
Differential and Integral Equations Volume 12, Number 5, September 1999, 661–690.

DISPLACEMENT SOLUTIONS FOR TIME
DISCRETIZATION AND EVOLUTION PROBLEM

RELATED TO MINIMAL SURFACES AND PLASTICITY:
EXISTENCE, UNIQUENESS AND REGULARITY

IN THE ONE-DIMENSIONAL CASE

Thierry Astruc
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Introduction. This paper is devoted to the existence and uniqueness
for some evolution equation of elliptic type, when the data, and the second
member are in W 1,1 (and for special boundary conditions). A model problem
is the evolution equation for minimal surfaces,

ut − div
( ∇u√

1 + |∇u|2
)

= f.

But we present also the case of plasticity and other examples coming from
physics.

In a basic article of R. Temam [17], the author presented an abstract
result for the evolution equation of minimal surfaces{

ut − div
( ∇u√

1+|∇u|2
)

= f

u|∂Ω = g, u(0) = u0

(0.1)

in a very weak sense. The process employed was an abstract one, based upon
the theory of semigroups.
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More recent theories allow us to understand the previous equation as a
particular case of the following one:{

ut − divσ = f,

u|∂Ω = g, u(0) = u0, σ ∈ ∂ψ(∇u),
(0.2)

where ψ is a convex continuous function, which is linear at infinity on RN ,
and ψ(∇u) is taken in the sense of convex function of a measure (cf. [7]).
Indeed, for natural reasons, if f ∈ L∞(]0, T [, BV (Ω)) and u0 ∈ BV (Ω), the
problem will probably be well posed in L∞(]0, T [, BV (Ω)). We shall see in
part 1 what we mean by “σ ∈ ∂ψ(∇u).”

In the present article we are especially interested in proving some sort of
regularity of u. Indeed we know only a few things about regularity for the
stationary problem, which are the following.

In the two dimensional case, if Ω has some regularity properties (which
include for example the case of the Euclidian ball, but also more general open
sets), and if f = 0, g ∈ C0,α(∂Ω), α >0, and ψ is strictly convex, Sternberg,
William and Ziemer [15] proved existence, uniqueness and regularity of a
particular solution of { −divσ = 0

u|∂Ω = g, σ ∈ ∂ψ(∇u)
(0.3)

which may also be written as u achieves the minimum of

inf
u=g|∂Ω

{∫
Ω

ψ(∇u)
}

. (0.4)

The solution found is explicitly constructed by using geometric measure
theory, and it belongs to C0, 1+α

2 (Ω).
Let us note that before this result the only known result was the existence

of a solution u in BV (Ω), for the relaxed problem

inf
u∈BV (Ω)

{∫
Ω

ψ(∇u) +
∫

∂Ω

ψ∞((g − u)�n)
}

(0.5)

(in the previous bracket �n denotes the unit outward normal on ∂Ω).
Another result concerning the regularity has been derived in the one di-

mensional case for the problem{
σ′ + λf = 0, u(0) = α, u(1) = β

σ = ψ′(u′).
(0.6)
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Here f �= 0 and λ must be smaller than the limit load λ̄ which is defined as

λ̄ = sup
∃σ∈Dom ψ�,σ′+λf=0

{λ},

where ψ� denotes the conjugate in the sense of Fenchel of ψ . The domain of
ψ� is then a bounded set of R. A regularity result was obtained by Thierry
Astruc in his thesis using elementary methods (see [2]). He proved that for
f ∈ L1(]0, 1[), there exist “regular” limit loads λ reg and λ̄reg which are such
that if λ verifies −λreg < λ < λ̄reg, problem (0.6) possesses a solution u in
W 1,1(]0, 1[), which fulfills the boundary conditions.

The present article is concerned with the regularity of the solutions for
the continuous problem

{
ut − divσ = λf, u|∂Ω = α

u(0, x) = u0(x), x ∈]0, 1[, σ ∈ ∂ψ(∇u)
(0.7)

as well as for the time-discretized Euler scheme

{ un+1−un

h − div (σn+1) = λfn+1

un+1|∂Ω = αn+1, σn+1 ∈ ∂ψ(∇un+1).
(0.8)

In what follows and except for the generalities in Part 1, we restricted our-
selves to the one dimensional case. We first prove (Theorem 2.2), that if
fn+1, un ∈ W 1,1(]0, 1[) and if ψ is strictly convex on R, there exists a
unique un+1 ∈ W 1,1(]0, 1[) which solves (0.8). Moreover, if Ψ is Ck+1,
un+1 ∈ W k+2,1(]0, 1[). In the third part we prove that the solutions to
the discretized problem tend to that of the continuous one as h → 0, and
that for f ∈ L∞(]0, T [, W 1,1(]0, 1[)), u0 ∈ W 1,1(]0, 1[), there exists a unique
u ∈ L∞(]0, T [, W 1,1(]0, 1[)) which verifies (0.7).

We will remark in Section 2 (Theorem 2.4, ii) that the discretized equation
(0.8) has no regularizing effect, if f is not sufficiently regular. More precisely,
we present the case of a function u0 which is a Heaviside function, f is in
W 1,1 and the first step in (0.8) exhibits a Dirac mass for the derivative of u1.
In addition, further research proves that we have no hope to prove that the
measure |u′

1| is absolutely continuous with respect to |u′
0| . Nevertheless it is

not impossible that we have
∣∣u′S

1

∣∣ <<
∣∣u′S

0

∣∣ where μS denotes the singular
part of μ. This is the object of a work in preparation as well as the study of
the higher dimensional case.
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In all that follows, Ω will denote a bounded open set of RN , whose bound-
ary is piecewise-C1, BV (Ω) is the space of functions in L1(Ω) whose deriva-
tives in the sense of distributions are real bounded measures on Ω. We will
denote as usually by W 1,p(Ω) the Sobolev space of functions whose deriva-
tives are in Lp(Ω), p ∈ [1,∞].

In the third section of this article, we will handle functions defined on
]0, T [×]0, 1[. We will be led to work in the spaces Lp(]0, T [×]0, 1[), Lp(]0, T [
×W 1,q]0, 1[), and L∞(]0, T [, BV (]0, 1[)). We recall the definition of the latter
one:

L∞(]0, T [, BV (]0, 1[) =
{
u ∈ L∞(]0, T [×]0, 1[), such that

ux(t, ·) ∈ BV (]0, 1[), and
∫

|ux| (t) ≤ M, for some M , independent on t
}
.

1. Existence of solutions in BV for the discretized formulation.

1.1. Survey of known results and notations. We now recall a few
points about convex functions of a measure ([7], [8]). Assume that ψ is a
convex continuous function on Rd, with values in R, which is at most linear
at infinity, i.e.,

there exists c1 > 0, such that for all ξ in Rd, ψ(ξ) ≤ c1(|ξ| + 1), (1.1)

and coercive

there exists c0 > 0, such that for all ξ in Rd, ψ(ξ) ≥ c0(|ξ| − 1). (1.2)

When ψ has such a behaviour, one can define its asymptotic function

ψ∞(x) = lim
t→∞

ψ(tx)
t

(1.3)

which is also convex, lower semi-continuous, and proper. We can remark
here that since ψ∞ is positively homogeneous of degree one, in the one
dimensional case ψ∞ is nothing else but

ψ∞(x) = ψ∞(+1)x+ + ψ∞(−1)x−, (1.4)

where x+ and x− denote the positive and negative parts of x.
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We will use in the following pages and through out this article, the con-
jugate ψ� of ψ in the sense of Fenchel or Legendre (cf. [9], [14] and others),
defined as

ψ�(ξ) = sup
η∈Rd

(ξ.η − ψ(η)). (1.5)

It is not difficult to see that the assumptions on ψ imply that ψ� is always
lower semi-continuous and proper, and that its domain K is bounded, and
verifies

B(0, c0) ⊂ K ⊂ B(0, c1). (1.6)

From the beginning of the second section, until the end of the article, we
will assume that Ω =]0, 1[, and ψ will be defined on R. We will also assume
for simplicity that K =] − 1,+1[. Other slight additional assumptions will
be done, some of them could be removed without loss of generality.

We now give the definition of ψ(μ) when μ is a bounded measure on Ω,
with values in Rd. Assume that the Lebesgue decomposition of μ is

μ = μadx + μS , (1.7)

where μa is absolutely continuous with respect to the Lebesgue measure dx
on Rd, and μS is a singular measure. We define ψ(μ) as

ψ(μ) = ψ(μa)dx + ψ∞(μS), (1.8)

where ψ(μa) makes sense as an L1 function, due to the continuity of ψ from
L1(Rd) into L1(Rd) and

ψ∞(μS) = ψ∞(h)ν (1.9)

where μS = hν is every decomposition of μS as the product of h ∈L∞(Ω, dν),
with ν a positive measure such that

∣∣μS
∣∣ << ν. This definition makes sense

since formula (1.9) does not depend on the choice of h and ν (cf. [7]). We
recall now some useful properties of ψ(μ), also proved in [7].

Proposition 1.1.
i) ψ(μ) defined in (1.8) is a bounded measure, absolutely continuous

with respect to μ if ψ(0)=0 (if ψ(0)�=0, |ψ(μ) − ψ(0)| << |μ|).
ii) If (μn)n∈N ∈ (M1(Ω))N is vaguely convergent toward μ ∈ M1(Ω),

then
ψ(μ) ≤ limn→∞ψ(μn).

iii) For μ ∈ M1(Ω), there exists a sequence un ∈ (C∞
c (Ω))N, such that

un tends toward μ in M1(Ω) vaguely on Ω,
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Ω

|un| →
∫

Ω

|μ|, ψ(un) ⇀ ψ(μ) vaguely on Ω
∫

Ω

ψ(un) →
∫

Ω

ψ(μ).

We recall now the meaning of the measure ∇u : σ . We denote by (RN2
)S

the space of symmetric matrices of order N. Let u be in BV (Ω) and σ ∈
L∞(Ω, (RN2

)S), such that divσ ∈ LN (Ω,RN ) (cf. Strang-Temam [20]). We
begin to define (∇u : σ) as a distribution on Ω by the formula.

< (∇u : σ), ϕ >= −
∫

Ω

u divσϕ −
∫

Ω

u σ ⊗∇ϕ. (1.10)

for ϕ in D(Ω). Using approximation’s results established in [7], [20], [12],
one can show that (∇u : σ) extends as a bounded measure on Ω, which is
absolutely continuous with respect to |∇u|

|(∇u : σ)| ≤ |σ|∞|∇u|. (1.11)

Moreover, Green’s formula holds in the following sense: if ∂Ω is piecewise
C1 ∫

Ω

(∇u : σ) = −
∫

Ω

u divσ +
∫

∂Ω

γ0(u)σ.n (1.12)

where γ0(u) denotes the internal trace of u ∈ BV (Ω) (see [16], [20]). We
finish this small section by recalling that the well known pointwise inequality

ψ(ξ)+ψ�(η) ≥ ξ.η for all (ξ, η) ∈ Rd (1.13)

extends to measures as follows: assume that u∈BV (Ω), σ∈L∞(Ω, domψ�),
divσ ∈ LN (Ω). Then

ψ(∇u) + ψ�(σ) ≥ (∇u : σ) (1.14)

holds true, in the sense of measure.
Let us note that if k = N = 1 (one dimensional case), we do not need

to define u′σ, since here σ ∈ L∞(]0, 1[ and σ′ ∈ L1(]0, 1[) imply that σ is
continuous. Hence u′σ is naturally defined as the product of a continuous
function with a bounded measure.

1.2. A model discretized problem for evolution equations related
to calculus of variations and plasticity. In this section we still assume
that Ω is a bounded open set of RN , whose boundary ∂Ω is piecewise C1, h
is a small positive parameter, f ∈ LN (Ω,R), and v belongs to W 1,1(Ω,R)∩
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L2(Ω,R), α ∈ L1(∂Ω). We are looking for (u, σ) ∈ (L2 ∩ W 1,1)(Ω,R) ×
L∞(Ω,RN ) such that

{ u−v
h = divσ + f a.e. x ∈ Ω,

u|∂Ω = α, σ ∈ ∂ψ(∇u)(x) a.e. x ∈ Ω.
(1.15)

Problem (1.15) represents one step for the time-discretization of the following
evolution problem.

To find (u, σ) defined on [0, T ] × Ω, which satisfy

ut − divσ = f, u(0, x) = u0(x)

u(t, x)/∂Ω = α(t, x) a.e. x ∈ ∂Ω, σ(t, x) ∈ ∂ψ(∇xu(t, x)).

We use here the implicit Euler scheme

un+1 − un

h
− divσn+1 = fn+1

un+1|∂Ω = αn+1, σn+1 ∈ ∂ψ(∇un+1),

where (αn+1, fn+1) are some approximations of (α, f) that we will precise
in the sequel.

A first step to solve (1.15) is classically done by considering it as the Euler
equation for the minimization problem

inf
{u∈(W 1,1(Ω,R)∩L2);u=α|∂Ω}

{∫
Ω

ψ(∇u) +
1
2h

∫
|u − v|2 −

∫
fu

}
. (1.16)

It is classical to verify by using generalized Green’s formula and Convex
analysis that if u ∈ W 1,1(Ω) is a solution of (1.16), which fills the bound-
ary condition, then it solves (1.15), and conversely. Unfortunately classical
methods in the calculus of variations (or plasticity) do not allow us to con-
clude to the existence of such solutions. More precisely, we shall prove in
what follows the existence of solutions in a very weak sense: u belongs to
BV ∩ L2 and solves a relaxed form of (1.16), that we will make precise in
the sequel.

We use a method which is analogous to the one used by several authors,
as Temam and Strang [20], Temam and Kohn [12], Demengel [6], Anzellotti
and Giaquinta [4], Suquet [16], etc... Let us note that we will obtain results
which are still valid (with some natural technical changes) for the following
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problem, inherited from the three dimensional perfect plasticity. Defining
the space U(Ω) as

U(Ω) = {u ∈ L1(Ω,RN ), εij(u)

=
ui,j + uj,i

2
∈ M1(Ω,R)∀(i, j) ∈ [1, N ]2,divu ∈ L2(Ω)},

we look for (u, σ) such that u ∈ U(Ω), and

{ u−v
h = (divσ) + f, u(0, x) = u0(x),

u|∂Ω = α, σ ∈ ∂ψ(ε(u))
(1.17)

with ψ(ξ) = ψD(ξD) + α(trξ)2, and ψD is at most linear at infinity and
defined on ED = {M ∈ (RN2

) Mij = Mji and Mii = 0} and ξD = ξ −
trξ
N Id ∈ ED. We begin to state a theorem which allows us to consider σ as
the solution of a variational problem.

Theorem 1.1. i) Let us consider the variational problem

sup
{σ∈L∞(Ω,K), div σ∈L2(Ω,R)}

{−
∫

Ω

(ψ�(σ)+
h

2
|divσ+f |2)+

∫
∂Ω

σ.nα−
∫

Ω

(divσ+f)v}.

(1.18)
Then we have

inf(1.16) = Sup(1.18), (1.19)

and (1.18) possesses a solution σ̄. Moreover if ū is a solution of (1.16), then
σ̄ = ∂ψ(∇ū).

Proof of Theorem 1.1. In order to prove (1.19) we first introduce the
convenient spaces and operators to apply theorem (2.1) of [9].

We define the spaces V and Y as V = W 1,1 ∩ L2, Y = L2 × L1(Ω,RN )
and the linear operator

Λ : V → Y
u �→ (u,∇u).

Then the dual space of Y is Y � = L2 × L∞(Ω,RN ). We denote by Λ� the
adjoint operator of Λ, Λ� : Y � → V �. We finally define the functionals F
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and G as

F : V → R

u �→
{ −

∫
Ω

fu if u = α|∂Ω

+∞ if not
G : Y → R

(w, τ) �→
∫

ψ(τ) +
∫ |w − v|2

2h
.

With these notations problem (1.16) reads also infu∈V {F (u) + G(Λu)} and
by using classical results in convex analysis (cf. [9]), it has the following
dual problem sup(p,σ)∈Y � {−F �(Λ�(p, σ)) − G�(−(p, σ))} . To compute G�

is classical. One obtains, using either explicit computation, either a general
result of Krasnoselskii [13]

G�(p, σ) =
{ ∫

Ω
ψ�(σ) + h

2

∫
Ω
|p|2 +

∫
Ω

pv, if σ(x) ∈ Domψ� a.e.
+∞ if not.

The computation of F �(Λ�(p, σ)) can be done by using classical methods in
duality and convex analysis. One obtains that

F �(Λ�(p, σ)) =
{ ∫

(σ.n)α if − divσ + p + f = 0
+∞ if not.

One finally get the announced result by changing (p, σ) in (−p,−σ) and
using the relation between p, σ and f. Moreover, Theorem (2.1) of [9] gives
the Inf-Sup equality. The existence of σ̄ is easy to prove and is left to the
reader.

We now introduce, as announced above, a weak formulation of (1.16).
We first remark that the theory of convex functions of measure allows us to
extend Problem (1.16) to functions u ∈ (BV ∩ L2)(Ω), as

inf
{u∈(L2∩BV )(Ω), u=α|∂Ω}

{ ∫
Ω

ψ(∇u) +
1
2h

∫
Ω

|u − v|2 −
∫

Ω

fu
}
, (1.20)

where ψ(∇u) makes sense by (1.8). Moreover, using an approximation result
in [7], one can show that inf(1.20) = inf(1.16). At this stage, the usual
method to solve problems as (1.20) is to consider a minimizing sequence un
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of (1.20), and to observe that un is bounded in BV ∩L2. Then, one is allowed
to extract from un a subsequence, still denoted un, such that

un ⇀ u in L2, ∇un ⇀ ∇u in M1.

Therefore, by using weak lower semi-continuity of μ �→
∫
Ω

ψ(μ), as well as
the weak-L2 semi-continuity, one obtains∫

Ω

ψ(∇u) +
1
2h

∫
Ω

|u − v|2 −
∫

Ω

fu

≤ lim
n→+∞

∫
Ω

ψ(∇un) +
1
2h

∫
Ω

|un − v|2 −
∫

Ω

fun.

Let us note that since the trace map γ0 is not continuous for the weak
topology , the weak convergence in BV of un toward u is not sufficient to
ensure that un|∂Ω → u|∂Ω. To overcome this difficulty, we introduce a relaxed
form of (1.20), in which the boundary condition u = α|∂Ω has been inserted
into the functional. This relaxed form of (1.20) reads

inf
u∈BV

{ ∫
Ω

ψ(∇u) +
∫

∂Ω

ψ∞((α − u)�n) +
1
2h

∫
Ω

|u − v|2 −
∫

Ω

fu
}
. (1.21)

Moreover, one can show, using an approximation process in [7], that inf(1.21)
= inf(1.20) = inf(1.16). (1.21) possesses a solution in BV. We omit the
details of these facts, because it consists in bringing minor changes to the
method used in [17], [6].

One can derive from the previous equalities some interesting consequences.
Assume that u is a solution of (1.21) and σ a solution of (1.18). Then the
following extremality relations hold

ψ(∇u) − (∇u : σ) + ψ�(σ) = 0 in Ω, (1.22)
1
2h

|u − v|2 +
h

2
| divσ + f |2 − ((u − v)(divσ + f)) = 0 in Ω, (1.23)

ψ∞((α − u)�n) = (σ.�n)((α − u)) on ∂Ω. (1.24)

Indeed, we can derive from the equality sup(1.18) = inf(1.21) that∫
Ω

ψ(∇u) +
∫

∂Ω

ψ∞((α − u)�n) +
1
2h

∫
Ω

|u − v|2 −
∫

Ω

fu

= −
∫

Ω

ψ�(σ) +
∫

Ω

σ.n α − h

2

∫
Ω

|divσ + f |2 −
∫

Ω

(divσ + f)v.
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Now, using (1.12), ∫
Ω

∇u : σ = −
∫

Ω

divσu +
∫

∂Ω

σ.�nu.

one obtains(∫
Ω

ψ(∇u) −
∫

Ω

∇u : σ +
∫

Ω

ψ�(σ)
)

+
(∫

∂Ω

ψ∞((α − u)�n) −
∫

∂Ω

(σ.�n(α − u))
)

+
( 1
2h

∫
Ω

|u − v|2 +
h

2

∫
Ω

(divσ + f)2 −
∫

Ω

(divσ + f)(u − v)
)

= 0.

Now we remark that each of these three groups of integrals is the integral of
a nonnegative function. This leads to (1.22), (1.23), (1.24). Let us observe
that (1.23) is also

u − v

h
= divσ + f,

which is exactly the first line of (1.17).
In the following section we will restrict our attention to the one dimen-

sional case. We can assume without loss of generality that Ω =]0, 1[. The
equations in (1.17) read

u − v

h
= σ′ + f, u(0) = α, u(1) = β, σ = ψ′(u′) (1.25)

and we assume that f ∈ W 1,1(]0, 1[), v ∈ W 1,1(]0, 1[)), and α = (hf +
v)(0), β = (hf + v)(1) (the values (hf + v)(0) and (hf + v)(1) make sense
since (f, v) ∈ W 1,1(]0, 1[) are continuous on [0, 1]).

The main result of the next section is about the smoothness of u. We
prove that u belongs to W 1,1(]0, 1[). (in place of BV(]0,1[)). As we shall see
at the end of Section 2, u has no higher smoothness if we do not have higher
regularity on (f, v).

Another result about this “no regularizing effect” is illustrated at the end
of Section 2. We describe a case where v ∈ BV has a jump and u has a
jump. Nevertheless, we observe there that the jump decreases. This may be
a chance to prove that, after a positive finite time, the continuous evolution
equation has a regularizing effect.

2. Existence, uniqueness and regularity for the one-dimensional
problem. As we announced it at the end of Section 1, the one-dimensional
problem (1.25) reads

u − v

h
= σ′+f, σ = ψ′(u′), u(0) = (v+hf)(0), u(1) = (v+hf)(1), (2.1)
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where we assume that h is a positive parameter (not necessarily small at
this time), and (f, v) belong to W 1,1. The assumptions on ψ are

i) ψ is strictly convex, ψ is C2 on R,
ii) ψ is linear at infinity: there exist c0, c1 > 0, such that for all ξ in R

c0(|ξ| − 1) ≤ ψ(ξ) ≤ c1(|ξ| + 1). (2.2)

iii) ψ′′ > 0 for simplicity (which excludes for example the case ψ(x) = x4

in a neighborhood of 0). In fact, in the general case ψ′′ ≥ 0, the final
regularity result still holds, as we shall remark at the end of the
section.

iv) ψ′(0) = 0. This can be done, as one can see from the equation,
without loss of generality

v) Dom ψ� is the symmetric set [−1,+1].

Remark 2.1. We shall use below that due to ψ′(0) = 0 and to the convexity
of ψ, we have xψ′(x) ≥ 0.

Before giving the regularity result announced, we derive some conse-
quences from the weak existence result obtained in the previous section.
We have obtained that given v and f in W 1,1(]0, 1[), there exists (u, σ) ∈
BV (]0, 1[) × L∞(]0, 1[), such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u−v
h = σ′ + f in ]0, 1[,

ψ(u′) + ψ�(σ) = u′σ in ]0, 1[,
|α − u(0+)| = σ(0)(u(0) − α),
|β − u(1)| = σ(1)(β − u(1)),

(2.3)

where α = (v + hf)(0), β = (v + hf)(1).
The process to prove the existence of u consists in remarking that u, σ

are respectively solutions of the two following minimization problems

inf
u∈BV (]0,1[)

{∫ 1

0

ψ(u′) +
1
2h

∫
Ω

|u − v|2 −
∫

Ω

fu + |α − u(0+)| + |β − u(1−)|
}

(2.4)

sup
σ∈H1(]0,1[)

{
−

∫
Ω

ψ�(σ) − h

2

∫
Ω

|σ′ + f |2 −
∫

Ω

(σ′ + f)v + σ(1)β − σ(0)α
}
.

(2.5)

A first step to prove that u has some regularity consists in observing that
u is continuous inside ]0, 1[. In other words, ū cannot have a jump inside
]0, 1[. The proof we present below makes use of the continuity of v, which is
necessary, as the counterexample at the end of Section 2 shows.
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Lemma 2.1. u is continuous on ]0, 1[.

Proof of Lemma 2.1. To prove the continuity of u inside ]0, 1[, assume
that u presents a positive jump on some point x0 inside ]0, 1[. Then the
extremality relation

ψ∞((u+ − u−)(x0)) = σ(x0)(u+ − u−)(x0) (2.6)

derived from (1.9), and the definition of ψ∞ imply that σ(x0) = 1. Hence
σ′(x)(x−x0) ≤ 0 around x0. By using the first equation in (2.3) and letting
x go to x0 for x < x0 and x > x0 one obtains

(u − v)(x−
0 ) ≥ 0 (2.7)

(u − v)(x+
0 ) ≤ 0 (2.7)

from which one gets that (u(x+
0 ) − u(x−

0 )) ≤ 0 , which is a contradiction
with the assumption.

By analogous arguments if [u](x0) < 0, σ(x0) = −1, σ has a minimum on
x0, σ′(x−

0 ) ≤ 0, σ′(x+
0 ) > 0 and then [u](x0) ≥ 0, a contradiction.

We now prove that the boundary conditions are fulfilled. Assume that
α > u(0+); then (2.3) gives σ(0) = −1, σ achieves its minimum on 0, and
σ′(0+) ≥ 0. Using the first equation in (2.3) one obtains, by passing to the
limit

(
u−v

h −f
)
(0) ≥ 0 and then u(0+) ≥ α. By the same process one proves

that α < u(0+) implies by the third equation in (2.3) that σ(0+) = 1, 0 is
a maximum for σ, σ′(0+) ≤ 0, and by the first equation in (2.3), one finally
gets u−v

h (0+) �= 0, a contradiction. Analogous considerations imply that
u(1) = β.

In order to prove further regularity on u, we need a key argument con-
cerning comparison between solutions. For the sake of simplicity, it will be
useful to replace in the sequel the variable u by its derivative w. We are led
to introduce the problem

For g in L1(]0, 1[), find (w, σ) in L1(]0, 1[×W 2,1(]0, 1[), such that

w − σ′′ = g, (2.8)

σ′(0) = σ′(1) = 0, (2.9)

σ = ψ′(w). (2.10)

Let us note that until now we have only been able to prove that (w, σ) ∈
M1(]0, 1[×HB(]0, 1[),1 (σ′(0) and σ′(1) are taken in the sense of the trace
of BV functions).

1HB(]0, 1[) = {σ ∈ W 1,1(]0, 1[), σ′′ ∈ M1(]0, 1[}.
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To see that (2.1)–(2.4) are equivalent to (2.8)–(2.10), let w be a solution
to (2.8)–(2.10) with (hf + v)′ = g, and define u(x) = (v + hf)(0)) +

∫ x

0
w.

Then u is a solution for (2.1)–(2.4).
In Theorem 2.1 below, we begin to prove existence, uniqueness and reg-

ularity result, assuming that g belongs to L∞. Then, denoting by T (g) the
function w, we observe that T is an increasing mapping .

Theorem 2.1.
i) Assume that w ∈ M1(]0, 1[) is a solution of (2.8)–(2.10). Then w is

unique. We define T (g) = w.
ii) T maps L∞ into W 2,∞(]0, 1[).
iii) T is non decreasing on L∞ functions.

Proof of Theorem 2.1. Let wi, i = 1, 2 be two solutions of (2.8)–(2.10).
We make the difference w = w1 − w2, σ = σ1 − σ2 and obtain

w − σ′′ = 0, σ′(0) = σ′(1) = 0. (2.11)

We are allowed to multiply by (σ1 − σ2) which is continuous. We obtain by
integrating over ]0, 1[ ∫ 1

0

wσ −
∫ 1

0

σ′′σ = 0.

Using a generalized Green’s Formula on BV and (2.11), one gets

−
∫ 1

0

σ′′σ =
∫ 1

0

σ′2

and then ∫ 1

0

wσ +
∫ 1

0

σ′2 = 0.

In order to conclude here, we need to prove that, as a measure, wσ ≥ 0. For
that purpose , we recall from the theory of convex functions of a measure [7]
that the pointwise inequalities

XY ≤ ψ(X) + ψ�(Y ) and X∂ψ(X) = ψ(X) + ψ�(∂ψ(X))

may be extended to measures and suitable functions σ. As a consequence,
we get wiσi = ψ(wi)+ψ�(σi), i = 1, 2 and wiσj ≤ ψ(wi)+ψ�(σj). From this
we derive that (w1 − w2)(σ1 − σ2) ≥ 0. Finally σ′2 = 0, and σ1 − σ2 = cte.
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Either the constant is non zero and then w1 = w2, either σ1 = σ2 which also
implies that w1 = w2.

ii) To prove that T maps L∞ into itself, one can either use a Galerkin
method, or a regularization by a viscous term, and get a priori L∞ estimates
independent on the viscous parameter ε > 0. Assume that wε, σε are the
solutions of

wε − εwε
xx − σε

xx = g, wε
x(0) = wε

x(1) = 0, σε = ψ′(wε). (2.12)

The existence of (wε, σε) can be obtained by considering wε as the derivative
of the solution uε of the variational problem

inf
{u∈H1(]0,1[),u(0)=α,u(1)=β}

{1
2

∫ 1

0

(uε)2 +
ε

2

∫ 1

0

(uε
x)2 +

∫ 1

0

ψ(uε
,x) −

∫ 1

0

guε}.

It is classical that wε belongs to H1(]0, 1[). Multiplying by |wε|qwε, one
obtains, after integrating by parts

∫ 1

0

|wε|q+2+ε(q+1)
∫ 1

0

|wε|q(wε)2x+(q+1)
∫ 1

0

σε
x|wε|q(wε

x) =
∫ 1

0

g|wε|qwε.

Using wε
xσε

x = ψ′′(wε)wε2

x ≥ 0, one gets

|wε|q+2
Lq+2 ≤ |g|Lq+2 |wε|q+1

Lq+2 ;

hence
|wε|Lq+2 ≤ |g|Lq+2 . (2.13)

This implies that T sends Lq+2 into Lq+2, for every q ≥ 0, and letting q
go to infinity we obtain the analogous result in L∞. Moreover, |T (g)|Lq ≤
|g|Lq ,∀q < ∞.

It remains to prove that (σε, wε) → (ψ′(w), w), at least in a weak sense.
For that purpose, we multiply the first equation in (2.12) by σε to obtain

∫ 1

0

wεσε + ε

∫ 1

0

wε
xσε

x +
∫ 1

0

(σε
x)2 =

∫ 1

0

gσε
x.

Using wεσε ≥ 0 and wε
xσε

x ≥ 0, one obtains that σε
x is bounded in L2. Since

σε
x = ψ′′(wε)wε

x , and since we have assumed that ψ′′ is bounded from below
on bounded sets, one obtains that wε is bounded in H1 (independently of
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ε). As a consequence, one may extract from wε a subsequence, still denoted
wε, such that

wε → w in H1 weakly, wε → w a.e. in ]0, 1[,

and then ψ′(wε) → ψ′(w) a.e. We have finally obtained that w is a solution
of

w − (ψ′(w)),xx = g.

The previous estimates on wε imply that w ∈ L∞, and |w|∞ ≤ |g|∞ . Now,
using ψ′′(w)wx = u − f ∈ W 1,1 and the boundedness from below of ψ′′ on
compact sets, together with the boundedness of w, one gets that wx ∈ W 1,1,
and then u ∈ W 2,1. This ends the proof of assertion ii).

iii) To prove that T is non decreasing, let wi = T (gi), i = 1, 2, and assume
that g1 ≤ g2. We subtract the two equations defining wi, i = 1, 2, multiply
by (σ1 − σ2)+, and integrate by parts. We get

∫ 1

0

(w1 − w2)(σ1 − σ2) +
∫ 1

0

((σ1 − σ2)+,x)2 =
∫ 1

0

(g1 − g2)(σ1 − σ2)+ ≤ 0.

By the increasing behaviour of ψ′, (σ1 − σ2)+(w1 − w2) = (σ1 − σ2)+(w1 −
w2)+, and all the quantities under the integrals on the left are non- negative.
One obtains

(σ1 − σ2)(w1 − w2)+ = 0

which implies that w1 ≤ w2.
We are now able to prove the main result of this section.

Theorem 2.2. Assume that g ∈ L1(]0, 1[) and w is the solution of

w − σ′′ = g, σ′(0) = σ′(1) = 0, σ = ψ′(w).

Then w = T (g) ∈ L1. Moreover, T is a contraction mapping from L1

into L1.

Proof. Let gp be in L∞, which converges towards g in L1(]0, 1[). By theorem
2.1 wp = T (gp) belongs to W 1,1 and is then continuous. Let p and q be two
integers. We write the two equations satisfied by wp and wq respectively,
and subtract them. Let Yε be defined as

Yε(x) =
{ x

ε if |x| < ε

1 if not .
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Let us note that if Y + denotes the positive Heaviside function, Yε tends to
Y + − Y − in L∞ weakly star and almost everywhere. Let us multiply the
equation verified by wp−wq by Yε(σp−σq) and integrate by parts the second
integral, to obtain∫ 1

0

(wp−wq)(Yε(σp−σq))+
∫ 1

0

(σp−σq)2,xY ′
ε (σp−σq) =

∫ 1

0

(gp−gq)Yε(σp−σq).

The second integral on the left hand side reads

1
ε

∫
{x,|σp−σq|<ε}

(σp − σq)2,x ≥ 0.

Moreover, Yε(σp − σq) tends towards Y +(wp − wq) − Y −(wp − wq) in L∞

weakly star, (because the functions are sufficiently regular and ψ′ is invert-
ible.) As a consequence, one obtains∫ 1

0

|wp − wq| ≤
∫ 1

0

|gp − gq|

and then wp is a Cauchy sequence in L1. Let w be its limit in L1. Since
we can assume by extracting a subsequence that wp converges to w almost
everywhere, we also have ψ′(wp) → ψ′(w) almost everywhere. We have
obtained that w is the solution of (2.1), and w ∈ L1. To prove that T is a
contraction mapping, we take g1 and g2 in L1 and gp

1 and gp
2 , with gp

i ∈ L∞,
i = 1, 2, which converge in L1 respectively to g1 and g2. Denoting by wp

i the
solutions T (gp

i ), one obtains that∫ 1

0

|wp
1 − wp

2 | ≤
∫ 1

0

|gp
1 − gp

2 |.

Passing to the limit when p goes to infinity, and using the first part of the
proof, we get ∫ 1

0

|w1 − w2| ≤
∫ 1

0

|g1 − g2|

with wi = T (gi), i = 1, 2, which yields the desired result.

Theorem 2.3. The increasing behaviour of T can be extended to L1 func-
tions.

Proof. Take g1 ≤ g2, g1, g2 ∈ L1(]0, 1[), and gp
1 and gp

2 be two sequences
in L∞ such that gp

1 ≤ gp
2 , which converge in L1 respectively to g1 and g2.

We have, by Theorem 2.2, T (gp
1) ≤ T (gp

2) and by the content of the Proof
of Theorem 2.2, T (g1) ≤ T (g2). This ends the proof of Theorem 2.3.
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Theorem 2.4. (Continuity of T for different topologies) Assume that ψ ∈
Ck+1 and g ∈ W k,p(]0, 1[), then T (g) ∈ W k+2,p(]0, 1[).

Proof of Theorem 2.4. We prove it by a recursive way on k. Suppose that
k = 0 and g ∈ Lp. Multiplying the equation by |w|p−2w and integrating by
parts, one gets

∫ 1

0

|w|p + (p − 1)
∫ 1

0

σ,x|w|p−2w,x =
∫ 1

0

g|w|p−2w ≤ |g|p|w|p−1
p .

Using σ,xw,x ≥ 0 one gets that |w|p ≤ |g|p. Assume now that k = 1. Then
g ∈ W 1,p ⊂ L∞, hence T (g) = w ∈ L∞. The equation

w − σ′′ = g

implies that σ′′ = w − g ∈ L∞. From the primitive equation u − σ′ = f, we
get σ′ ∈ L2, and then w′ ∈ L2, since σ′ = ψ′′(w)w′ and ψ′′ is bounded from
below on bounded sets. From this remark and from the equation

σ′′ = ψ′′(w)w′′ + ψ′(w)w′2 ∈ L∞,

we derive the following w′2 ∈ L1 and σ′′ ∈ L∞ =⇒ ψ′′(w)w′′ ∈ L1 =⇒ w′′ ∈
L1 =⇒ w′ ∈ L∞. Using σ′′ ∈ L∞ once more, one finally gets that w′′ ∈ L∞.
We differentiate once again the equation to get

w′ − σ(3) = g′ =⇒ σ(3) = −g′ + w′ = ψ′′(w)w(3) + P3(w, w′, w′′),

where P3 is a polynomial with coefficients in L∞, in w, w′, w′′. This implies
that if g ∈ W 1,p, then σ(3) ∈ Lp and w ∈ W 3,p. This gives the result for
k = 1. Suppose that we have proved that g ∈ W k,p implies T (g) ∈ W 2+k,p,
and suppose that g ∈ W k+1,p. Then w = T (g) ∈ W 2+k,p and

w(k+1) − σ(k+3) = g(k+1) =⇒ σ(k+3) = w(k+1) − g(k+1) ∈ Lp.

By a recursive way, one can prove the formula

σ(k+3) = ψ′′(w)w(k+3) + ck+3(w)w′w(k+2) + Pk+3(w, w1, ..., w(k+1)),

where ck+3(w) is in L∞ and Pk is a polynomial with coefficients in L∞.
We obtain, using w′ ∈ L∞, that ψ′′(w)w(k+3) ∈ Lp =⇒ w ∈ W k+3,p. This
implies the result.
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A counterexample to the regularity of u when v is not in W 1,1(Ω).
We conclude this section by exhibiting a counter example to the “regularity”
of u when g = f ′, or v′ present a singular part. Let u be defined as

u(x) =
−9
25/3

(1
2
− x

)1/3 − x2 for x <
1
2
,

=
9

25/3

(
x − 1

2
)1/3 + x2 +

1
2

for x >
1
2
.

u is everywhere differentiable, except on 1
2 . We have a jump at this point,

since u
(

1
2

)− = − 1
4 , u

(
1
2

)+ = 3
4 . Let σ =

u′
√

1 + u′2 . σ may be extended as a

C1 function on [0,1]. Indeed we have σ
((

1
2

)±)
∼ 1 and

σ′(1
2
)
∼ u′′(

1 + u′2)3/2

(1
2
)
∼ c

(1
2
− x

)1/3

if we take

v = Y +
(
x − 1

2
)

=
{

0 if x < 1
2 ,

1 if x > 1
2 ,

and f(x) = (u − v)(x) − σ′(x). Then f is continuous, f(0) = (u − v)(0),
f(1) = (u − v)(1) and f ∈ W 1,1, since v′ = δ1/2 and

u′ = δ1/2 +
3

25/3
| 12 − x|−2/3 − 2|x − 1/2| + sign (x − 1/2).

Moreover, σ′ is continuous. Let ψ be the function ψ(x) =
√

1 + x2 . Using
the uniqueness result, we see that u is the solution of

u − (ψ′(u′))′ = v + f, u(0) = v(0) + f(0), u(1) = v(1) + f(1).

3. The evolution problem. We now consider the evolution problem

ut − σx = f(t, x), in ]0, T [×]0, 1[ (3.1)

σ = ψ′(ux), (3.2)

with the boundary conditions

u(0, x) = u0(x), (3.3)

u(t, 0) = α(t), (3.4)

u(t, 1) = β(t). (3.5)
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The regularity assumptions on f, α, β, u0 are the following: u0 ∈ W 1,1(]0, 1[);
f ∈ L1(]0, T [;W 1,1(]0, 1[)), α and β belong to W 1,∞(]0, T [). We also assume
that the following compatibility relations hold: u0(0) = α(0); u0(1) = β(0);
α′(t) = f(t, 0); β′(t) = f(t, 1).

The aim of this section is to prove that there exists a unique solution
(u, σ) for (3.1)–(3.5), which enjoys the following regularity: u belongs to the
space X1 defined as

X1 = {u ∈ C([0, T ];W 1,1(]0, 1[)). (3.6)

Remark 3.1. One can observe that (3.1)–(3.5) may be understood as a
nonlinear evolution equation in σ with the homogeneous Neumann boundary
conditions

σx(t, 0) = σx(t, 1) = 0. (3.7)

We begin to state a result which implies uniqueness for the solution of (3.1)–
(3.5).

Theorem 3.1. Assume that u0 is in BV (]0, 1[) and that f belongs to
L∞(]0, T [;BV (]0, 1[)). Then problem (3.1)–(3.5) admits at most one solution
u ∈ L∞(]0, T [, (BV ]0, 1[)), such that ut ∈ L2(]0, T [×]0, 1[).

Proof of Theorem 3.1. Let (u1, σ1) and (u2, σ2) be two solutions of (3.1)–
(3.5) which verify the assumptions in Theorem 3.1. We define u = u1 − u2

and σ = σ1 − σ2. Then u and σ verify

ut − σx = 0, (3.8)

with all boundary and initial conditions equal to 0. Let us multiply (3.8) by
u and integrate with respect to x. On one hand∫ 1

0

utu =
1
2

d

dt

∫ 1

0

u2. (3.9)

holds. On the other hand, as for more classical assumptions on u and σ, the
results stated in Proposition 1.1 allow us to write

−
∫ 1

0

σxu =
∫ 1

0

σux. (3.10)

At this stage, if we prove that

σux = (ψ′(u1
x) − ψ′(u2

x))(u1
x − u2

x) (3.11)
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is nonnegative as a measure, then we will derive from (3.8) that

d

dt

(∫ 1

0

u2
)

= 0, (3.12)

which yields the uniqueness result. For that purpose, we recall from the the-
ory of convex functions of a measure (see Proposition 1.1) that the following
equality and inequality hold

σiui
x = ψ(σi) + ψ∗(ui

x); i = 1, 2, (3.13)

σiuj
x ≤ ψ(σi) + ψ�(uj

x); i �= j, i = 1, 2, j = 1, 2. (3.14)

From (3.13), (3.14), we easily deduce that σux, which has been defined in
(3.11), is non-negative as a measure. This completes the proof of Theo-
rem 3.1.

We now deal with the existence’s result. The process is similar to the one
employed in Section 2 for the stationary problem. We first prove an existence
result for data that enjoy more regularity, namely for data in W 1,∞(]0, 1[)
instead of W 1,1(]0, 1[).

In order to prove existence of solutions for initial data and f regular
enough, one can either use a regularization process, by adding a viscous
term −εwε

εxx, derive a priori estimates and pass to the limit , either use
an approximation by a finite difference scheme in time, and the result of
Section 1. We propose to present the second method.

Theorem 3.2. Assume that

f ∈ L∞(]0, T [, W 1,∞(]0, 1[)), and α, β ∈ W 1,∞(]0, T [), u0 ∈ H2(]0, 1[).

Then there exists a unique u ∈ C([0, T ], W 1,∞(]0, 1[) which satisfies (3.1)–
(3.5).

Proof. We use the following discretization scheme

un+1 − un

h
− σn+1

,x = fn+1 (3.15)

u0(0, x) = u0(x) (3.16)

un+1(0) = α((n + 1)h) = αn+1 (3.17)

un+1(1) = β((n + 1)h) = βn+1 (3.18)

σn+1 = ψ′(wn+1) = ψ′((un+1)′(x)) (3.19)
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with

fn+1(x) = 1/h

∫ (n+1)h

nh

f(t, x)dt. (3.20)

We denote by gn+1 the derivative (fn+1)′, and by fh the linear interpolate
function defined by

fh(t, x) =
fn+1 − fn

h
(t − nh) + fn for nh ≤ t ≤ (n + 1)h (3.21)

gh =
∂

∂x
fh (3.22)

and by (uh, σh) the linear interpolate functions

uh(t, x) = un +
un+1 − un

h
(t − nh), t ∈ [nh, (n + 1)h[ (3.23)

σh(t, x) = σn +
σn+1 − σn

h
(t − nh), t ∈ [nh, (n + 1)h[. (3.24)

Using the first section, we obtain that un+1 ∈ W 1,∞(]0, 1[), for all n. We
first establish a priori estimates in order to be able to pass to the limit when
n goes to infinity. As in Section 2, we use the derivatives wn, wn+1 instead
of un, un+1. The equations are

wn+1 − wn

h
− σn+1

,xx = gn+1 (3.25)

σn+1
,x (0) = σn+1

,x (1) = 0. (3.26)

By the estimates obtained in Section 2, we have

|wn+1|∞ ≤ |wn|∞ + h|gn+1|∞. (3.27)

By summing with respect to n = 0 to n= N, one gets

|wN+1|∞ ≤ |w0|∞+h
N∑
0

|gn+1|∞ ≤ |w0|∞+||fh||L1(]0,T [,W 1,∞(]0,1[)). (3.28)

This implies that wN+1 is bounded in L∞(]0, T×]0, 1[), independently of N.
On the other hand, using

un+1(x) = αn+1 +
∫ x

0

∂un+1

∂x
dx (3.29)
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we derive that
uh is bounded in L∞(]0, T [×]0, 1[). (3.30)

We need now an estimate on uh
t or wh

t . We multiply (3.25) by σn+1−σn

h ,
integrate by parts the second integral, and use the inequality

a|(wn+1 − wn)| ≤ |σn+1 − σn| ≤ b|(wn+1 − wn)| (3.31)

for some positive real numbers a and b. These inequalities can be obtained
by using the mean value theorem for ψ′, and the boundedness of wn, inde-
pendently on n. One obtains

a

∫ 1

0

∣∣wn+1 − wn

h

∣∣2 +
∫ 1

0

σn+1
,x

(σn+1 − σn),x

h

=
∫ 1

0

gn+1 σn+1 − σn

h
≤ b

∫ 1

0

∣∣wn+1 − wn

h

∣∣|gn+1|.
(3.32)

Using the equality

σn+1
,x (σn+1 − σn),x =

1
2
(σn+1

,x − σn
,x)2 − 1/2(σn

,x)2 + 1/2(σn+1
,x )2, (3.33)

multiplying by h and summing from 0 to N, one obtains

a

∫ 1

0

wh2
t +

N∑
0

∫ 1

0

(σn+1−σn)2,x+
∫ 1

0

(σN
,x)2

2
≤ 1

2

∫ 1

0

σ2
0,x+

b2

a
||gh||2L2(0,T×(0,1)).

(3.34)
Using u0 ∈ H2(]0, 1[), we finally get that

wh
t is bounded in L2(]0, T [×]0, 1[) (3.35)

and then
uh

t (t) = αh
t (t) +

∫ x

0

wh
t (t, y)dy (3.36)

is bounded in L2((0, T ), L∞(]0, 1[)). Coming back to the equation

uh
t − σn+1

x = fn+1 for nh ≤ t ≤ (n + 1)h

one gets that
σn+1

,x is bounded ∈ L2((0, T ), L∞(]0, 1[) (3.37)
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and then wh is bounded in H1(]0, T [×]0, 1[). Passing if necessary to a sub-
sequence, (still denoted wh), we have

wh → w in H1(]0, T [×]0, 1[) weakly (3.38)

wh → w a.e. (x, t) ∈]0, 1[×]0, 1]. (3.39)

We infer from (3.28) and (3.35) that σn
t = ψ′′(wn)wn

t , and then σh
t is

bounded, independently of h, in L2(0, T × (0, 1)). Hence, due to (3.37),
we may assume that, up to a subsequence

σh ⇀ σ weakly in H1(]0, T [×]0, 1[) (3.40)

and
σh → σ a.e. (x, t) in (0, 1) × (0, T ). (3.41)

We now prove that σ and w = u,x satisfy (3.2). For that purpose, we observe
that due to (3.15), (3.23) and (3.24),

h|σh − ψ′(wh)|2 ≤ h|σn+1 − σn|2, (3.42)

a.e. (x, t) in (0, 1) × (nh, (n + 1)h). Integrating (3.42) for x ∈ [0, 1], and
summing from 0 to N , we obtain that

||σh − ψ′(wh)||L2(0,T×0,1) ≤ h||σh
t ||L2((0,T )×(0,1)). (3.43)

Hence, due to (3.39)–(3.41), letting h go to 0 in (3.43) gives (3.2).
We now prove that σ and u satisfy (3.1). By the definition of uh, σh, fh,

one has that

(uh
t − σh

x − fh)(t, x) = (n + 1 − t

h
)(σn+1

x − σn
x + fn+1 − fn)(x). (3.45)

Same arguments as above lead to

||uh
t − σh

x − fh||2L2(]0,T [×]0,1[)

≤2h
N−1∑

0

(
||σn+1

x − σn
x ||2L2(0,1) + ||fn+1 − fn||2L2(0,1))

)
.

(3.46)

Due to (3.34), the first term on the r.h.s. of (3.46) converges towards 0 when
h → 0, and the second term also since f belongs to L2(0, T × (0, 1)). One
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obtains that (u, σ) verify (3.1)–(3.5). Since the boundary conditions (3.4)
(3.5) are easy to prove, we have constructed a solution (u, σ) which satisfy
(3.1)–(3.5).

We now prove the regularity result for w. For that purpose, we differen-
tiate (3.1) with respect to x, multiply the resulting equation by ψ′′(w)wt,
and integrate with respect to x in ]0, 1[. Using

ψ′′(w)wx(t, 0) = ψ′′(w)wx(t, 1) = 0 (3.47)

one obtains∫ 1

0

ψ′′(w)(wt)2 +
1
2

d

dt

∫ 1

0

((ψ′(w))x)2 =
∫ 1

0

ψ′′(w)gwt.

Now, since ψ′′ is continuous and since w is bounded in L∞(]0, T [×]0, 1[),
there exists m1 such that 0 < m1 < ψ′′(w) ≤ m2 a.e. We then obtain

m1||wt||2 +
1
2

d

dt
|(ψ′(w))x|22 ≤ m2|g|2|w|2 ≤ m2

2

2m1
|g|L2 +

m1

2
|wt|2L2 . (3.48)

Integrating this for t ∈ [0, T ] yields

wt ∈ L2(]0, T [×]0, 1[) (3.49)

wx ∈ L∞(]0, T [, L2(]0, 1[)). (3.50)

Let us come back to the equation in w which reads as well

wt − ψ′′(w)w,xx = g + ψ(3)(w)(wx)2. (3.51)

Using wt ∈L2(]0, T [×]0, 1[), ψ(3)(w) ∈ L∞(]0, T [×]0, 1[), and wx ∈ L∞(]0, T [
×]0, 1[), one obtains that

−ψ′′(w)wxx ∈ L2(]0, T [;L1(]0, 1[)) (3.52)

and then
w,xx ∈ L2(]0, T [, L1(]0, 1[)). (3.53)

Using the embedding L2(0, T ;W 1,1(]0, 1[)) ⊂ L2(0, T ;L∞(0, 1)), we derive
from (3.53) that

wx ∈ L2(0, T ;L∞(]0, 1[)) (3.54)
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and by interpolating (3.50) and (3.54), that

wx ∈ L4(]0, T [×]0, 1[). (3.55)

Therefore, if we go back to (3.51) using (3.55) instead of (3.50), we obtain

w,xx ∈ L2(]0, T [×]0, 1[). (3.56)

Second a priori estimate: we differentiate (3.51) with respect to t to obtain

wtt − (ψ′′(w)wxt)x = gt + (ψ(3)(w)wtwx)x. (3.57)

Multiplying (3.57) by wt, integrating with respect to x in [0, 1], and using

(ψ′′(w)wxt)(t, 0) = (ψ′′(w)wxt)(t, 1) = 0 (3.58)

one obtains

1
2

d

dt
|wt|2L2 +

∫ 1

0

ψ′′(w)(wxt)2 =
∫ 1

0

gtwt −
∫ 1

0

ψ(3)(w)xwtwxt. (3.59)

We majorize the right hand side as follows

∫ 1

0

gtwt ≤ |gt|L2 |wt|L2 ≤ C + |wt|2L2 , (3.60)

where C is a constant which depends on the data of the equations.
(In all the previous estimates and the following one, C denotes a constant

which depends only on the data w0 and g of the equation. But of course C
may differ from one line to another.)

We handle the second term in the right hand side of (3.59) as follows

−
∫ 1

0

ψ(3)(w)wxwtwxt ≤ m3 |wt|L2 |wxt|L2 |wx|L∞ (3.61)

≤ α

2
|wxt|2L2 + C |wt|2L2 |wx|2L∞ ,

where m3 = sup{
∣∣ψ(3)(ξ)

∣∣ ; |ξ| ≤ ‖w‖L∞}. Therefore (3.59)–(3.61) yields

d

dt
|wt|2L2 + α |wxt|2L2 ≤ C1

(
1 + |wx|2L∞

)
|wt|2L2 + C2. (3.62)
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By dropping in a first time the term |wxt|2L2 in (3.62), one obtains

d

dt

[
|wt|2L2 exp

(
−C1

∫ t

0

(
1 + |wx|2L∞

)
ds

)]
≤ C2. (3.63)

We easily derive from (3.57 ) and (3.63) that

wt ∈ L∞(]0, T [;L2(]0, 1[)). (3.64)

We now come back to (3.62). Integrating with respect to t in [0, T ] and using
(3.56) and (3.64), we have

wxt ∈ L2(]0, T [×]0, 1[). (3.65)

We now observe that (3.65) and the embedding H1(]0, 1[) ⊂ L∞(]0, 1[) imply
that

wt ∈ L2(]0, T [, L∞(]0, 1[)). (3.66)

Hence, interpolating (3.64) and (3.66) yields to

wt ∈ L4(]0, T [×]0, 1[). (3.67)

Now, (3.65) and (3.67) means

w ∈ W 1,4(]0, T [×]0, 1[), (3.68)

and by Sobolev’s imbedding Theorem,

w ∈ C(]0, T [×]0, 1[). (3.69)

We are now able to prove the main result of that section. We assume that
α and β belong to W 1,1(]0, 1[) and g ∈ L1(]0, T [×]0, 1[). Then we have the
following result of existence and uniqueness.

Theorem 3.3. Let α and β be in W 1,1(]0, T [), g = f,x ∈ L1(]0, T [×]0, 1[)
and u0 ∈ W 1,1(]0, 1[). We still assume that ψ is convex, ψ ∈ C2 and ψ′′ > 0.
Then there exists a unique u ∈ C([0, T ], W 1,1(]0, 1[) which verifies

u,t − σx = f(t, x) (3.70)

u(t, 0) = α(t) (3.71)

u(t, 1) = β(t) (3.72)

u(0, x) = u0(x). (3.73)
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If moreover f ∈ L2(]0, T [, L2(]0, 1[), then u,t ∈ L2((0, T ) × (0, 1)).

Proof. We use the differentiated form of the equation

wt − σ,xx = g(t, x) (3.74)

and we begin to approximate g by gN where gN → g ∈ L1(]0, T [×]0, 1[) and
gN is regular enough to have wN = T (gN ) ∈ C([0, T ]× [0, 1]). The equations
verified by wp and wq read

wp
t − σp

,xx = gp(t, x) (3.75)

wq
t − σq

,xx = gq(t, x). (3.76)

Let us multiply the equation obtained after subtraction by Yε(σp − σq) and
integrate by parts the second integral, to obtain

∫ 1

0

(wp
t −wq

t )(Yε(σp−σq))+
∫ 1

0

(σp−σq)2,xY ′
ε (σp−σq) =

∫ 1

0

(gp−gq)Yε(σp−σq).

The second integral reads

1
ε

∫
{x,|σp−σq|<ε}

(σp − σq)2,x ≥ 0.

Since σp − σq are regular enough and ψ′ is invertible, Yε(σp − σq) tends
towards Y +(wp −wq)−Y −(wp −wq) in L∞ weakly star. Since w is regular
enough to have wt ∈ L2 (see (3.49)), we obtain by passing to the limit when
ε goes to zero

d

dt

∫ 1

0

|wp − wq| + (≥ 0) ≤
∫ 1

0

|gp − gq|.

Integrating with respect to t, one gets

∫ 1

0

|wp − wq|(t, x)dx ≤
∫ 1

0

|wp
0 − wq

0|(x)dx +
∫ T

0

∫ 1

0

|gp − gq|.

In particular wp is a Cauchy sequence in C(0, T, L1(]0, 1[)). Then wp → w
in C([0, T ], L1(]0, 1[). It is not difficult to see that w is a solution of the
evolution problem. Suppose in addition that f ∈ L2. Multiply the equation
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in u by ut, integrating by parts in x, and finally integrating with respect
to t, we obtain

∫ 1

0

u2
t +

∫ 1

0

σutx − σ(1)ut(1) + σ(0)ut(0) =
∫

utf,

hence, ∫
u2

t +
d

dt

∫
ψ(ux) − σ(1)β′(t) + σ(0)α′(t) =

∫
fut.

Then for every T > 0

∫ T

0

∫ 1

0

u2
t +

∫ 1

0

ψ(ux)(T ) ≤ |f |L2 |ut|L2 + Cte.

From this we get the desired result.
Conclusion. The interested reader can find more details about regularity

and other technics, mainly based upon the increasing behaviour of T in [3].
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