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Abstract. We study radially symmetric oscillatory solutions of semi-
linear elliptic equations of the form

Δu + φ(|x|, u) = 0 in Rn (n ≥ 2)

where φ(r, u) is a nonnegative function having the form
∑

icir
νi |u|pi−1u

with ci > 0. Under certain resrictions on the exponents νi and pi

(roughly speaking, 2νi + n + 2 ≥ (2 − n)pi for all i where a strict in-
equality holds for at least one i), we show that all radial solutions must
oscillate, i.e., change their signs infinitely many times. Moreover, we
provide accurate estimates on the frequencies and amplitudes of these
oscillatory solutions. These results are sharp in the sense that positive
solutions exist when restrictions on these exponents are removed.

1. Introduction

Semilinear elliptic equations of the type

�u + φ(|x|, u) = 0 in Rn (1.1)

arise in various branches of applied mathematics and have many origins
such as the prescribed curvature problems in Riemannian geometry and the
Lane–Emden–Fowler equation and the Matukuma equation in astrophysics.
In addition to extensive studies on positive solutions ([8, 9, 10, and the
references therein]), research on asymptotic behaviors of oscillatory solutions
has also attracted much attention recently; see for example, [2, 3, 4, 5, 11, 12,
13] for second-order semilinear differential equations and [6] for quasilinear
elliptic equations.
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It is well-known that (1.1) does not always have positive solutions. Un-
der suitable conditions (cf. [1, 3, 4, 11, 13]), radial solutions to (1.1) must
oscillate, i.e., change sign infinitely many times. In such a case, one is
eager to know as precisely as possible the periods and amplitudes of oscil-
lations. In [3], asymptotic behaviors of radial solutions of (1.1) was studied
for φ = |x|μ|u|q−1u + |x|ν |u|p−1u, i.e., for the initial value problem

u′′ + (n − 1)u′/r + ( rμ |u|q−1 + b rν |u|p−1)u = 0, u′(0) = 0, (1.2)

for n ≥ 3 and

b > 0, μ > −2, ν > −2, 1 < q <
n + 2 + 2μ

n − 2
, 1 < p =

n + 2 + 2ν

n − 2
. (1.3)

With certain Pohazaev identities [15] and some rather involved calculations,
the authors in [3] established the following result:
Proposition A [3]. Assume (1.3). Then any nontrivial solution u to (1.2)
must oscillate infinitely many times and there exist positive constants c1, c2,
and c3 such that

lim
r→∞

r
2(n−1)(q+1)−2μ

q+3

{
1
2u′2(r) + 1

q+1rμ|u(r)|q+1 + b
p+1 rν |u(r)|p+1

}
= c1,

lim
k→∞

ρ
2n−2+μ

q+3

k |u(ρk)| = {(q + 1)c1}
1

q+1 , (1.4)

lim
k→∞

r
(n−1)(q+1)−μ

q+3

k |u′(rk)| =
√

2c1,

c2 ≤ lim inf
k→∞

r
2μ−(n−1)(q−1)

q+3

k+1

(
rk+1 − rk

)
≤ lim sup

k→∞
r

2μ−(n−1)(q−1)
q+3

k+1

(
rk+1 − rk

)
≤ c3

where {rk} and {ρk} are zeroes of u and u′ respectively.

This paper is to extend and improve Proposition A in several substantial
ways.

First of all, we shall include the case when the spatial dimension n is equal
to 2 and allow more general nonlinearity of φ, the exponents p and q, and
the initial condition than those in [3]. More precisely, we consider the initial
value problem{

urr + n−1
r ur +

∑I
i=1 ai r

μi |u|qi−1u +
∑J

j=1 bj rνj |u|pj−1u = 0 ∀ r > 0,

limr↘0 (n − 2)rn−2u2(r) = 0
(1.5)

where n ≥ 2 and ai, bj , qi, pj , μi, νj are all constants having the following
properties:
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(A1) All a1, . . . , aI , b1, . . . , bJ are positive,

q1 ≥ 1, and qi > −1, pj > −1 ∀ i = 2, · · · , I, j = 1, · · · , J ;

(A2) There exists a positive constant β such that

β =
2μi + n + 2 − (n − 2)qi

qi + 3
>

2νj + n + 2 − (n − 2)pj

pj + 3
≥ 0 ∀ i, j.

One notices that the requirements n ≥ 3, ν > −2, and μ > −2 in Proposition
A are removed. Furthermore, the condition 1 < p = (n + 2 + 2ν)/(n − 2) is
relaxed to 0 ≤ 2νj + n + 2 − (n − 2)pj and the initial condition u′(0) = 0 is
relaxed to account for possible singular solutions.

Secondly, the method in this paper is simpler and more elementary than
those used in [3]. We first make a Sturm–Liouville type change of variables
which is similar in essence to the classical treatment in finding zeroes and
amplitudes of oscillations for the Bassel functions; see, for example, Olver
[14]. With this transformation, the subtleties in finding the Pohazaev identi-
ties become apparent, and many of the tedious calculations in [3] are greatly
simplified. After establishing a limit analogous to (1.4), we use a “blow-up”
argument to study the periods and amplitudes of oscillations; that is, we
study the asymptotic behavior of u in any interval of two consecutive zeroes,
to obtain a recursive relation between ρk+1 and ρk. This recursive relation
can be asymptotically expanded to arbitrarily high order, enabling one to
obtain as much detailed asymptotic behavior as one wishes; here we shall
carry out only the first- and second-order asymptotic expansions.

Finally and most importantly, our results here are sharper than Proposi-
tion A. In particular, we shall prove that the constants c2 and c3 in Proposi-
tion A are the same constant; indeed, we provide for them a closed formula
depending on c1 and the constants qi and μi. Moreover, we shall provide
more comprehensive information for the asymptotic behavior of the solutions
than that in Proposition A.

To state our result, we shall use the following positive constants:

α := 1
2(β + n − 2) > 0,

δj :=
pj + 3

2
− 2νj + n + 2 − (n − 2)pj

2β
, δ := min{2, δ1, . . . , δJ} > 0.

For each positive constant A, we also denote by WA the solution to the
autonomous ODE{

d2

dt2
WA +

∑I
i=1 ai|WA|qi−1WA = 0, t ∈ (−∞,∞),

WA(0) = A, d
dtW

A(0) = 0.
(1.6)
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Observe that on the w–wt phase plane, the trajectory is a closed curve given
by

β2w2
t + 2F (w) = 2F (A); F (w) :=

I∑
i=1

ai

1 + qi
|w|1+q1 .

Consequently, WA is periodic with period TA given by

TA = 2
√

2β

∫ A

0

(
F (A) − F (w)

)−1/2
dw . (1.7)

Our main result is the following:

Theorem 1.1. Assume (A1) and (A2). Let u be an arbitrary nontrivial
solution of (1.5). Then there exists a positive constant A depending on u
such that

u(r) = r−α
{

WA(rβ + ω(r)) + o(1)
}

as r → ∞

where ω = rβ ·o(1) and o(1), r d
dro(1) → 0 as r → ∞. Consequently, denoting

by {rk} and {ρk} the zeroes of u and u′ respectively, we have

lim
k→∞

ρα
k |u(ρk)| = A, lim

k→∞

{
βrα+1−β

k u′(rk)
}2 = 2F (A),

lim
k→∞

β rβ−1
k (rk+1 − rk) = lim

k→∞
β ρβ−1

k (ρk+1 − ρk) = TA/2.

In addition there hold the following estimates for ω.

(1) If δ > 1, then ω(r) = B + o(1) for some constant B ∈ [0, TA);
(2) If 1

2 < δ ≤ 1, then ω(r) = rβ
∑J

j=1 zjr
−βδj + B + o(1) for some

constants B, z1, . . . , zJ . (Here rβr−βδj should be replaced by ln r if
δj = 1.)

(3) If 0 < δ ≤ 1
2 , then ω(r) = rβ{∑J

j=1 zjr
−βδj + O(r−2βδ)}. (Here

rβ · O(r−2δβ) should be replaced by O(ln r) if δ = 1
2 .)

Remark 1.1. The definition of δj implies that δ = 2 under the assumption
(1.3).

In the next section, we shall make a change of variables from (r, u) to
(t, w) and derive certain energy identities. Then in Section 3, we prove that
as t → ∞, the trajectory (w, wt) approaches the trajectory of (1.6); i.e.,
β2w2

t + 2F (w) = 2F (A) + o(1) for some A > 0. Finally, we prove Theorem
1.1 in §4.

In the sequel,
∑I

i=1 and
∑J

j=1 will be shortened to
∑

i and
∑

j respec-
tively.
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2. A Sturm–Liouville transformation

It is convenient to use a Sturm–Liouville-type transformation (r, u) →
(t, w) via

t = rβ, u(r) = r−αw(t). (2.1)

Under this transformation, equation (1.5) can be written as, ∀ t > 0,

β2wtt+
∑

i

ai|w|qi−1w+
∑

j

bjt
−δj |w|pj−1w+ 1

4 [β2−(n−2)2]t−2w = 0. (2.2)

In obtaining this, we have used the following identities:
(1) β − 2α + n − 2 = 0;
(2) α(α − n − 2) = 1

4 [β2 − (n − 2)2];
(3) μi − α(qi − 1) − 2β + 2 = qi+3

2 [2μi+n+2−(n−2)qi

qi+3 − β] = 0 for all i;

(4) νj − α(pj − 1)− 2β + 2 = pi+3
2 [2νj+n+2−(n−2)pj

pj+3 − β] = −βδj for all j.
We remark that the initial condition (1.5) is equivalent to

lim
t↘0

(n − 2)t−1w2(t) = 0 (2.3)

since t−1w2(t) = r2α−βu2(r) = rn−2u2(r). For simplicity, we introduce the
following notation:

F (w) :=
∑

i

ai
qi+1 |w|qi+1, f(w) := ∂

∂wF =
∑

i

ai|w|qi−1w,

F1(t, w) :=
∑

j

bj

pj+1 t−δj |w|pj+1 f1(t, w) := ∂
∂wF1 =

∑
j

bjt
−δj |w|pj−1w,

F2(t, w) := 1
8 [β2−(n − 2)2]t−2w2, f2(t, w) := ∂

∂wF2 = 1
4 [β2 − (n − 2)2]t−2w,

Q1 := 1
2β2w2

t + F (w) + F1(t, w),

Q2 := Q1 + F2 = 1
2β2w2

t + F (w) + F1(t, w) + F2(t, w),

Q3 := tQ2 − 1
2β2wwt = t

(
1
2β2w2

t + F + F1 + F2

)
− 1

2β2wwt

= 1
2 tβ2

[
wt − w

2t

]2 + tF + tF1 − 1
8(n − 2)2t−1w2.

Note that equation (2.2) can be written as

β2wtt + f(w) + f1(t, w) + f2(t, w) = 0, t > 0. (2.4)
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Also, for any solution w of (2.4), the following identities hold:

d

dt
Q1 = ∂

∂tF1(t, w) − f2wt, (2.5)

d

dt
Q2 = ∂

∂tF1(t, w) + ∂
∂tF2(t, w), (2.6)

d

dt
Q3 = [F + 1

2wf ] +
2∑

k=1

[
Fk + t ∂

∂tFk + 1
2wfk

]
. (2.7)

3. Limit of the energy as t → ∞
In this section, we shall prove the following theorem.

Theorem 3.1. Assume (A1), (A2) and that w is any nontrivial solution
of (2.2) satisfying (2.3). Then there exists a positive constant A such that as
t → ∞,

1
2β2w2

t+F (w)−F (A)=O(t−2)−F1(t, w)−
∫ ∞

t

∂
∂tF1(s, w(s))ds = O(t−δ). (3.1)

Proof. We shall prove the theorem in several steps.
Step 1. First we prove that lim supt→∞ {|w(t)| + |wt(t)|} < ∞. It

suffices to show that Q1 is uniformly bounded. To this end, we estimate
the right-hand side of (2.5) by ∂

∂tF1 = −∑J
j=1

bjδj

pj+1 t−1−δj |w|pj+1 ≤ 0,

|wt| ≤ (2Q1/β2)1/2, and |f2| = ct−2|w| ≤ ct−2{(q1 + 1)Q1/a1}1/(1+q1) (c =
1
4 |β2 − (n − 2)2|). Thus,

d

dt
Q1 ≤ CQ

1/2+1/(1+q1)
1 t−2,

C := 1
8 |β2 − (n − 2)2|

√
2β−1(q1 + 1)1/(1+q1)a

−1/(1+q1)
1 . Since q1 ≥ 1, we can

divide both sides by Q
1/2+1/(1+q1)
1 and integrate the resulting inequality over

[1, t) for any t > 1 to obtain

Q
1/2−1/(1+q1)
1 (t) ≤ Q

1/2−1/(1+q1)
1 (1) + C

[
1
2 − 1

1+q1

]
[1 − t−1], ∀t > 1.

(In case q1 = 1, lnQ should be used.) Hence, lim supt→∞ Q1 < ∞.
Step 2. Next we show that lim inft→∞ tQ1(t) > 0.
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We shall utilize the identity (2.7). For this purpose, we can use the defi-
nition of F, F1, and F2 to compute

F2 + t ∂
∂tF2 + 1

2wf2 ≡ 0,

F + 1
2wf =

∑
i

[
1

1+qi
+ 1

2

]
ai|w|1+qi ≥ 0,

F1 + t ∂
∂tF1 + 1

2wf1 =
∑

j

[
1

1+pj
− δj

1+pj
+ 1

2

]
bj t−δj |w|1+pj ≥ 0

since
1

1 + pj
− δj

1 + pj
+

1
2

=
2νj + n + 2 − (n − 2)pj

2β(1 + pj)
≥ 0 ∀ j.

Hence, d
dtQ3(t) ≥ 0; that is, Q3 is a strictly monotonic function (since w is

nontrivial). Using the definition of Q3, we have

lim inf
t↘0

Q3(t) ≥ −1
8 lim sup

t↘0
(n − 2)2t−1w2(t) = 0. (3.2)

It then follows that Q3(t) > Q3(1) > 0 ∀ t > 1. The assertion that lim inf
t→∞

tQ1

> 0 thus follows from the relation

Q3 = tQ1+tF2−1
2β2wwt ≤ tQ1−O(t−1)+β2[14 tw2

t +
1
4 t−1w2] ≤ 3

2 tQ1+O(t−1)

since from Step 1, w is uniformly bounded in [1,∞).
Step 3. We now show that (3.1) holds for some A ≥ 0. Since w is bounded,

∂
∂tF2 = O(t−3), and ∂

∂tF1 = O(t−1−δ), we can integrate the identity (2.6)
over [1,∞) to conclude that the limit limt→∞ Q2(t) = limt→∞[12β2w2

t + F ]
exists. We denote this limit by F (A) for some A ≥ 0. In addition, integrating
(2.6) over (t,∞) yields

Q1(t) = F (A) − F2(t, w(t)) −
∫ ∞

t

[
∂
∂tF1(s, w(s)) + ∂

∂tF2(s, w(s))
]
ds

= F (A) − O(t−2) −
∫ ∞

t

∂
∂tF1(s, w(s)) ds = F (A) + O(t−δ). (3.3)

The assertion (3.1) thus follows from the definition of Q1.
Step 4. Finally, we show that A > 0. Suppose, on the contrary, that A =

0. Then, (3.3) yields Q1(t) = O(t−δ), which implies, since Q1 ≥ a1
1+q1

|w|1+q1 ,
that w(t) = o(t−λ) for λ = δ

2(1+q1) > 0.
For any τ > 0 with w(τ) �= 0, set c = |w(τ)|τλ. Then |w(τ)| = cτ−λ. As

w = o(t−λ), there exists τ̂ ≥ τ such that

|w(τ̂)| = cτ̂−λ, |w(t) < ct−λ for all t ≥ τ̂ .
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It then follows that for any j = 1, . . . , J ,∫ ∞

τ̂
δjs

−1−δj |w(s)|pj+1 ds ≤ δjc
1+pj

∫ ∞

τ̂
s−1−δj−λ(1+pj)

=
δj

δj + λ(1 + pj)
τ̂−δj

(
cτ̂−λ

)1+pj =
δj

δj + λ(1 + pj)
τ̂−δj |w(τ̂)|1+pj .

Hence, defining θ = min
{

δ1
δ1+λ(1+p1) , . . . , δJ

δJ+λ(1+pJ )

}
∈ (0, 1) we have∫ ∞

τ̂

∣∣∣ ∂
∂tF1(s, w(s))

∣∣∣ ds ≤ θF1(τ̂ , w(τ̂)).

Inserting this estimate into (3.3) then gives
1
2β2w2

t (τ̂) + F (w(τ̂)) + (1 − θ)F1(τ̂ , w(τ̂)) ≤ O(τ̂−2).

Sending τ → ∞ (so τ̂ → ∞), we conclude that

lim inf
t→∞

t2Q1(t) < ∞.

But this contradicts the conclusion in Step 2. Hence, we must have A > 0.
This completes the proof of Theorem 3.1. �
Remark 3.1. The equality in (3.2) is the only place where the initial con-
dition in (1.5) (i.e., (2.3)) is used. It is for the purpose of concluding that
Q3(1) ≥ 0, or limt→∞ Q3 > 0. On the other hand, suppose Q3 < 0 for all
t. Then, for every j, aj

qj+1 |w|qj+1t < (n−2)2

8t w2, so that w does not change

sign and |w|qj−1 < (q1+1)(n−2)2

8ajt2
for all t; since w is bounded for large t, the

latter cannot happen if there is some j such that qj ≤ 1. In other words,
the initial condition (2.3) is not needed if one assumes that there is a j such
that qj ≤ 1.

4. Asymptotic behavior of the solution as t → ∞
We now study the asymptotic behavior, as t → ∞, of solutions of (2.2).

Lemma 4.1. Under the assumption of Theorem 3.1 the following holds:
(i) Both w and wt have infinitely many zeroes, and the large zeroes of w

and wt interlace.
(ii) Denote by {tk}∞k=0 all the local points of maximum of w, arranged in

increasing order. Let A be as in (3.1) and let WA be defined as in (1.6) and
TA be the period of WA. Then, as k → ∞,

w(t) = WA(t − tk) + O(t−δ) ∀ t ∈ [tk, tk + 2TA], (4.1)

tk+1 − tk = TA + O(t−δ
k ). (4.2)
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Proof. Equation (3.1) means that on the w–wt phase plane, the trajectory
(w(t), wt(t)) is within an O(t−δ) neighborhood of the curve 1

2β2X2+F (Y ) =
F (A). Also the differential equation for w can be written as β2wtt + f(w) =
O(t−δ). The assertion of the lemma thus follows from a standard perturba-
tion argument. �

Remark 4.1. Observe that Proposition A follows immediately from Lemma
4.1; in particular, from (4.2) and the fact limk→∞(tk/tk+1) = 1, we see that
the constants c2 and c3 in Proposition A are the same constant given by
TA/(2β) since rβ

k+1 − rβ
k = βr̃β−1(rk+1 − rk) for some r̃ ∈ (rk, rk+1).

The assertion of Lemma 4.1 is local in time. In order to prove Theorem
1.1, one needs to estimate the total phase shift

∑∞
k=0(tk+1− tk −TA). To do

this, higher-order terms O(t−δ) have to be taken into account. When δ > 1,
the total phase shift

∑∞
k=1(rk+1 − rk − TA) is finite, and Lemma 4.1 can be

upgraded to a global-in-time version as follows.

Lemma 4.2. Assume the conditions in Theorem 3.1 and also assume that
δ > 1. Then there exists B ∈ [0, TA) such that

w(t) = WA
(
t + B + O(t1−δ)

)
+ O(t−δ) as t → ∞. (4.3)

Proof. We need only to replace tk in (4.2) by a quantity independent
of k. As (4.2) implies tk+1 − tk = TA[1 + o(1)], tk = kTA[1 + o(1)] as
k → ∞. Consequently, |tk+1 − tk − TA| = O(t−δ

k ) = O(k−δ). Since δ > 1,
by a comparison test, the series

∑∞
k=0(tk+1 − tk − TA) =: B̂ is uniformly

convergent. Hence, for any k ≥ 1,

tk = t0 + kTA +
k−1∑
l=0

(tl+1 − tl − TA)

= t0 + kTA +
∞∑
l=0

(tl+1 − tl − TA) −
∞∑

l=k

(tl+1 − tl − TA)

= t0 + kTA + B̂ −
∞∑

l=k

O(l−δ) = t0 + kTA + B̂ + O(k1−δ).

Substituting this relation into (4.1) then gives, for all t ∈ [tk, tk+1],

w(t) = WA
(
t − t0 − kTA − B̂ + O(t1−δ

k )
)

+ O(t−δ
k )

= WA
(
t + B + O(t1−δ)

)
+ O(t−δ)
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where B ∈ [0, TA) is the unique constant such that B + t0 + B̂ is an integer
multiple of TA. As B is independent of k, the assertion of the lemma thus
follows. �

Next we consider the case δ ≤ 1. In this case
∑∞

k=0 |tk+1 − tk − TA| =∑∞
k=0 |O(k−δ)| may diverge, so we need an accurate expression for the O(t−δ)

term. To do this, we want to use the first equation in (3.1), where we
need to calculate the integral

∫ ∞
t

∂
∂tF1. By Lemma 4.1, this integral can be

calculated as follows. For every large k,∫ tk+1

tk

t−1−δj |w(t)|1+pjdt =
[
t
−1−δj

k + O(t−2−δj

k )
]{ ∫ T A

0
|WA(t)|1+pj + O(t−δ

k )
}

= Ā
1+pj

j

∫ tk+1

tk

[
t−1−δj + O(t−1−2δ)

]
dt

where

Āj :=
( 1

TA

∫ T A

0
|WA|1+pj

)1/(1+pj)
. (4.4)

Hence,

−
∫ ∞

tk

∂
∂tF1(t, w(t)) dt =

∞∑
l=k

∫ tl+1

tl

∑
j

bjδj

1+pj
t−1−δj |w|1+pj

=
∑

j

bjĀ
1+pj
j

1+pj

∫ ∞

tk

δj

[
t−1−δj + O(t−1−2δ)

]
=

∑
j

bjĀ
1+pj
j

1+pj
t
−1−δj

k + O(t−2δ
k ).

Now we can apply the first equation in (3.1) for t = tk to deduce, as wt(tk) =
0, that

F (w(tk)) − F (A)O(t−2
k ) − F1(tk, w(tk)) −

∫ ∞

tk

∂
∂tF1

= O(t−2δ
k ) −

∑
j

bj

1+pj

[
A1+pj − Ā

1+pj

j

]
t
−δj

k .

The mean-value theorem then gives, as ∂
∂wF (w) = f(w),

w(tk) − A = εk + O(t−2δ
k ), εk :=

∑
j

bj

1 + pj

Ā
1+pj

j − A1+pj

f(A)
t
−δj

k < 0.

Therefore,{
β2wtt + f(w) + f1(tk, w) = O(t−2δ

k ), t ∈ [tk, tk + 2TA],
w(tk) = A + εk + O(t−2δ

k ), wt(tk) = 0.
(4.5)
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Approximately (in the order of O(t−2δ
k )) solving this equation for t ∈ [tk, tk +

2TA] then gives

tk+1 − tk

= O(t−2δ
k ) +

∫ A+εk

0

√
8β dw√

F (A + εk) + F1(tk, A + εk) − F (w) − F1(tk, w)

= TA +
∑

j

ξj t
−δj

k + O(t−2δ
k )

where ξ1, . . . , ξJ are constants and can be calculated as follows. Notice that

d

dε

∫ A+ε

0

dw√
F (A + ε) − F (w)

∣∣∣∣
ε=0

=
d

dε

∫ 1

0

(A + ε) dζ√
F (A + ε) − F ((A + ε)ζ)

∣∣∣∣
ε=0

=
∫ A

0

[2F (A) − f(A)] − [2F (w) − wf(w)/A]
2A[F (A) − F (w)]3/2

dw,

d

dη

∫ A

0

dw√
F (A) + ηg(A) − F (w) − ηg(w)

∣∣∣∣
η=0

=
∫ A

0

g(w) − g(A)
2[F (A) − F (w)]3/2

dw.

It then follows, after taking ηg = F1(tk, w) =
∑

j
bj

pj+1 t
−δj

k |w|pj+1, that∫ A+εk

0

√
8β dw√

F (A + εk) + F1(tk, A + εk) − F (w) − F1(tk, w)

= TA + εk

∫ A

0

[2F (A) − f(A)] − [2F (w) − wf(w)/A]
2A[F (A) − F (w)]3/2

dw

+
∑

j

bj

pj + 1
t
−δj

k

∫ A

0

wpj+1 − Apj+1

2[F (A) − F (w)]3/2
dw + O(t−2δ

k ).

Hence,

ξj =
√

8βbj

1 + pj

∫ A

0

A{w1+pj −A1+pj }+(Ā
1+pj
j −A1+pj ){[2F (A)−f(A)]−[2F (w)−wf(w)/A]}

2A[F (A)−F (w)]3/2 dw.

Now we can compute

tk = t0 + kTA +
k−1∑
l=0

(tl+1 − tl − TA)

= t0 + kTA +
k−1∑
l=0

{
O(t−2δ

l ) +
∑

j

ξjt
−δj

l

}
(4.6)
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= t0 + kTA +
k−1∑
l=0

{
O(l−2δ) +

∑
j

ξj(lTA)−δj

}
.

In case δ > 1/2, we have

tk = t0 + kTA +
∑

j

ξj

k−1∑
l=1

(lTA)−δj +
{ ∞∑

l=1

−
∞∑

l=k

}
O(l−2δj )

= B̂ + kTA +
∑

j

ξj(1 − δj)−1k(kTA)−δj + O(k1−2δ)

(
if δj = 1, (1 − δj)−1k(kTA)−δj should be replaced by ln(kTA)

)
.

Here we have used the fact that
∑k−1

l=1 l−δj = Bj +k1−δj/(1− δj)+O(k1−2δ)
if δj �= 1 and = Bj + ln k + O(k−1) if δj = 1.

Similarly, when δ ∈ (0, 1/2],

tk = kTA +
∑

j

ξj(1 − δj)−1k(kTA)−δj + O(k1−2δ)

where in case δ = 1/2, one needs to replace O(k1−2δ) by O(ln k).
Finally, we replace tk in (4.1) by the above expressions. Note that for

t ∈ [tk, tk + 2TA], (kTA)1−δj − t1−δj = O((min{kTA, t})−δj )|t − kTA| =
O(t1−2δj ). Therefore, we have the following theorem.

Theorem 4.3. Assume (A1), (A2), and that w is a nontrivial solution
to (2.2) satisfying (2.3). Then there exists A > 0 such that as t → ∞, the
following holds:

(i) If δ > 1/2, then for some B and z1, . . . zJ ,

w(t) = WA
(
t +

∑
j

zjt
1−δj + B + O(t1−2δ)

)
+ O(t−δ), (4.7)

where in case δj = 1, t1−δj should be replaced by ln t.
(ii) If δ ∈ (0, 1/2], then

w(t) = WA
(
t +

∑
j

zjt
1−δj + O(t1−2δ)

)
+ O(t−δ). (4.8)

Here if δ = 1/2, then O(t1−2δ) should be replaced by O(ln t).

Clearly, our main Theorem 1.1 follows from Theorem 4.3 and the trans-
formation (2.1).
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Remark 4.2. By solving (4.5) one can replace the last term O(t−δ) in (4.7)
and (4.8) by∑

j

t−δjWj

(
t +

∑
j

zjt
1−δj + O(t1−2δ)

)
+ O(t−2δ),

where Wj are calculable functions; therefore, one obtains a complete second-
order expansion of the solution.

The next order expansion of the form

rk+1 = rk + TA +
∑

j

ξj t
−δj

k +
J∑

j1,j2=1

ξj1j2 t
−δj1

−δj2
k + O(r−3δ) (4.9)

and a similar enhanced version for w(t) can be obtained as follows. Instead
of the leading order expansion for w and rk+1 − rk given in Lemma 4.1, we
substitute the enhanced O(t−2δ)-order expression of w and tk+1 − tk into
the first equation in (3.1) (replacing the O(t−2)-term by its exact expres-
sion −F2(t, w) −

∫ ∞
t F2 if necessary) to obtain an O(r−3δ

k )-order expression
w(tk) = A + εk + ε

(2)
k + O(r−3δ), where ε

(2)
k depends only on rk and known

quantities. Then one can solve a refined version of (4.5) to obtain an O(r−3δ
k )-

order solution (depending on rk) and hence obtain a O(r−3δ
k )-order recursive

relation (4.9) between rk+1 and rk. Following the same calculation as in
(4.6) one can solve this recursive relation to obtain an explicit O(r1−3δ)-
order expression for rk, and therefore an O(t1−3δ)-order explicit expression
for the phase shift of w(t) from that of WA.

In a similar manner, one can obtain desired higher-order expansions, pro-
vided sufficient differentiabilities for F, F1, F2 are available.
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