "� r)↵
|u"(x)|� in D0. (6)

Then the elliptic estimates in Lp and C✓ together with the L1-estimate for
u" give u" 2 C2,✓(B).

Now the strong maximum principle applied for (6) implies that u"(x) > 0
for all x 2 B. Consequently u"(·) yields a positive classical solution for our
approximate equation (E)".

A priori estimates. We are going to establish some a priori estimates for
u". In what follows we denote simply by C positive constants independent
of ", which will in general have di↵erent values in di↵erent places. We also
often use the notation u to mean u" or ũ" if no confusion arises.

Multiply (E)" by u, then we easily get

kuk2X = (� + 1)b"(u).

Recalling J"(u) = C(") and 0 < C�  C(")  C(1), we obtain

0 <
2(� + 1)
� � 1

C�  ku"k2X  2(� + 1)
� � 1

C(1) 8" 2 (0, 1]. (7)

Hence, (2) yields

0 < ⇢" := |ũ"(3/4)|  Cku"kX  C

s
2(� + 1)
� � 1

C(1). (8)

Moreover, v"(x) := u"(x)� ⇢" satisfies

(E)1"

8<
:
��v"(x) =

K0(r)
(1 + "� r)↵

(v"(x) + ⇢")�

v"(x) = 0

x 2 B1,

x 2 @B1,
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where B1 := {x 2 RN ; |x| < 3/4}. Since

|K0(r)(1 + "� r)�↵(v + ⇢")� |  C(|v|� + 1),

the boot-strap method such as in the proof of Theorem II of Ôtani [4] gives
the L1(B1)-estimate for v". Thus, in view of (2), we can establish

ku"kL1(B)  C 8" 2 (0, 1]. (9)

Therefore, �u" is bounded in L1(B1), and then by the elliptic estimate in
Lp, we get

ku"kW 2,p(B1)  C 8p 2 [1,1), 8" 2 (0, 1], (10)

whence follows by Sobolev’s embedding theorem,

ku"kC1(B1)
 C 8" 2 (0, 1]. (11)

Let I = [1/2, 1] and integrate the identity {(u0)2/2}0 = u0 ·u00 over [1/2, r],
r 2 I, then

|u0(r)|2  2ku0kL2(I) · ku00kL2(I) + |u0(1/2)|2 8r 2 I.

Therefore, (7), (11) and the fact that ku0kL2(I)  CkukX give

ku0kL1(I)  C(ku00k1/2
L2(I) + 1). (12)

Furthermore, noting that u satisfies

u00(r) +
N � 1

r
u0(r) +

K0(r)
(1 + "� r)↵

u�(r) = 0 8r 2 (0, 1],

we have
ku00kL2(I)  CkukX + Ck(1� r)�↵ · u�kL2(I). (13)

By virtue of (2), (7), (12) and the relation |u(r)|  ku0kL1(I)(1� r) for all
r 2 I, we deduce

k(1� r)�↵ · u�kL2(I) = k(1� r)�↵ · u2(1��)u��2(1��)kL2(I)

 C(ku00k1/2
L2(I) + 1)2(1��) · kuk��2(1��)

X

· k(1� r)1��+�/2�↵kL2(I)

 C(ku00k1��
L2(I) + 1), (14)
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where � = min(1, {(1 + (� + 1)/2)� ↵} /2). Then it follows from (13) and
(14) that ku00kL2(I)  C, which together with (10) assure

k�u"kL2(B)  C 8" 2 (0, 1], (15)

k K0(r)
(1 + "� r)↵

u�
" kL2  C 8" 2 (0, 1]. (16)

Convergence. Hence, by Rellich’s compactness theorem, we can extract a
subsequence u"n denoted by un such that

un �! u strongly in H1
0 (B)

and weakly star in L1(B), (17)

u�
n �! u� strongly in L2(B), (18)

�un �! �u weakly in L2(B), (19)
K(r)

(1 + "n � r)↵
u�

n �! � weakly inL2(B). (20)

Let ' 2 C10 (B), then K(r)(1+"n�r)�↵ ·' converges to K(r)(1�r)�↵ ·'
strongly in L2(B). Then (18) implies that

✓
K(r)

(1 + "n � r)↵
u�

n,'

◆
L2
�!

✓
K(r)

(1� r)↵
u� ,'

◆
L2

as n �!1,

whence follows � = K(r)(1� r)�↵u� .
Moreover, (7) and (17) assure that u 6⌘ 0. Thus we can conclude that u

gives a nontrivial nonnegative solution of (E) belonging to H2(B)\L1(B)\
X. For any � > 0, it is clear that ��u = K0(r)(1� r)�↵u� 2 L1(B�) with
B� = {x 2 RN ; |x| < 1� �}. Then, by standard arguments, we can deduce
u 2 C2(B�), whence follows u 2 C2(B). Furthermore, since ũ00 2 L2(0, 1)
implies ũ0 2 C1/2([0, 1]), we find u 2 C1(B). To see u(x) > 0 for all x 2 B,
it su�ces to apply the strong maximum principle. ⇤

4. Proof of Theorem 2. To prove our nonexistence result, we prepare
a couple of standard results.
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Lemma 2 (Strong maximum principle). Let ⌦ be a bounded domain with
smooth boundary @⌦ and suppose that u 2 C1(⌦) satisfies(

��u � 0 in
u � 0 in

D0(⌦),
⌦.

Then u(x) > 0 for all x 2 ⌦ and @u(x)/@n < 0 for all x 2 � = {x 2
@⌦; u(x) < u(y) for all y 2 ⌦}, where @u(x)/@n denotes the outer normal
derivative of u at x.

Proof. The first assertion that u(x) > 0 for all x 2 ⌦ follows from the Har-
nack’s principle (see e.g. Trudinger [7]). The second assertion is nothing but
the maximum principle of Hopf’s type(see e.g. Gilbarg-Trudinger [2]). ⇤

Corollary 1. Let Ba = {x 2 RN ; a < |x| < 1} and suppose that u 2
C1(Ba) satisfies 8><

>:
��u � 0 in

u � 0 in
u = 0 on

D0(Ba),
Ba,

�1,

where �1 = {x 2 RN ; |x| = 1}. Then there exist numbers ⇢ 2 (a, 1) and
C⇢ > 0 such that

u(x) � C⇢(1� |x|) 8x 2 B⇢ = {x 2 RN ; ⇢  |x|  1} (21)

Proof. We can apply Lemma 2 with � = �1 to deduce that @u(x)/@r =
@u(x)/@n < 0 on �1. Since u 2 C1(Ba), there exists a positive number
⇢ 2 (a, 1) and C⇢ such that

@u

@r
(x)  �C⇢ 8x 2 B⇢ = {x 2 RN ; ⇢  |x|  1}. (22)

Then, for all x 2 B⇢, we have

�u(x) = u(x/|x|)� u(x) =
Z 1/|x|

1

du

dt
(tx)dt

=
Z 1/|x|

1
ru(tx) · xdt =

Z 1/|x|

1

@u

@r
(tx) · |x|dt

 �
Z 1/|x|

1
C⇢|x|dt = �C⇢(1� |x|),

whence follows (21). ⇤
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Lemma 3 (Pohozaev Identity). Let ⌦ be a radially symmetric domain. Sup-
pose that u 2 C2(⌦) \ C1(⌦) satisfies

��u = F (x, u) in ⌦ (23)
with F (x, u) 2 C(⌦⇥ R1). Then the following identity holds

2�N

2

Z
⌦
|ru|2dx +

1
2

Z
@⌦

|ru|2(x · n)dS

�
Z

@⌦

@u

@n

@u

@r
|x|dS =

Z
⌦

F (x, u)
@u

@r
|x|dx, (24)

where n denotes the unit outward normal vector at x 2 @⌦.
Proof. Multiply (23) by

PN
i=1 xi · @u/@xi and integrate over ⌦. Then the

standard calculations give
2�N

2

Z
⌦
|ru|2dx +

1
2

Z
@⌦

|ru|2(x · n)dS

�
Z

@⌦
(x ·ru)(n ·ru)dS =

Z
⌦
(x ·ru)F (x, u)dx.

Hence, to derive (24), it su�ces to note that (x · ru) = @u/@r · |x| and
(n ·ru) = @u/@n. ⇤
Proof of Theorem 2. Since K(x) > 0 on |x| = 1, there exist numbers
⇢1 2 [⇢, 1) and � > 0 such that K(x) � � for all x 2 B⇢1 = {x 2 RN ; ⇢1 
|x|  1}. Hence, by (21) and (22), we get

K(x)u�(x) · @u

@r
(x) · |x|  ��C�+1

⇢ (1� |x|)�⇢1 8x 2 B⇢1 .

Then application of Lemma 3 with ⌦ = B" = {x 2 RN ; ⇢1 < |x| < 1� "}
yields

I" :=
2�N

2

Z
B"

|ru|2dx +
1
2

Z
@B"

|ru|2(x · n)dS �
Z

@B"

@u

@n

@u

@r
|x|dS

=
Z

B"

K(x)
(1� |x|)↵

u�(x)|x|@u

@r
(x)dx

 �
Z

B"

�C�+1
⇢ ⇢1(1� |x|)��↵dx

= � CN�C�+1
⇢ ⇢1

Z 1�"

⇢1

(1� r)��↵rN�1dr

 � CN�C�+1
⇢ ⇢1

N

Z 1�"

⇢1

(1� r)��↵dr.
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The fact u 2 C1(B⇢1) assures the existence of lim"!0 I" = I0. Therefore

Z 1

⇢1

(1� r)��↵dr  I0

CN�C�+1
⇢ ⇢1

N
< +1

whence follows
↵ < � + 1. ⇤

Remark 2. (i) In deriving the identity (24), we do not require any boundary
condition for u.

(ii) Multiplication of (E) by u gives
Z

B
|ru|2dx =

Z
B

K(x)(1� r)�↵u�+1(x)dx.

Then it easily follows from (21) that (E) has no positive solutions in C1(B)
for ↵ � � + 2.

(iii) If B is replaced by the annulus Ba, then the X-norm is equivalent
to kũrkL2(a,1) and the estimate similar to (2) assures that X is continuously
embedded in C1/2(Ba). Hence we can repeat the same verifications as for
the proof of Theorem 1 without assuming the subcritical condition 1 < � <
(N + 2)/(N � 2).
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