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Abstract. Under a non resonance condition, we establish the unique local existence

results in weak function spaces for the initial value problem of the Zakharov system

with the periodic boundary condition. The proof is based on the Fourier restriction

norm method, which was developed by J. Bourgain and C.E. Kenig, G. Ponce and

L. Vega.

1. Introduction and Main result. In this paper we consider the initial
value problem with the periodic boundary condition for the one dimensional
Zakharov system:⎧⎪⎨⎪⎩

i∂tu + α∂2
xu = un, (x, t) ∈ T × (−T, T ),

β−2∂2
t n − ∂2

xn = ∂2
x(|u|2), (x, t) ∈ T × (−T, T ),

u(x, 0) = u0(x), n(x, 0) = n0(x), ∂tn(x, 0) = n1(x), x ∈ T,

(1.1)

where α and β are real constants with α �= 0, β > 0, u and n are a complex
valued and a real valued function, respectively, T is a one dimensional torus
which implies the periodic boundary condition and T is a positive constant
to be determined later.

The system (1.1) describes the propagation of Langmuir turbulence waves
in an unmagnetized completely ionized hydrogen plasma (see [26]). The func-
tion u(x, t) denotes the slowly varying envelope of the electric field E with
the frequency ω such that E(x, t) = Re(u(x, t) exp(−itω)). The function
n(x, t) denotes the deviation of the ion density from the equilibrium. The
constant α is a dispersion coefficient and the constant β is the speed of ion
acoustic wave in a plasma.
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Our interest is to prove the well-posedness results in a weak class for
the initial value problem (1.1). The difficulty to deal with the initial value
problem (1.1) is that the second equation of (1.1) has second derivatives in
the nonlinear term. One derivative can be regained because of the second
order hyperbolicity of the second equation of (1.1). But it is a hard task to
regain one more derivative. Then we meet with the difficulty of the so-called
“loss of derivative”, which comes from the second derivatives of the second
equation of (1.1).

There are many papers concerning the Zakharov system for the Rd case
(see, e.g., [1, 2, 11, 12, 16, 20, 21, 22, 23]). When d = 2, 3, J. Bourgain and
J. Colliander [11] proved the well-posedness in the energy space. In [11] the
Fourier restriction norm method was used, which was developed by Bourgain
and Kenig-Ponce-Vega. In [12], J. Ginibre, Y. Tsutsumi and G. Velo showed
that when d = 1, −1/2 < s0−s1 ≤ 1 and 2s0 ≥ s1+1/2 ≥ 0, the one dimen-
sional Zakharov system is well-posed for (u0, n0, n1) ∈ Hs0 × Hs1 × Hs1−1,
by using a variant of the method developed by Bourgain. Furthermore, they
studied the well-posedness in higher space dimensions. Thus, the Cauchy
problem of the Zakharov system for the Rd case has extensively been stud-
ied. However, to our knowledge, there are only a few papers concerning the
problem with the periodic boundary condition (see, e.g., [10]). In this paper,
we consider the initial value problem with the periodic boundary condition
for the one dimensional Zakharov system. In [10] Bourgain showed that
when α = β = 1, the initial value problem (1.1) is locally well-posed in the
following sense. Assume that the initial data (u0, n0, n1) satisfy u0 ∈ Hs

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup
k∈Z

〈k〉s1 |Fxu0(k)| < ∞,

sup
k∈Z

〈k〉σ|Fxn0(k)| < ∞,

sup
k∈Z

〈k〉σ−1|Fxn1(k)| < ∞,

[B]

with σ < 0 < s < 1/2 < s1 < 1, where σ and s are sufficiently close to 0 and
1/2, respectively. Then the initial value problem (1.1) is locally well-posed.
In [10] the Fourier restriction norm method was used, which was developed
for the Schrödinger and the KdV equation in [6] and [7], respectively.

The aim in this paper is to investigate the time local well-posedness in
a weak space for (1.1), by using the method due to Bourgain [6,7,10] and
Kenig-Ponce-Vega [14,15]. In this paper, under the non resonance condition
that β/α is not an integer, we show the local well-posedness in Hs0 ×Hs1 ×
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Hs1−1, when 0 ≤ s0 − s1 ≤ 1 and 0 ≤ s1 + 1/2 ≤ 2s0. The weakest Sobolev
class of solutions that our result in this paper can cover is L2×H−1/2×H−3/2.
We do not have to assume the weighted L∞ condition on the initial data in
the Fourier space such as [B], while we assume the non resonance condition
that β/α is not an integer. As long as we consider the case that β/α is not
an integer, our result is an improvement of a previous result in [10].

Before precisely stating our results, we prepare the following notations.

Definition 1.1. Let V be the space of functions f such that

(i) f : T × R → C,

(ii) f(x, ·) ∈ S(R) for each x ∈ T,

(iii) f(·, t) ∈ C∞(T) for each t ∈ R.

For s ∈ R, we define the spaces Xs and Ys to be the completion of V with re-
spect to the norms: ‖f‖Xs

= ‖f‖(1,s,1/2), ‖f‖Ys
= ‖f‖(2,s,1/2), respectively,

where
‖f‖(1,s,b) = ‖〈n〉s〈τ + αn2〉bf̂(n, τ)‖l2nL2

τ
,

‖f‖(2,s,b) = ‖〈n〉s〈|τ | − β|n|〉bf̂(n, τ)‖l2nL2
τ
.

Throughout this paper, we shall let ψ ∈ C∞
0 (R) denote a smooth cut off

function such that ψ = 1 on [−1, 1] and supportψ ⊆ (−2, 2). For δ > 0, we
put ψδ(t) = ψ(t/δ).

Our main result is the following theorem.

Theorem 1.1. Assume that β/α is not an integer. Let s0 and s1 satisfy
0 ≤ s0 − s1 ≤ 1 and 0 ≤ s1 + 1/2 ≤ 2s0. For any (u0, n0, n1) ∈ Hs0 ×
Hs1 × Hs1−1, there exist T = T (‖u0‖L2 , ‖n0‖H−1/2 , ‖n1‖H−3/2) > 0 and a
unique solution (u(t), n(t), ∂tn(t)) of the initial value problem (1.1) in the
time interval [−T, T ] such that

u ∈ C([−T, T ] : Hs0(T)), ψT u ∈ Xs0 , (1.2)

n ∈ C([−T, T ] : Hs1(T)), ψT n ∈ Ys1 , (1.3)

∂tn ∈ C([−T, T ] : Hs1−1(T)), ψT ∂tn ∈ Ys1−1. (1.4)

For any T ′ ∈ (0, T ), there exists a neighborhood V of (u0, n0, n1) ∈ Hs0 ×
Hs1 × Hs1−1 such that the map (ũ0, ñ0, ñ1) �→ (ũ(t), ñ(t), ∂tñ(t)) from V

into the class defined in (1.2)–(1.4) with T replaced by T ′ is Lipschitz.
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Remark 1.1. By Theorem 1.1, we have the local well-posedness in Hs0 ×
Hs1 × Hs1−1, when s0 = s1 + 1/2. Of course, the result in Theorem 1.1
covers the Hamiltonian class, that is, the energy space.

Remark 1.2. The lowest admissible values (s0, s1) = (0,−1/2) that can be
reached by Theorem 1.1 are the same as in [12] for the case of R.

In the case of Rd, the scaling argument suggests that the critical values
for the Zakharov system may be s0 = s1 + 1/2 = d/2 − 3/2 (see [12]), from
which it seems natural that the difference of s0 and s1 be 1/2. Notice that
the difference of the lowest admissible values (s0, s1) reached by Theorem
1.1 is 1/2

Remark 1.3. Notice that in the previous result [10], some weighted L∞

condition on the initial data in the Fourier space is needed (see [B]). In
Theorem 1.1, this kind of assumption is removed, under a non resonance
condition.

Remark 1.4. The estimates crucial to the proof of Theorem 1.1 are the
following:

‖un‖(1,s0,1−b) ≤ c‖u‖(1,s0,b)‖n‖(2,s1,b), (1.5)

‖∂x(uv)‖(2,s1,1−b) ≤ c‖u‖(1,s0,b)‖v‖(1,s0,b). (1.6)

Under the non resonance condition that β/α is not an integer, if s0 and s1 do
not satisfy 0 ≤ s0− s1 ≤ 1 and 2s0 ≥ s1 +1/2 ≥ 0, then the above estimates
(1.5) and (1.6) fail for any constants c > 0 and b ∈ R (see Proposition
2.6 below). Therefore, Theorem 1.1 is the best possible result given by our
method.

Remark 1.5. Even if β/α ∈ Z, Theorem 1.1 holds for 0 ≤ s0 − s1 ≤ 1 and
2s0 ≥ s1 + 1 ≥ 1 (see Remark 2.1 below).

Remark 1.6. In [24], a non resonance condition is used for the initial value
problem with the periodic boundary condition for the mKdV type equation.
The non resonance condition on the coefficients α and β in this paper is
similar to [24].

The proof of Theorem 1.1 is based on the argument similar to [6, 7, 10,
14, 15]. To prove Theorem 1.1, we use the two different Fourier restriction
norms respectively for the first and the second equation of (1.1). When we
try to evaluate each equation of (1.1), Lemma 2.3 in §2 plays an important
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role in our proof. The proof of Lemma 2.3 is roughly stated as follows. We
consider the following two inequalities:

|τ +αn2|+ ||τ−τ1|−β|n−n1||+ |τ1+αn2
1| ≥ |α||n−n1||n+n1+

βS1

α
|, (1.7)

||τ |−β|n||+ |τ −τ1−α(n−n1)2|+ |τ1 +αn2
1| ≥ |α||n||n−2n1−

βS2

α
|, (1.8)

where S1 =sign{(τ − τ1)(n − n1)} and S2 =sign{τn}. When β/α is not
an integer, the third factors in the right hand side of (1.7) and (1.8) never
vanish. This fact enables us to overcome the difficulty of the derivative loss
in the same way as the case of the KdV equation. So we are able to show
the local well-posedness in Hs0 × Hs1 × Hs1−1 for 0 ≤ s0 − s1 ≤ 1 and
2s0 ≥ s1 + 1/2 ≥ 0. Unless β/α is not an integer, the weakest Sobolev class
of the solution that our proof in this paper can reach seems H1/2×L2×H−1

(see Remark 1.5).
We conclude this section by giving several notations. Let lqnLp

τ denote
Banach space lqn(Z : Lp

τ (R)). Throughout the paper, we denote by ·̂ and Fx

the Fourier transform with respect to the space-time and the space variables,
respectively, i.e.,

f̂(k, τ) =
∫ ∞

−∞

∫
T

exp(−ikx − itτ)f(x, t)dxdt,

Fxg(k) =
∫

T

exp(−ikx)g(x)dx.

Let 〈·〉 = (1 + | · |2)1/2.

2. Preliminaries for the proof of Theorem 1.1. First, by using
Duhamel’s principle, we consider the following integral equations associated
with the initial value problem (1.1):

u(t) = S(t)u0 − i

∫ t

0

S(t − λ)(un)(λ)dλ,

n(t) = ∂tV (t)n0 + V (t)n1 + β2

∫ t

0

V (t − λ)∂2
x(|u|2)(λ)dλ,

where S(t) = exp(iαt∂2
x) and V (t) = sin(βt(−∂2

x)1/2)/(β(−∂2
x)1/2).

We first state the lemma concerning the estimates of the linear and the
nonlinear part of the Schrödinger and wave equations in the function spaces
we consider.
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Lemma 2.1. For any s ∈ R, we have

‖ψ(t)S(t)u0‖Xs
≤ c‖u0‖Hs ,

‖ψ(t)∂tV (t)n0‖Ys
≤ c‖n0‖Hs ,

‖ψ(t)V (t)n1‖Ys
≤ c(1 + 1/β)‖n1‖Hs−1 ,

‖ψ(t)
∫ t

0

S(t − τ)F (τ)dτ‖Xs
≤ c‖F‖(1,s,−1/2) + c‖〈k〉s F̂ (k, τ)

〈τ + αk2〉‖l2kL1
τ
,

‖ψ(t)
∫ t

0

V (t − τ)∂xF (τ)dτ‖Ys ≤ c

β
‖F‖(2,s,−1/2) +

c

β
‖〈k〉s F̂ (k, τ)

〈|τ | − β|k|〉‖l2kL1
τ
.

See [6,7,10,14,15], for the proof of Lemma 2.1.

Lemma 2.2. Let α, β > 0 such that α+β > 1. Put d = min{α, β, α+β−1}.
Then we have ∫ ∞

−∞

dτ

〈τ〉α〈τ − θ〉β ≤ c

〈θ〉d .

The proof of Lemma 2.2 follows from a simple argument.

Lemma 2.3. Assume that β/α is not an integer. Let 0 < θ < 1/12. For
any s0 and s1 satisfying 0 ≤ s0 − s1 ≤ 1 and 0 ≤ s1 + 1/2 ≤ 2s0, there exist
a ∈ (1/2, 3/4) and c > 0 such that the following estimates hold.

I1 =
〈n〉2s0

〈τ + αn2〉2(1−a)

∑
n1

∫
An,τ

1
〈τ1 + αn2

1〉1−2θ〈n1〉2s0〈n − n1〉2s1

× 1
〈|τ − τ1| − β|n − n1|〉1−2θ

dτ1

(∫ ∞

−∞

dτ ′

〈n2 + |τ ′ + αn2|〉2a

)
≤c,

I ′1 =
〈n〉2s0

〈τ + αn2〉2(1−a)

∑
n1

∫
A′

n,τ

1
〈τ1 + αn2

1〉1−2θ〈n1〉2s0〈n − n1〉2s1

× 1
〈|τ − τ1| − β|n − n1|〉1−2θ

dτ1

(∫ ∞

−∞

dτ ′

〈|n| + |τ ′ + αn2|〉2a

)
≤c,
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I2 =
1

〈τ1 + αn2
1〉〈n1〉2s0

∑
n

∫
Bn1,τ1

〈n〉2s0

〈τ + αn2〉2(1−a)〈n − n1〉2s1

× 1
〈|τ − τ1| − β|n − n1|〉1−2θ

dτ

≤c,

I3 =
1

〈|τ1| − β|n1|〉〈n1〉2s1

∑
n

∫
Cn1,τ1

〈n〉2s0

〈τ + αn2〉2(1−a)〈n − n1〉2s0

× 1
〈τ − τ1 + α(n − n1)2〉1−2θ

dτ

≤c,

I4 =
〈n〉2s1 |n|2

〈|τ | − β|n|〉2(1−a)

∑
n1

∫
Dn,τ

1
〈τ1 + αn2

1〉1−2θ〈n1〉2s0〈n − n1〉2s0

× 1
〈τ − τ1 − α(n − n1)2〉1−2θ

dτ1

(∫ ∞

−∞

dτ ′

〈n2 + ||τ ′| − β|n||〉2a

)
≤c,

I ′4 =
〈n〉2s1 |n|2

〈|τ | − β|n|〉2(1−a)

∑
n1

∫
D′

n,τ

1
〈τ1 + αn2

1〉1−2θ〈n1〉2s0〈n − n1〉2s0

× 1
〈τ − τ1 − α(n − n1)2〉1−2θ

dτ1

(∫ ∞

−∞

dτ ′

〈|n| + ||τ ′| − β|n||〉2a

)
≤c,

I5 =
1

〈τ1 + αn2
1〉〈n1〉2s0

∑
n

∫
En1,τ1

〈n〉2s1 |n|2
〈|τ | − β|n|〉2(1−a)〈n − n1〉2s0

× 1
〈τ − τ1 − α(n − n1)2〉1−2θ

dτ

≤c,

where An,τ , A′
n,τ , Bn1,τ1 , Cn1,τ1 , Dn,τ , D′

n,τ and En1,τ1 are defined as
follows:

An,τ = {(n1, τ1) :|n1| < |n|/2 or 3|n|/2 ≤ |n1| �= 0,

|τ + αn2| ≥ max{|τ1 + αn2
1|, ||τ − τ1| − β|n − n1||}},
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A′
n,τ = {(n1, τ1) :|n|/2 ≤ |n1| < 3|n|/2 and n �= n1,

|τ + αn2| ≥ max{|τ1 + αn2
1|, ||τ − τ1| − β|n − n1||}},

Bn1,τ1 = {(n, τ) : n �= n1, |τ1+αn2
1| ≥ max{|τ +αn2|, ||τ−τ1|−β|n−n1||}},

Cn1,τ1 = {(n, τ) : n1 �= 0, ||τ1|−β|n1|| ≥ max{|τ+αn2|, |τ−τ1+α(n−n1)2|}},

Dn,τ = {(n1, τ1) :|n1| < 2|n|/5 or 2|n|/3 ≤ |n1|,
||τ | − β|n|| ≥ max{|τ1 + αn2

1|, |τ − τ1 − α(n − n1)2|}},

D′
n,τ = {(n1, τ1) :2|n|/5 ≤ |n1| < 2|n|/3,

||τ | − β|n|| ≥ max{|τ1 + αn2
1|, |τ − τ1 − α(n − n1)2|}},

En1,τ1 = {(n, τ) : |τ1 + αn2
1| ≥ max{||τ | − β|n||, |τ − τ1 − α(n − n1)2|}}.

Proof of Lemma 2.3. In the proof of this lemma, we regard S as a suitable
signature.

(I1). First, we consider I1. According to the definition of An,τ , it follows
that n �= n1. Then we first note that the third factor in the right hand side
of (1.7) never vanish, since β/α is not an integer. Therefore integrating with
respect to τ ′, using (1.7) and Lemma 2.2, we have that I1 is bounded by

c
∑

S=±1
|n1|<|n|/2 or 3|n|/2≤|n1|

〈n〉2s0−4a+2

〈n1〉2s0〈n − n1〉2s1+2−2a〈n + n1 + βS/α〉2−2a

× 1
〈τ + αn2

1 − βS(n − n1)〉1−ε

(2.1)
for ε ∈ (4θ, 1/2). Then, in the region of |n1| < |n|/2 or 3|n|/2 ≤ |n1|, we
have that |n−n1|, |n+n1 +βS/α| ∼ max{|n|, |n1|} for sufficiently large |n|.
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Then (2.1) is bounded by

c
∑

S=±1
|n1|<|n|/2 or 3|n|/2≤|n1|

1
〈max{|n|, |n1|}〉min{2s1+2−2a,2s1−2s0+2a}

× 1
〈n + n1 + βS/α〉2−2a〈τ + αn2

1 − βS(n − n1)〉1−ε

≤c
∑

S=±1,n1

1
〈max{|n|, |n1|}〉min{2s1+4−4a,2s1−2s0+2}〈τ + αn2

1 − βS(n − n1)〉1−ε

≤c
∑

S=±1,n1

1
〈τ + αn2

1 − βS(n − n1)〉1−ε
,

for s0 − s1 ≤ 1, s0 ≥ 0 and s1 ≥ 2a − 2. Hence, by the argument similar to
the proof in [13,14], we have that I1 is uniformly bounded with respect to n
and τ .

(I ′1). Secondly, we consider I ′1. In the region of |n|/2 ≤ |n1| < 3|n|/2, we
have that |n − n1| < 3|n1|. In a similar way to the proof of (I1), we have
that I ′1 is bounded by

c
∑

S=±1
|n|/2≤|n1|<3|n|/2

1
〈n1〉2a−1〈n − n1〉2s1+2−2a〈n + n1 + βS/α〉2−2a

× 1
〈τ + αn2

1 − βS(n − n1)〉1−ε

≤ c
∑

S=±1,n1

1
〈n − n1〉2s1+1〈n + n1 + βS/α〉2−2a〈τ + αn2

1 − βS(n − n1)〉1−ε

≤ c,

(2.2)
for ε ∈ (4θ, 1/2) and s1 ≥ −1/2.

(I2). Next, we consider I2. In a similar way to the proof of (I1), by using
(1.7) we have that I2 is bounded by

c
∑

S=±1,n

〈n〉2s0

〈n1〉2s0〈n − n1〉2s1+1〈n + n1 + βS/α〉〈τ1 + αn2 + βS(n − n1)〉1−ε
,

(2.3)
for ε ∈ (2a− 1 + 2θ, 1/2). We divide the sum into the following two regions:

|n| < 3|n1|/2 and 3|n1|/2 ≤ |n|.
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In the region of |n| < 3|n1|/2, (2.3) restricted to the above region is bounded
by

c
∑

S=±1,n

1
〈n − n1〉2s1+1〈n + n1 + βS/α〉〈τ1 + αn2 + βS(n − n1)〉1−ε

≤ c,

for s0 ≥ 0 and s1 ≥ −1/2. In the region of 3|n1|/2 ≤ |n|, we have that
|n − n1| ≥ |n|/3 and |n + n1 + βS/α| ≥ c|n| for sufficiently large |n|. In a
similar way to above, (2.3) restricted to the above region is bounded by

c
∑

S=±1
3|n1|/2≤|n|

1
〈n1〉2s0〈n〉2s1−2s0+1〈n + n1 + βS/α〉〈τ1 + αn2 + βS(n − n1)〉1−ε

≤ c
∑

S=±1,n

1
〈n1〉2s0〈n〉2s1−2s0+2〈τ1 + αn2 + βS(n − n1)〉1−ε

≤ c,

for s0 ≥ 0 and s0 − s1 ≤ 1.
(I3). We consider I3. In a similar way to the proof of (I1), using Lemma

2.2 and (1.7), we have that I3 is bounded by

c
∑

S=±1,n

〈n〉2s0

〈n1〉2s1+1〈n − n1〉2s0〈2n − n1 + βS/α〉〈〈n1〉|n − γ1(n1, τ1)|〉1−ε
,

(2.4)
for ε ∈ (2a− 1 + 2θ, 1), where γ1 = γ1(n1, τ1) is the solution of the following
linear equation with respect to n,

τ1 − αn2
1 + 2αnn1 = 0, i.e., γ1 =

n1

2
+

τ1

2αn1
.

We divide the sum into the following three regions:

|n1| ≤ |n|/2, |n|/2 < |n1| ≤ 3|n|/2 and 3|n|/2 < |n1|.

In the region of |n1| ≤ |n|/2 or 3|n|/2 < |n1|, we have that |n − n1| ≥ c|n|,
then (2.4) restricted to the above region is bounded by

c
∑

S=±1,n

1
〈n1〉2s1+1〈2n − n1 + βS/α〉〈n − γ1〉1−ε

≤ c,
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for s0 ≥ 0 and s1 ≥ −1/2. In the case of |n|/2 < |n1| ≤ 3|n|/2, we have that
(2.4) is bounded by

c
∑

S=±1
|n|/2<|n1|≤3|n|/2

1
〈n〉2s1−2s0+1〈n−n1〉2s0〈2n−n1 + βS/α〉〈〈n1〉|n − γ1(n1, τ1)|〉1−ε

.

Then, by dividing the sum into two cases that n ∼ γ1 and that n � γ1, we
have that (2.4) restricted to the above region is bounded by

c + c
∑

S=±1
|n|/2<|n1|≤3|n|/2

1
〈n〉2s1−2s0+2−ε〈n − n1〉2s0〈2n − n1 + βS/α〉〈n − γ1〉1−ε

,

(2.5)
for s0 ≥ 0, s1 ≥ −1/2, s0 − s1 ≤ 1 and ε ∈ (2a− 1 + 2θ, 1/2). In the region
of |n|/2 < |n1| ≤ 3|n|/2 we have |2n−n1 +βS/α| ≥ c|n| for sufficiently large
|n|, then the second term of (2.5) is bounded by

c
∑

n

1
〈n〉2s1−2s0+3−ε〈n − n1〉2s0〈n − γ1〉1−ε

≤ c,

for s0 ≥ 0, s0 − s1 ≤ 3/2 − ε/2 and s1 > −3/2 + ε.
(I4). Next, we consider I4. We can assume n �= 0 in I4. Integrating with

respect to τ ′ and τ1, using Lemma 2.2 and (1.8), we have that I4 is bounded
by

c
∑

S=±1
|n1|≤2|n|/5 or 2|n|/3<|n1|

〈n〉2s1+2−2a

〈n1〉2s0〈n − n1〉2s0〈n − 2n1 − βS/α〉2−2a

× 1
〈〈n〉|n1 − γ2(n, τ)|〉1−ε

,

(2.6)

for ε ∈ (4θ, 1/2) where γ2 = γ2(n, τ) is the solution of the following linear
equation with respect to n1,

τ − αn2 + 2αnn1 = 0, i.e., γ2 =
n

2
− τ

2αn
.

We divide the sum with respect to n1 into the following three regions:

|n1| ≤ 2|n|/5, 2|n|/3 < |n1| ≤ 3|n|/2 and 3|n|/2 < |n1|.
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In the region of |n1| ≤ 2|n|/5 or 3|n|/2 < |n1|, we have

|n − n1| ∼ max{|n|, |n1|},
then (2.6) restricted to the above region is bounded by

c
∑

S=±1
|n1|≤2|n|/5 or 3|n|/2<|n1|

1
〈n1〉2s0〈n〉2s0−2s1+2a−2〈n − 2n1 − βS/α〉2−2a

× 1
〈〈n〉|n1 − γ2(n, τ)|〉1−ε

.

(2.7)
In the region of |n1| ≤ 2|n|/5 or 2|n|/3 < |n1|, we have |n − 2n1 − βS/α| ∼
max{|n|, |n1|}. Then in a similar way to the proof of (I3) by dividing the
sum into two cases that n ∼ γ1 and that n � γ1, we have that (2.7) is
bounded by

c + c
∑
n1

1
〈n1〉2s0+2ε〈n〉2s0−2s1+1−3ε〈n1 − γ2(n, τ)〉1−ε

≤ c,

for 4θ < ε ≤ 1/3, s0 ≥ 0, 2s0 ≥ s1 + 1− a and s0 − s1 ≥ 0. In a similar way
to above, in the case of 2|n|/3 < |n1| ≤ 3|n|/2, (2.6) restricted to the above
region is bounded by

c
∑

S=±1
2|n|/3<|n1|≤3|n|/2

1
〈n1〉2s0−2s1−2+2a〈n − n1〉2s0〈n − 2n1 − βS/α〉2−2a

× 1
〈〈n〉|n1 − γ2(n, τ)|〉1−ε

≤c + c
∑
n1

1
〈n1〉2s0−2s1+1−ε〈n − n1〉2s0〈n1 − γ2(n, τ)〉1−ε

≤c,

for s0 ≥ 0, 2s0 ≥ s1 + 1 − a and s0 − s1 ≥ 0.
(I ′4). We consider I ′4. In the region of 2|n|/5 < |n1| ≤ 2|n|/3, we have

that |n|/3 ≤ |n − n1| < 5|n|/3. Then by using (1.8), we have that I ′4 is
bounded by

c
∑

S=±1,n1

1
〈n〉4s0−2s1−1〈n − 2n1 − βS/α〉2−2a〈〈n〉|n1 − γ2(n, τ)|〉1−ε

≤ c,

(2.8)
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for ε ∈ (4θ, 1/2), 2s0 ≥ s1 + 1/2 and γ2 = γ2(n, τ) is defined in the proof of
(I4).

(I5). We consider I5. In a similar way to the proof of (I4), we have that
I5 is bounded by

c
∑

S=±1,n

〈n〉2s1+1

〈n1〉2s0〈n − n1〉2s0〈n − 2n1 − βS/α〉〈τ1 + α(n − n1)2 − βSn〉1−ε
,

(2.9)
for ε ∈ (2a− 1+2θ, 1/2). We divide the sum into the following four regions:

|n| < |n1|/2, |n1|/2 ≤ |n| < 3|n1|/2,

3|n1|/2 ≤ |n| < 5|n1|/2, 5|n1|/2 ≤ |n|.

In the region of |n| < |n1|/2 or 3|n1|/2 ≤ |n| < 5|n1|/2, we have |n − n1| ∼
|n1|, then (2.9) restricted to the above region is bounded by

c
∑

S=±1,n

1
〈n1〉4s0−2s1−1〈n − 2n1 − βS/α〉〈τ1 + α(n − n1)2 − βSn〉1−ε

≤ c,

for 2s0 ≥ s1 + 1/2 ≥ 0. In the region of |n1|/2 ≤ |n| < 3|n1|/2 we have
|n− 2n1 − βS/α| ≥ c|n| for sufficiently large |n|, then (2.9) restricted to the
above region is bounded by

c
∑

S=±1
|n1|/2≤|n|<3|n|/2

1
〈n〉2s0−2s1−1〈n − n1〉2s0〈n − 2n1 − βS/α〉

× 1
〈τ1 + α(n − n1)2 − βSn〉1−ε

≤ c
∑

S=±1,n

1
〈n〉2s0−2s1〈n − n1〉2s0〈τ1 + α(n − n1)2 − βSn〉1−ε

≤ c,

for s0 ≥ 0 and s0 − s1 ≥ 0. In the region of 5|n1|/2 ≤ |n| we have that
|n− n1| ∼ |n| and |n− 2n1 − βS/α| ∼ |n|, then (2.9) restricted to the above



802 HIDEO TAKAOKA

region is bounded by

c
∑

S=±1
5|n1|/2≤|n|

1
〈n1〉2s0〈n〉2s0−2s1−1〈n − 2n1 − βS/α〉〈τ1 + α(n − n1)2 − βSn〉1−ε

≤ c
∑

S=±1,n

1
〈n1〉2s0〈n〉2s0−2s1〈τ1 + α(n − n1)2 − βSn〉1−ε

≤ c,

for s0 ≥ 0, s1 ≥ −1/2 and s0 − s1 ≥ 0. �
Remark 2.1. When 0 ≤ s0 − s1 ≤ 1 and 1 ≤ s1 + 1 ≤ 2s0, the result in
Lemma 2.3 holds even for the case of β/α ∈ Z, which leads to the result
without a non resonance condition (see Remark 1.5).

Lemma 2.4. Assume that β/α is not an integer. Let 0 < θ < 1/12. For
any s0 and s1 satisfying 0 ≤ s0 − s1 ≤ 1 and 0 ≤ s1 +1/2 ≤ 2s0, there exists
c > 0 such that the following estimates hold.

‖〈k〉s0
ûn(k, τ)
〈τ + αk2〉‖l2kL1

τ
(2.10)

≤ c(‖u‖(1,s0,1/2−θ)‖n‖(2,s1,1/2) + ‖u‖(1,s0,1/2)‖n‖(2,s1,1/2−θ)),

‖〈k〉s1
̂∂x(|u|2)(k, τ)
〈|τ | − β|k|〉 ‖l2kL1

τ
≤ c‖u‖(1,s0,1/2−θ)‖u‖(1,s0,1/2). (2.11)

Proof of Lemma 2.4. First, we prove (2.10). By using the Schwarz in-
equality, we have that the left-hand side of (2.10) is bounded by(∑

k

〈k〉2s0

∫ ∞

−∞

|ûn(k, τ)|2
〈τ + αk2〉2(1−a)

dτ

∫
dτ

〈τ + αk2〉2a

)1/2

≤
(∑

k,k1

∫∫
R2

〈k〉2s0

〈τ + αk2〉2(1−a)
|û(k1, τ1)|2

× |n̂(k − k1, τ − τ1)|2dτ1dτ

∫
dτ

〈τ + αk2〉2a

)1/2

(2.12)

where a is defined in Lemma 2.3. We divide the integral region into two
regions that k = k1 and that k �= k1. In the region of k = k1, we have that
the contribution of the region of k = k1 to (2.12) is bounded by

c‖u‖(1,s0,0)‖n‖(2,s1,0).
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We next consider the region of k �= k1. We divide the integral region into
the following three cases:

|τ + αk2| ≥ max{|τ1 + αk2
1|, ||τ − τ1| − β|k − k1||} and k �= k1, (2.13)

|τ1 + αk2
1| ≥ max{|τ + αk2|, ||τ − τ1| − β|k − k1||} and k �= k1, (2.14)

||τ − τ1| − β|k − k1|| ≥ max{|τ + αk2|, |τ1 + αk2
1|} and k �= k1. (2.15)

In the region of (2.13), we first divide the sum with respect to k1 into the
three cases that |k1| < |k|/2, that 3|k|/2 ≤ |k1| and that |k|/2 ≤ |k1| <
3|k|/2. In the region of |k1| < |k|/2 or 3|k|/2 ≤ |k1|, the right-hand side
of (1.7) is greater than ck2 for sufficiently large |k|. Then in the region of
|k1| < |k|/2 or 3|k|/2 ≤ |k1| in (2.13), by using the first estimate in Lemma
2.3, we have that (2.12) restricted to the above integral region is bounded
by

c sup
k,τ

〈k〉s0

〈τ + αk2〉1−a

(∑
k1

∫
Ak,τ

〈k1〉−2s0〈k − k1〉−2s1

〈τ1 + αk2
1〉1−2θ〈|τ − τ1| − β|k − k1|〉1−2θ

dτ1

) 1
2

×
(∫ ∞

−∞

dτ ′

〈k2 + |τ ′ + αk2|〉2a

)1/2

‖u‖(1,s0,1/2−θ)‖n‖(2,s1,1/2−θ)

≤ c sup
k,τ

(I1)‖u‖(1,s0,1/2−θ)‖n‖(2,s1,1/2−θ)

≤ c‖u‖(1,s0,1/2−θ)‖n‖(2,s1,1/2−θ).

On the other hand, in the region of |k|/2 ≤ |k1| < 3|k|/2, from the fact
|k−k1|+ |k+k1+βS/α| ≥ |2k+βS/α|, the right-hand side of (1.7) is greater
than c|k| for sufficiently large |k|. Then in the region of |k|/2 ≤ |k1| < 3|k|/2
in (2.13), by using the second estimate in Lemma 2.3, we have that (2.12)
restricted to the above integral region is bounded by

c sup
k,τ

(I ′1)‖u‖(1,s0,1/2−θ)‖n‖(2,s1,1/2−θ) ≤ c‖u‖(1,s0,1/2−θ)‖n‖(2,s1,1/2−θ).

In the region of (2.14), we use the duality argument for (2.12) and so it suf-
fices to show the following inequality restricted to the above integral region

sup
k1,τ1

1
〈k〉s0〈τ1 + αk2

1〉1/2

( ∑
k �=k1

∫ ∞

−∞

〈k〉2s0

〈k − k1〉2s1〈τ + αk2〉2(1−a)

× 1
〈|τ − τ1| − β|k − k1|〉1−2θ

dτ
)1/2

‖u‖(1,s0,1/2)‖n‖(2,s1,1/2−θ)

≤c‖u‖(1,s0,1/2)‖n‖(2,s1,1/2−θ).

(2.16)
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By using the third estimate in Lemma 2.3, we have that the left-hand side
of (2.16) is bounded by

c sup
k1,τ1

(I2)‖u‖(1,s0,1/2)‖n‖(2,s1,1/2−θ) ≤ c‖u‖(1,s0,1/2)‖n‖(2,s1,1/2−θ).

In the case of (2.15), the proof is similar to above by using I3 in Lemma
2.3. The proof of (2.11) is a similar way to above, by using I4, I ′4 and I5 in
Lemma 2.3. �
Lemma 2.5. Let s0, s1, α, β and θ be the same as in Lemma 2.4. Then we
have

‖un‖(1,s0,−1/2) ≤ c(‖u‖(1,s0,1/2−θ)‖n‖(2,s1,1/2) + ‖u‖(1,s0,1/2)‖n‖(2,s1,1/2−θ)),
(2.17)

‖∂x(|u|2)‖(2,s1,−1/2) ≤ c‖u‖(1,s0,1/2−θ)‖u‖(1,s0,1/2). (2.18)

Proof of Lemma 2.5. It suffices to show(∑
k

∫ ∞

−∞

〈k〉2s0 |ûn(k, τ)|2
〈τ + αk2〉 dτ

)1/2

≤c
(
‖u‖(1,s0,1/2−θ)‖n‖(2,s1,1/2) + ‖u‖(1,s0,1/2)‖n‖(2,s1,1/2−θ)

)
,

(2.19)

(∑
k

∫ ∞

−∞

〈k〉2s1 | ̂∂x(|u|2)(k, τ)|2
〈|τ | − β|k|〉 dτ

)1/2

≤ c‖u‖(1,s0,1/2−θ)‖u‖(1,s0,1/2).

(2.20)
By taking a = 1/2 in the proof of Lemmas 2.3, 2.4 and ignoring

∫
dτ/〈τ +

αk2〉2a in (2.12), we obtain the estimates (2.19) and (2.20) in a similar way
to the proof of Lemma 2.4. �
Proposition 2.6. (i) If s0 and s1 do not satisfy s0−s1 ≤ 1 and s1 ≥ −1/2,
then the estimate

‖un‖(1,s0,1−b) ≤ c‖u‖(1,s0,b)‖n‖(2,s1,b) (2.21)

fails for any constants c > 0 and b ∈ R.
(ii) If s0 and s1 do not satisfy 0 ≤ s0 − s1 and 2s0 ≥ s1 + 1/2, then the

estimate
‖∂x(uv)‖(2,s1,1−b) ≤ c‖u‖(1,s0,b)‖v‖(1,s0,b) (2.22)
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fails for any constants c > 0 and b ∈ R.

Proof of Proposition 2.6. The proof is based on the argument similar to
Kenig-Ponce-Vega [14,15]. First, we prove (i). We take for N ∈ N,{

û1(k, τ) = δ(k + N)ψ(τ + αN2),

n̂1(k, τ) = δ(k − 2N)ψ(|τ | − 2βN),

where δ(·) denotes a function such that δ(k) = 1 if k = 0 and δ(k) = 0 if
k �= 0. Simple calculations yield

|û1n1(k, τ)| ≥ cδ(k − N)ψ((τ + αN2 − 2βN)/2).

Substituting this into (2.21) we have

Ns0

N1−b
≤ cNs0Ns1 , (2.23)

which shows the necessity for s1 ≥ b − 1. Similarly, taking{
û2(k, τ) = δ(k + N)ψ(τ + αN2 + 2βN),

n̂2(k, τ) = δ(k − 2N)ψ(|τ | − 2βN),{
û3(k, τ) = δ(k)ψ(τ),

n̂3(k, τ) = δ(k − N)ψ(|τ | − βN),{
û4(k, τ) = δ(k)ψ(τ + αN2 + βN),

n̂4(k, τ) = δ(k − N)ψ(|τ | − βN),

and substituting these into (2.21), we obtain

Ns0 ≤ cNs0Ns1N b,
Ns0

N2(1−b)
≤ cNs1 and Ns0 ≤ cNs1N2b, (2.24)

according to (ûj , n̂j), j = 2, 3, 4, respectively. The relations (2.23) and (2.24)
show the necessity for s1 ≥ max{b−1,−b} ≥ −1

2 , s1−s0 ≥ 2max{b−1,−b} ≥
−1. This completes the proof of (i).

In order to prove (ii), we next take{
û5(k, τ) = δ(k − N)ψ(τ + αN2),

v̂5(k, τ) = δ(k + N)ψ(τ + αN2),
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û6(k, τ) = δ(k − N)ψ(τ + αN2 − 2βN),

v̂6(k, τ) = δ(k + N)ψ(τ + αN2),{
û7(k, τ) = δ(k)ψ(τ),

v̂7(k, τ) = δ(k − N)ψ(τ + αN2),{
û8(k, τ) = δ(k)ψ(τ + αN2 + βN),

v̂8(k, τ) = δ(k − N)ψ(τ + αN2),

and we substitute these (ûj , v̂j), j = 5, 6, 7, 8, into (2.22). Simple calcula-
tions yield

Ns1N

N1−b
≤ cN2s0 , Ns1N ≤ cN2s0N b,

Ns1N

N2(1−b)
≤ cNs0 , Ns1N ≤ cNs0N2b,

(2.25)
according to (ûj , v̂j), j = 5, 6, 7, 8, respectively. The relations (2.25) show
the necessity for

2s0 − s1 − 1/2 ≥ max{b − 1/2, 1/2 − b} ≥ 0,

s0 − s1 ≥ max{2b − 1, 1 − 2b} ≥ 0.

This completes the proof of (ii). �
Lemma 2.7. For any s ∈ R, 0 < ε < 1/2, δ ∈ (0, 1] and 0 < θ′ < θ < 1/2,
we have

‖ψδ(·)F‖(i,s,1/2) ≤ cεδ
−ε‖F‖(i,s,1/2), (2.26)

‖ψδ(·)F‖(i,s,1/2−θ) ≤ cδθ−θ′‖F‖(i,s,1/2), (2.27)

where i = 1, 2.

Proof of Lemma 2.7. To prove (2.26), using [13, Theorem A.12], we have

‖ψδ(·)F‖(i,s,1/2) ≤ ‖D1/2
t ψδ(·)‖Lp

t
‖W (·)F‖

Hs
x(Lp′

t )
+ ‖ψδ(·)‖L∞

t
‖F‖(i,s,1/2),

(2.28)
where 1/p + 1/p′ = 1, 1 < p < ∞ and W (t) is defined as follows:

(W (·)F )(x, t) =
{ ∑

k ei(kx+αk2t)FxF (k, t), if i = 1,∑
k ei(kx±βkt)FxF (k, t), if i = 2.
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Using Sobolev inequality, we have that the right-hand side of (2.28) is
bounded by

‖ψδ(·)‖H
1/2+ε
t

‖F‖(i,s,1/2−ε) + ‖F‖(i,s,1/2) ≤ cδ−ε‖F‖(i,s,1/2).

To prove (2.27), using the Sobolev inequality with respect to the time vari-
able, we have

‖ψδ(·)F‖(i,s,1/2−θ) ≤ c‖ψδ(·)‖H
1/2−θ+θ′
t

‖F‖(i,s,1/2−θ′) ≤ cδθ−θ′‖F‖(i,s,1/2),

for i = 1, 2. �

3. Proof of Theorem 1.1. We are now in a position to prove Theorem
1.1.
Proof of Theorem 1.1. We put r0 = ‖u0‖Hs0 , r1 = ‖n0‖Hs1 and r2 =
‖n1‖Hs1−1 where 0 ≤ s0 − s1 ≤ 1 and 0 ≤ s1 + 1/2 ≤ 2s0. For δ ∈ (0, 1], we
define

Bs0,s1(r0, r1, r2) = {(u, n, ∂tn) ∈ Xs0 × Ys1 × Ys1−1 : ‖u‖Xs0
≤ 2cr0,

‖n‖Ys1
≤ 2cr1, ‖∂tn‖Ys1−1 ≤ 2cr2},

Φδ(u, n)(t) = ψ(t)S(t)u0 − iψ(t)
∫ t

0

S(t − λ)(ψδuψδn)(λ)dλ,

Ψδ(u)(t) = ψ(t)∂tV (t)n0 +ψ(t)V (t)n1 +β2ψ(t)
∫ t

0

V (t−λ)∂2
x(|ψδu|2)(λ)dλ.

By Lemmas 2.1, 2.4, 2.5 and 2.7, we have

‖Φδ(u, n)‖Xs0
≤ cr0 + cδμ‖u‖Xs0

‖n‖Ys1
,

‖Ψδ(u)‖Ys1
∼ ‖∂tΨδ(u)‖Ys1−1 ≤ c(r1 + r2) + cδμ‖u‖2

Xs0
,

for some μ > 0. Similarly, for (u, n, ∂tn), (ũ, ñ, ∂tñ) ∈ Bs0,s1(r0, r1, r2), we
have

‖Φδ(u, n) − Φδ(ũ, ñ)‖Xs0
≤ cδμ(r0 + r1)(‖u − ũ‖Xs0

+ ‖n − ñ‖Ys1
),

‖Ψδ(u) − Ψδ(ũ)‖Ys1
∼ ‖∂t(Ψδ(u) − Ψδ(ũ))‖Ys1−1 ≤ cδμr0‖u − ũ‖Xs0

.
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Thus, we conclude that if we choose δ > 0 sufficiently small, then Φδ ×Ψδ ×
∂tΨδ : (u, n, ∂tn) �→ (Φδ(u, n),Ψδ(u), ∂tΨδ(u)) is a contraction map. Then,
we obtain the unique local existence results in Xs0 × Ys1 × Ys1−1 by the
contraction argument.

For s0 and s1 satisfying 0 ≤ s0 − s1 ≤ 1 and 0 ≤ s1 + 1/2 ≤ 2s0, to prove
the uniqueness results, we use the argument similar to [5]. We put

‖u‖XT
s

= inf{‖w‖Xs
: w ∈ Xs s.t., w(t) = u(t) for t ∈ [0, T ] in Hs

x},

‖n‖Y T
s

= inf{‖w‖Ys : w ∈ Ys s.t., w(t) = n(t) for t ∈ [0, T ] in Hs
x}.

Let (u1, n1) and (u2, n2) be the solutions of the initial value problem (1.1)
with the same initial data. We can assume that there exists M > 0 such
that

‖ψT (·)u1‖Xs0
, ‖ψT (·)u2‖Xs0

≤ M,

‖ψT (·)n1‖Ys1
, ‖ψT (·)n2‖Ys1

≤ M,

where T > 0 is the existence time of the solution. By the definition, for any
ε > 0, there exist (ω, φ) ∈ Xs0 × Ys1 such that

ω(t) = ψT (t)(u1 − u2)(t) for t ∈ [0, T ′],

φ(t) = ψT (t)(n1 − n2)(t) for t ∈ [0, T ′],

‖ω‖Xs0
≤ ‖ψT (·)(u1 − u2)‖XT ′

s0
+ ε,

‖φ‖Ys1
≤ ‖ψT (·)(n1 − n2)‖Y T ′

s1
+ ε,

where 0 ≤ T ′ ≤ min{T, 1} is determined later. We put

ω̃(t) = ψ(t)
∫ t

0

S(t − λ)U(λ)dλ,

φ̃(t) = ψ(t)
∫ t

0

V (t − λ)N(λ)dλ,

where

U(t) = ψT ′(t)ω(t)ψT ′(t)ψT (t)n1(t) + ψT ′(t)ψT (t)u2(t)ψT ′(t)φ(t),

N(t) = ψT ′(t)ψT (t)u1(t)ψT ′(t)ω(t) + ψT ′(t)ψT (t)u2(t)ψT ′(t)ω(t).
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Then, we have ω̃(t) = ω(t), φ̃(t) = φ(t) and ∂tφ̃(t) = ∂tφ(t) for t ∈ [0, T ′].
Using the same argument as above, there exists 0 < μ < 1/12 such that

‖ψT (·)(u1 − u2)‖XT ′
s0

≤ cT ′μM(‖ω‖Xs0
+ ‖φ‖Ys1

)

≤cT ′μ(‖ψT (·)(u1 − u2)‖XT ′
s0

+ ‖ψT (·)(n1 − n2)‖Y T ′
s1

+ 2ε),

‖ψT (·)(n1 − n2)‖Y T ′
s1

∼ ‖ψT (·)∂t(n1 − n2)‖Y T ′
s1−1

≤ cT ′μM‖ω‖Xs0

≤cT ′μ(‖ψT (·)(u1 − u2)‖XT ′
s0

+ ε).

By choosing 0 < T ′ sufficiently small, we have

ψT (t)u1(t) = ψT (t)u2(t),

ψT (t)n1(t) = ψT (t)n2(t),

ψT (t)∂tn1(t) = ψT (t)∂tn2(t),

for t ∈ [0, T ′]. Repeating this procedure, we have the uniqueness result. �
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