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Abstract. The Taylor–Couette problem in infinite cylinders is con-
sidered for weakly unstable Couette flow in case of fixed outer cylin-
der. The following results about the attractor are established in this
paper: 1) The upper–semicontinuity of the rescaled Taylor–Couette
attractor towards the associated Ginzburg–Landau attractor holds. 2)
Every solution in the Taylor–Couette attractor can be shadowed by
some pseudo–orbit in this Ginzburg–Landau attractor. 3) The Taylor–
Couette attractor only contains rotational symmetric solutions. Similar
results hold for corresponding hydrodynamical stability problems, like
Bénard’s problem.

1. Introduction. In this paper we prove some results about the
Taylor-Couette attractor in infinite cylinders in case of weakly unstable Cou-
ette flow. Similar results hold for corresponding hydrodynamical stability
problems, like Bénard’s problem, or reaction–diffusion systems, as the Brus-
selator, and many other systems.

The Taylor–Couette problem is a classical hydrodynamical stability prob-
lem, where a fluid is contained between two rotating concentric cylinders.
Originally designed for the study of turbulence, it is nowadays a well studied
problem in pattern formation. This problem is modeled with infinite cylin-
ders in order to neglect the boundaries at the top and at the bottom of the
cylinders, and to obtain the main issues of the pattern forming processes,
i.e., to obtain a dynamics independent of the special length of the cylinders.

The Taylor–Couette problem with periodic boundary conditions can be
studied with classical bifurcation analysis. An almost complete overview
about this case can be found in the textbook [3] to which we refer for addi-
tional information. Here we consider the situation where the trivial ground

Received for publication June 1998.
AMS Subject Classifications: 35K55, 58F12.

913



914 guido schneider

state, the Couette flow, loses stability and bifurcates under periodic bound-
ary conditions into a family of spatially periodic equilibria, the Taylor vor-
tices. We are interested in the collection of all bifurcating solutions for the
same situation, but now for the problem on the infinite line, i.e., we are
interested in the attractor of the problem.

Since we are dealing with a 3D Navier–Stokes problem the existence of a
global attractor is still unknown, even for bounded domains (cf. [2]). Under
the assumption that such an attractor exists for bounded domains, there
are characterizations, for instance in terms of its fractal dimension (cf. [9]).
In some limit situations a local attractor can be defined and described in
more detail (cf. [19]). In [16] it was pointed out that a useful definition of
a local attractor on the infinite line is as follows. (See also [1] or [8].) It
is an invariant, non–empty set which is bounded in a global (L∞)–topology
and which attracts sets contained in a positively invariant set in a local
topology, for instance convergence on every compact interval. Moreover,
for the linear diffusion equation it was observed that stronger convergence
cannot be expected. This lack is due to the fact that the nonlinear semiflow
is no longer compact on infinite domains, in contrast to bounded ones (cf.
[10], [27]).

It is the aim of this paper to describe this local Taylor–Couette attrac-
tor in more detail. One of the tools which we use is the Ginzburg–Landau
formalism. This theory, which is explained in section 3, allows us to de-
scribe the solutions of the more complicated Taylor–Couette problem with
the solutions of the Ginzburg–Landau equation, a complex–valued nonlin-
ear diffusion equation. In [24] with the help of this tool the existence of
a positively invariant set for the weakly unstable Taylor–Couette problem
has been established. In Theorem 2.2 a local attractor in the above sense
is constructed for this positively invariant set. This attractor can be de-
scribed by the associated Ginzburg–Landau attractor. In Theorem 4.2 the
upper–semicontinuity of the rescaled Taylor–Couette attractor is shown, i.e.,
it converges into the Ginzburg–Landau attractor, as the bifurcation param-
eter goes to zero. Such a result has already been established in [16] for
the Swift–Hohenberg equation. In Theorem 5.3 we prove that every solu-
tion in the Taylor–Couette attractor can be shadowed (approximated) for
all times by a pseudo–orbit solution in the Ginzburg–Landau attractor. A
(T1, κ)–pseudo–orbit solution solves the Ginzburg–Landau equation on the
time–intervals [nT1, (n + 1)T1) and makes jumps of size less than κ at the
times T = nT1 with n ∈ N. This main result goes beyond [21] and [16].
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Finally, in Theorem 6.1 we prove that the Taylor–Couette attractor only
contains rotationally symmetric solutions.

The Ginzburg–Landau equation as an amplitude equation was first for-
mally derived in [17] for Bénard’s problem. In the following years the
Ginzburg–Landau equation has been derived as an amplitude equation in
many different situations in nonlinear physics (cf. [25], [15], [5]). The math-
ematical results obtained in [4], [28], [7], [20], [21], and [16] established the
method of amplitude– or modulation equations as a new mathematical tool
on unbounded domains. The results in this paper are one of the final points
in the mathematical justification of the Ginzburg–Landau equation as an
amplitude– or modulation equation, as they showed a deep connection be-
tween the attractors of the systems.

In [23] and [24] we explained in which sense the theory of modulation
equations can be seen as generalization of the center manifold theorem in
case of continuous spectrum. See also section 3.
Acknowledgments. This paper is partially supported by the Deutsche
Forschungsgemeinschaft DFG under the grant Mi 459/2-2.

2. The functional set–up for the Taylor–Couette problem and
existence of a local attractor. The Taylor–Couette problem consists in
finding the motion a viscous incompressible fluid filling the domain Ω =
{(x, y) ∈ R × Σ} = {(x, y) ∈ R × R

2 | |y|2 ∈ (R1, R2)} between two con-
centric rotating infinite cylinders with radii R1 and R2. Here, | · |2 denotes
the euclidean norm in R

2. The problem is governed by the Navier–Stokes
equations on Ω with no–slip boundary conditions. For simplicity we set the
rotational velocity of the outer cylinder to zero, and so the Reynolds number
R is proportional to the rotational velocity of the inner cylinder.

The system possesses an exact solution, called the Couette flow UCou =
UCou(y). The deviation (U, q) from Couette–flow satisfies

∂tU = ΔU −R[(UCou · ∇)U + (U · ∇)UCou + (U · ∇)U ] −∇q,

∇ · U = 0, [U(x)]Σ =
1
|Σ|

∫
Σ

U(x) = 0, U |R×∂Σ = 0,
(2.1)

where U(x) denotes the component of U in x–direction.
In order to formulate our results we introduce some function spaces. We

let ρ(x) = (1 + |x|2)−1 and define

Hm
ρ (Ω, R) = {u : Ω → R | ‖u‖Hm

ρ
= ‖uρ‖Hm < ∞}.
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Then we define the translation operator Tz as (Tzu)(x, y) = u(x + z, y) and

Hm
l,u(Ω, R) = {u ∈ Hm

ρ | ‖u‖Hm
l,u

= supz∈R ‖Tzu‖Hm
ρ

< ∞,

‖Tzu − u‖Hm
l,u

→ 0 as z → 0}.

We write (2.1) as a dynamical system and eliminate ∇ · U = 0 and the
pressure term by introducing the projection Π : L2

ρ(Ω)3 → ΠL2
ρ(Ω)3 =

clL2
ρ(Ω)3{U ∈ H2

ρ (Ω)3 | ∇ · U = 0, U · n|R×∂Σ = 0, [U(x)]Σ = 0} which is
also continuous in Hm

ρ , and consequently in each Hm
l,u. See [24, Lemma 9.1]

which is slight generalization of the usual L2–theorem (cf. [27]). We define
the linear and nonlinear terms, ΛR and N(R, ·), as

ΛRU = Π[ΔU −R[(UCou · ∇)U + (U · ∇)UCou]]
N(R, U) = −RΠ(U · ∇)U

and write (2.1) as

∂tU = ΛRU + N(R, U). (2.2)

We define the domain of definition for ΛR by

Z = {U ∈ H2
l,u(Ω)3 | U |∂Σ×R = 0,ΠU = U}

Zρ = {U ∈ H2
ρ (Ω)3 | U |∂Σ×R = 0,ΠU = U}

and the spaces Z∗ = Π(H1
l,u)3 and Z∗

ρ = Π(H1
ρ )3. For low Reynolds number

R < Rc Couette flow is exponentially stable. For R ≥ Rc we define the
small bifurcation parameter ε2 = R−Rc. In [24, Theorem 1.4] it has been
shown:

Theorem 2.1. There exist C1, C2, C3 and ε0 > 0 such that for all ε ∈
(0, ε0) the following holds. Let U0 be an initial condition of (2.2) with
‖U0‖Z ≤ C1. Then we have a unique solution U with U |t=0 = U0 and

sup
t∈[0,∞)

‖U(t)‖Z ≤ C2 and lim sup
t→∞

‖U(t)‖Z ≤ C3ε.

From this theorem we have that B =
⋃

t≥0 Sε
t {U0 | ‖U0‖Z ≤ C1} is a

positively invariant set, where Sε
t denotes the nonlinear evolution operator

of (2.2).
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Theorem 2.2. There exists an ε0 > 0 such that for all ε ∈ (0, ε0) the
Taylor–Couette problem (2.1) possesses a local (Z, Zρ)–attractor Aε

TC. In
detail: There exists a non–empty invariant set Aε

TC with
a) Aε

TC is bounded in the norm of Z.
b) For all δ > 0 there exists a t0 > 0 such that for all t ≥ t0:

sup
b∈B

inf
a∈Aε

TC

‖a − Sε
t b‖Zρ < δ.

Proof. In order to show the existence we apply [16, Lemma 2.1]. The
assumptions (A1) and (A3) of the lemma cited above are obviously satisfied.
So, it remains to show the continuity of Sε

t with respect to the norm of Zρ.
This follows exactly as in [18]. �

3. The weakly unstable Taylor–Couette problem. In order to de-
scribe the Taylor–Couette attractor Aε

TC in more detail we cite here some
results which are needed later on. In case ε2 = R − Rc > 0 we have a
curve of positive eigenvalues λ(k) with associated eigenfunctions Ûke

ikx of
ΛR, i.e., ΛR(Ûke

ikx) = λ(k)Ûke
ikx. The eigenfunctions Ûk only depend on

|y| in cylindrical coordinates. In [24] it is shown that in this situation the
solutions of (2.1) can be approximated by

U ∼ ψ̃ = εA(εx, ε2t)Ûkce
ikcx + c.c., (3.1)

on time scales O(1/ε2), where the critical wavenumber kc > 0 is defined in
Figure 1. Herein, A is a solution of the Ginzburg–Landau equation

∂T A = αA + β∂2
XA − γA|A|2, (3.2)

where A(X, T ) ∈ C, T = ε2t, X = εx, and real–valued constants α, β, γ > 0.
This is now explained in more detail, where the following lines are very close
to the associated section in [16].

In order to separate the critical (λ(k) positive or weakly negative) from
the non–critical (Fourier–) modes we introduce the Fourier transform

(Fu)(k, y) = û(k, y) =
1
2π

∫
R

u(x, y)e−ikxdx

and some mode filters by the multiplication operators

Êc(k) =
∫

Γ
(Λ̂(k) − s)−1dsχ(||k| − kc|/ρ0),

Ês(k) = (1 −
∫

Γ
(Λ̂(k) − s)−1ds)(1 − χ(||k| − kc|/ρ0)).
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Figure 1: The spectrum of ΛR for weakly unstable Couette flow drawn as function over
the wavenumbers k.

The complex–valued operator Ê1(k) is defined implicitly by (Ê1(k)u)Ûk =
Êc(k)(u) for |k − kc| < 2ρ0. Here, for each fixed wavenumber k, Γ is a
curve in the complex plane surrounding 0; χ ∈ C∞

0 is a cut–off function
with χ(k) = 1 for |k| ≤ 1, χ(k) ∈ [0, 1] and χ(k) = 0 for |k| ≥ 2. We
choose ρ0 independent of ε, so small, that the curve of largest eigenvalues
k 
→ λ(k) is separated from the rest of the spectrum for |k| ≤ 4ρ. We use [20,
Lemma 5] to define (in Hm

l,u for m = 0, 1, 2) continuous operators in physical
space by Ec = F−1ÊcF as an example. We define a scaling operator Sε by
(SεA)(x) = A(εx), and the multiplication operator E by (uE)(x) = u(x)eikx.
Finally, the operator U is defined by the multiplier Ûkχ(|k − kc|/(2ρ0)) using
again [20, Lemma 5]. We introduce

Φε : u 
→ 1
ε
S1/ε[(E1u)E−1] (3.3)

which maps initial conditions of the Taylor–Couette problem to initial con-
ditions of the Ginzburg–Landau equation and ψε(A) = ε(USεA + USεA)
which maps solutions of the Ginzburg–Landau equation to approximations
of the Taylor–Couette problem.

For the Ginzburg–Landau equation (3.2) we introduce the spaces

Y = H2
l,u(R, C), Yρ = H2

ρ (R, C), Y ∗ = H1
l,u(R, C), and Y ∗

ρ = H1
ρ (R, C).

Lemma 3.1. There exist C, ε0 > 0 such that the linear operator Φε : Z →
Y satisfies for all ε ∈ (0, ε0] the estimate ‖Φεu‖Y ≤ Cε−1‖u‖Z , and the
operator ψε : Y → Z satisfies

‖Esψε(A)‖Z ≤ Cε2‖A‖Y and ‖ψε(A)‖Z < Cε‖A‖Y for all A ∈ Y. (3.4)
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Moreover, we have

‖Esψε(A)‖Z∗ ≤ Cε3/2‖A‖Y ∗ and ‖ψε(A)‖Z∗ < Cε‖A‖Y ∗ for all A ∈ Y ∗.

Proof. Similar to [16, Lemma 4.1], where H1 is replaced by H2 which gives
ε2 instead of ε3/2. �

There are two principles, attractivity and approximation property, which
are the mathematical connection between the dynamics of the Taylor–
Couette problem and the Ginzburg–Landau equation.

The first principle is the attractivity of the set of functions which are
in the Ginzburg–Landau form (3.1). This principle was stated in [6], first
proved in [7], and improved in [22]. It is very similar to the attractivity of
the center manifold in case of discrete spectrum (cf. [12]).

Theorem 3.2. For each r0 > 0 there exist constants C, T0, R1, ε0 > 0 such
that for all ε ∈ (0, ε0) the following estimates hold:

distZ(Sε
T0/ε2(BZ(εr0)), ψε(BY (R1))) ≤ Cε5/4, (3.5)

distY (Φε[Sε
T0/ε2(BZ(εr0))], BY (R1)) ≤ Cε1/4, (3.6)

where BZ(r) = {u ∈ Z | ‖u‖Z ≤ r} and

distZ(A, B) = sup
a∈A

inf
b∈B

‖a − b‖Z .

Proof. Our version is a direct consequence of [24, Theorem 1.5]. �
The second principle is that every solution of the Taylor–Couette problem

(2.2) which is close to the Ginzburg–Landau form (3.1) can be approximated
by the solutions of the Ginzburg–Landau equation. A special case was first
proved by [4]. The general scalar case was first proved in [28]. A simpli-
fied version of the proofs can be found in [14] and [20], respectively. The
Ginzburg–Landau equation describes the dynamics in the attractive set es-
tablished in Theorem 3.2 similar to the amplitude equations on the center
manifold in case of discrete spectrum. The last reduction is exact although
in general only approximations of the exact reduction are known. In this
sense Theorem 3.2 and Theorem 3.3 are optimal results in case of continu-
ous spectrum.

Theorem 3.3. For all R1, T1, d > 0 there exists C, ε0 > 0 such that for
all 0 < ε ≤ ε0 the following holds: Let A0 ∈ BY (R1) and u0 ∈ Z with
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‖u0 − ψε(A0)‖Z ≤ dε5/4, then

sup
0≤t≤T1/ε2

‖Sε
t (u0) − ψε(Gε2t(A0))‖Z ≤ Cε5/4, (3.7)

sup
0≤t≤T1/ε2

‖Φε(Sε
t (u0)) − Gε2t(A0)‖Y ∗ ≤ Cε1/4, (3.8)

‖Φε(Sε
T1/ε2(u0)) − GT1(A0)‖Y ≤ Cε1/4, (3.9)

where GT denotes the nonlinear evolution operator for the Ginzburg–Landau
equation.

Proof. Our version is a direct consequence of [24, Theorem 8.2]. �
See [23] for a different kind of instability, where the Ginzburg–Landau equa-
tion occurs as an amplitude equation.

4. Upper–semicontinuity of the rescaled Taylor–Couette at-
tractor. As in [16] these two principles, attractivity and approximation
property, can be used to establish the upper-semicontinuity of the rescaled
Taylor-Couette attractor ΦεAε

TC, i.e., it converges into the Ginzburg–Landau
attractor AG , as the bifurcation parameter goes to zero. The existence of
AG is guaranteed by the following theorem (cf. [16]).

Theorem 4.1. The Ginzburg-Landau equation has a global (Y, Yρ)-attractor
AG which is translationally invariant and invariant under the rotations Rφ :
A 
→ eiφA.

Then, we have the upper–semicontinuity (cf. [1]). Lower semicontinuity
cannot be expected (cf. [11]).

Theorem 4.2. For every σ > 0 there exist C, ε0 > 0 such that for all
ε ∈ (0, ε0] the estimates

distYρ(ΦεAε
TC,AG) ≤ σ and distZ(EsAε

TC, {0}) ≤ Cε5/4

hold.
Proof. From Theorem 2.1 we know that Aε

TC is contained in BZ(εr0) for
some r0 > 0. Let v ∈ Aε

TC. Since Aε
TC is invariant under the flow Sε

t , there
is a u0 ∈ Aε

TC such that v = Sε
T0/ε2(u0), where T0 is chosen according to

Theorem 3.2. Hence,

‖Esv‖Z = ‖EsSε
T0/ε2(u0)‖Z

≤ ‖Es(Sε
T0/ε2(u0) − ψε(A0))‖Z + ‖Esψε(A0)‖Z ≤ Cε5/4,
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where (3.5) and (3.4) was used. This shows the second result as v ∈ Aε
TC

was arbitrary.
From the attractivity in (3.6) we find R1 > 0 such that

distY (ΦεAε
TC, BY (R1)) ≤ Cε1/4.

Since AG is an attractor, there exists, for given σ, a time T2 > 0 such that
distYρ(GT2(BY (R1)),AG) ≤ σ/2. Now let v ∈ Aε

TC be arbitrary. By invari-
ance there is a u0 ∈ Aε

TC with v = Sε
T2/ε2(u0). Applying the approximation

result (3.9) with T1 = T2 we find

distY (Φεv,GT2(BY (R1))) = distY (ΦεSε
T2/ε2(u0),GT2(BY (R1))) ≤ Cε1/4.

We complete the proof by

distYρ(ΦεAε
TC,AG) ≤ distY (ΦεAε

TC,GT2(BY (R1)))
+ distYρ(GT2(BY (R1)),AG) ≤ σ,

choosing ε0 > 0 so small that Cε1/4 < σ/2. �
5. Pseudo–orbit approximation in the Ginzburg–Landau at-

tractor. In [24] for the Taylor–Couette problem and in [21] for the
Kuramoto–Shivashinsky equation it has been shown that every solution of
(2.2) can be shadowed by a so called pseudo–orbit solution for the Ginzburg–
Landau equation.

Definition 5.1. Let T1 > 0 and κ > 0. We call a function A = A(T ) a
(T1, κ)–pseudo–orbit in the Banach space Y for the Ginzburg–Landau equa-
tion (3.2) if the relations

A((n − 1)T1 + τ) = Gτ (A((n − 1)T1)) for all τ ∈ [0, T1), and
‖A(nT1+0) − GT1(A((n − 1)T1))‖Y ≤ κ

hold for all n ∈ N, where GT is the nonlinear semigroup associated with (3.2)
and A(T +0) = limτ→T,τ>T A(τ).

The jumps of size κ do not destroy the existence of an absorbing ball
for the Ginzburg–Landau equation. It is possible to iterate the approxi-
mation process for the Taylor–Couette problem and to control the size of
the solutions by associated pseudo–orbits in the Ginzburg–Landau equation
alone.
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Theorem 5.2. For all T1, C̃0 > 0 there exist positive constants ε0, C̃1, C̃2

and T0 such that for all ε ∈ (0, ε0] the following is true:
For all initial conditions U0 with ‖U0‖Z ≤ C̃0ε the solution U(t) =

Sε
t (U0) of (2.2) exists for all time, and there is a (T1, C̃1ε

1/4)–pseudo–orbit
A for (3.2) which satisfies supT≥0 ‖A(T )‖Y ≤ C̃2 and approximates U(t) for
all t ≥ T0/ε2 as follows:

‖U(t) − ψε(A(ε2t − T0))‖Z ≤ C̃1ε
5/4,

‖ΦεU(t) − A(ε2t − T0)‖Y ∗ ≤ C̃1ε
1/4.

Proof. See [24, Theorem 8.2]. �
There exists an associated pseudo–orbit in the Ginzburg–Landau attrac-

tor AG . Since attractivity to AG only holds in Yρ the pseudo–orbit is in Yρ

instead of Y .

Theorem 5.3. For all C1 > 0 there exists a T̃0 > 0 such that for all T1 >
T̃0, we have ε0 > 0, and n ∈ N such that for all ε ∈ (0, ε0) the following holds.
To every solution U with values in Aε

TC there exists a (T1, C1)–pseudo–orbit
A in Yρ with values in AG such that

sup
t≥0

‖ΦεU(t) − A(ε2t)‖Y ∗
ρ
≤ CC1,

where C is a constant independent of C1 and ε.

Proof. From [24, Lemma 1.10] it follows that there exists a C2 > 0 such
that each (T1, C1)–pseudo–orbit A satisfies supT≥0 ‖A(T )‖Y < C2 for each
T1 > 1 and C1 ∈ [0, 1]. From the attractivity of AG we have: For these
C1, C2 > 0 there exists a T̃0 ≥ 1 such that

distY (A0,AG) < C2 yields distYρ(GT1A0,AG) < C1/2

for all T1 ≥ T̃0. From the Lipschitz–continuity of GT in BY (C2) with respect
to the Yρ–norm it follows that there exists a C3 > 0 such that

‖A0 − Ã0‖Yρ < C3 yields ‖GT A0 − GT Ã0‖Yρ < C1/2. (5.1)

Again, from the attractivity of AG it follows that there exists a n ∈ N such
that

GnT1BY (C2) ⊂ {u ∈ Yρ | inf
a∈AG

‖u − a‖Yρ ≤ C3/4}.
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Moreover, let Ã be the (T1, C̃1ε
1/4)–pseudo–orbit in Y (and so also in Yρ),

whose existence is guaranteed by Theorem 5.2. Since GT1 is Lipschitz–
continuous in BY (C2) with respect to the Yρ–norm, and since Ã makes
finitely many jumps there exists an ε0 > 0 such that for all ε ∈ (0, ε0)
we have

distYρ(Ã(T ),AG) < C3/2 for all T ≥ nT1.

Therefore, there exist Am ∈ AG with ‖Ã(mT1) − An‖Yρ < C3/2 for m ≥ n.
We define the pseudo–orbit A by

A(T ) = GT−mT1Am ∈ AG for T ∈ [mT1, (m + 1)T1).

The jumps made by A at the times T = mT1 are of the size C1/2 + C̃1ε
1/4

in Yρ (due to (5.1)) which is less than C1 for ε > 0 sufficiently small.
Finally, for some constant C ≥ 1 independent of ε we have

‖ΦεU(t) − A(ε2t − T0 − nT1)‖Y ∗
ρ
≤ ‖ΦεU(t) − Ã(ε2t − T0 − nT1)‖Y ∗

+ ‖Ã(ε2t − T0 − nT1) − A(ε2t − T0 − nT1)‖Yρ

≤ C̃1ε
1/4 + CC1/2 ≤ CC1,

provided ε > 0 is sufficiently small. Since AG and Aε
TC are invariant under

the flows, we can shift time. Thus, we are done. �

Remark 5.4. We introduce the norm ‖u‖Z∗
ρ,ε

= ‖u(Sερ)‖H1 . It is easy to
compute that we have

‖U(t) − ψε(A(ε2t − T0 − nT1))‖Z∗
ρ,ε

≤ Cε−1/2‖U(t) − ψε(Ã(ε2t − T0 − nT1))‖Z

+ ‖ψε(Ã(ε2t − T0 − nT1)) − ψε(A(ε2t − T0 − nT1))‖Z∗
ρ,ε

≤ Cε−1/2(C̃1ε
5/4 + CC1ε/2) ≤ C2C1ε

1/2,

again provided ε > 0 is sufficiently small. Herein, we have used ‖u‖Z∗
ρ,ε

≤
Cε−1/2‖u‖Z and ‖ψεA‖Z∗

ρ,ε
≤ Cε−1/2‖A‖Y ∗

ρ
.

As a consequence, in physical space this approximation result only makes
sense for solutions which are already in Ginzburg–Landau form. They are
typically of order O(ε1/2) in Z∗

ρ,ε. Thus, for these solutions the approxima-
tion error is smaller than the magnitude of the solutions.

It is a typical situation that the right limit, here (3.3), has to be consid-
ered (cf. [26]).
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Remark 5.5. In Theorem 2.2 and in the sections 4 and 5 the results can be
improved by replacing convergence with respect to the Yρ–distance by con-
vergence with respect to the distance dist(A, B) = supy∈R distYρ(TyA, TyB)
due to the translation invariance of the problem.

6. Reduction to the two–dimensional Taylor–Couette problem.
Finally, we show that the Taylor–Couette attractor Aε

TC only contains ro-
tationally symmetric solutions, i.e., it is sufficient to look at the so called
two–dimensional Taylor–Couette problem. We introduce cylindrical coordi-
nates U = U(x)ex + U(r)er + U(θ)eθ, where (x, r, θ) ∈ R × Σ with r = |y| and
θ = y/|y| ∈ S1.

Theorem 6.1. There exists an ε0 > 0 such that for all ε ∈ (0, ε0) the
following holds: From U ∈ Aε

TC follows that U possesses a representation
U = U(x)(x, r)ex + U(r)(x, r)er.

Proof. We consider again

∂tU = ΛRU + N (R, U) = ΛRU + B(U, U), (6.1)

where we have written the nonlinear terms as symmetric bilinear mapping
B(U, U). Then we define the projections

Q+U =
1
2π

∫
S1

Udθ and Q−U = U − Q+U (6.2)

for U in cylindrical coordinates. Note that Q±Π = ΠQ±. Since we know
already that the solutions in the attractor are of order O(ε) we make the
ansatz U = εU+ + εU− with U+ = Q+U+, U− = Q−U−, and ε > 0
sufficiently small. Inserting this into (6.1) gives

∂tU
+ = ΛRU+ + εQ+(B(U+, U+) + 2B(U−, U+) + B(U−, U−)),

∂tU
− = ΛRU− + εQ−(B(U+, U+) + 2B(U−, U+) + B(U−, U−)).

(6.3)

Note that Q−B(U+, U+) = 0. Moreover, we know

sup
t∈[0,∞)

(‖U+‖Z + ‖U−‖Z) ≤ C.

We have

‖B(U+, U−)‖Z∗ ≤ C‖U−‖Z , ‖B(U−, U−)‖Z∗ ≤ C‖U−‖Z ,



taylor–couette attractor 925

and
‖eΛRtQ−‖L(Z∗,Z) ≤ max(1, t−3/4)e−σ0t

for C, σ0 > 0 independent of ε > 0 sufficiently small. Thus

‖U−(t)eσ0t/2‖Z ≤ ‖eΛRteσ0t/2U−|t=0‖Z

+ ‖ε
∫ t

0
eΛR(t−τ)eσ0t/2(2B(U−, U+) + B(U−, U−))dτ‖Z

≤ Ce−σ0t/2 + ε

∫ t

0
‖eΛR(t−τ)‖L(Z∗,Z)e

σ0(t−τ)/2dτ sup
τ∈[0,t]

‖U−(τ)eσ0τ/2‖Z

≤ Ce−σ0t/2 + Cε sup
τ∈[0,t]

‖U−(τ)eσ0τ/2‖Z

and so
sup

t∈[0,∞)
‖U−(t)eσ0t/2‖Z ≤ (1 − Cε)−1C < ∞

for ε > 0 sufficiently small. Thus limt→∞ U−(t) = 0, and so Q+Aε
TC = Aε

TC

and Q−Aε
TC = 0. �
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