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Abstract. We are interested in the limit, as m → ∞, of the solution
um of the porous-medium equation ut = Δum in a bounded domain Ω
with Neumann boundary condition, ∂um

∂n
= g on ∂Ω, and initial datum

u(0) = u0 ≥ 0. It is well known by now that this kind of limit turns
out to be singular. In the case g ≡ 0, it was proved that there exists
an initial boundary layer u0, the so-called mesa, and um(t) → u0 in
L1(Ω), for any t > 0, as m → ∞. In this work, we generalize this
result to the case of arbitrary g ∈ L2(∂Ω), we prove that the initial
boundary layer is still u0 and in general (even in the regular case) the
limit function is not a solution of a Hele–Shaw problem. There exists a
time interval I where the limit of um, as m → ∞, is the unique solution
of a Hele–Shaw problem and elsewhere, um conveges to the constant
function 1

|Ω| (
∫
Ω

u0 + t
∫

∂Ω
g).

1. Introduction

Let Ω be a bounded domain of R
N with smooth boundary Γ. For m ≥ 1,

we consider the porous-medium equation with nonhomogeneous Neumann
boundary condition

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
= Δum on Q = (0,∞) × Ω

∂um

∂n
= g on Σ = (0,∞) × ∂Ω

u(0) = u0

(1.1)
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where g ∈ L2(Γ) and u0 ∈ L2 (Ω) . For any m ≥ 0 (cf. Proposition 3), there
exists a unique weak solution u of (1.1) in the following sense:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u ∈ L2(Q), w := |u|m−1u ∈ L2
loc

(
0,∞;H1(Ω)

)
∫ ∞

0

∫
Ω

ξtu +
∫

Ω
ξ(0, ·)u0 =

∫ ∞

0

∫
Ω

Dw · Dξ +
∫ ∞

0

∫
Γ

ξg

∀ξ ∈ C1([0,∞) × Ω) compactly supported.

(1.2)

We denote by um this solution. We are interested in the behavior of um, as
m → ∞.

Formally, we see that as m → ∞ the equation⎧⎪⎨
⎪⎩

∂u

∂t
= Δum on Q

∂um

∂n
= g on Σ

converges to ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
− Δw = 0 in Q

u ∈ sign(w) in Q
∂w

∂η
= g on Σ,

(1.3)

which is a weak formulation of a Hele–Shaw-type problem. In fact, the Hele–
Shaw problem is a one-phase free-boundary problem modeling the evolution
of a slow, incompressible, viscous fluid moving between slightly separated
plates, so that the pressure w = w(x, t) ≥ 0 is such that there exists a phase
function u and (u, w) satisfies (1.3) (cf. [19, 17] and [11, 10] for physical and
mathematical formulation, respectively). A sign condition on g corresponds
to the injection through Γ if g ≥ 0 and to the suction if g ≤ 0. This case
turns out to be an ill-posed problem under general conditions on g (see
[10]). In this work, although we consider time-independent data, since no
restriction on the sign of g is assumed we will consider the (mathematical
model) generalized free-boundary problem associated to (1.3) that we call
the generalized Hele–Shaw problem.

Since the range of a solution of (1.3) remains in [−1,+1], u0 is an incon-
sistent initial datum for (1.3) if ‖u0‖∞ > 1. This implies that the limit of
um may be singular and an initial boundary layer appears in general, when
one passes to the limit. On the other hand, we see that a solution of (1.3)
satisfies

d

dt

∫
Ω

u =
∫

Γ
g,
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so that, if
∫
Γ g 	= 0, then a solution of (1.3) is not defined for large t. This

implies that the limit of um is not a solution of a Hele–Shaw problem in all of
(0,∞). This formal analysis shows that, even in the regular case ‖u0‖∞ ≤ 1,
the problem is completely different from the similar one with the Dirichlet
boundary condition (see [16, 18, 20]). Indeed, it was proved in [12] that if
the Dirichlet boundary condition is prescribed on the boundary Γ, then the
limit is a solution of the Hele–Shaw problem.

Recall that the case g ≡ 0 and u0 ≥ 0 is completely solved. It was proved
in [2] that um(t) → u0 in L1(Ω) for t > 0, where

u0 =

⎧⎪⎨
⎪⎩

∫
−u0 :=

1
|Ω

∫
Ω

u0 if
∫
−u0 ≥ 1

u0χ[w=0] + χ[w>0] if
∫
−u0 < 1

(1.4)

with w ∈ H1(Ω) the unique solution of the so-called “mesa problem”

w ∈ H2(Ω), w ≥ 0, 0 ≤ Δw + u0 ≤ 1,

w(Δw + u0 − 1) = 0 a.e. Ω and
∂w

∂n
= 0 on Σ.

However, to our knowledge, the case g 	≡ 0 was an open problem and there
was no result concerning the limit as m → ∞ of um even in the regular
case. The aim of this paper is to characterize this limit, for any u0 ∈ L2(Ω),
u0 ≥ 0 and any g ∈ L2(Γ). We show that, as m → ∞,

um → u in C
(
(0,∞);L1(Ω)

)
, (1.5)

where, setting

μ(t) =
∫
−u0 +

t

|Ω|

∫
Γ

g for t ≥ 0,

and defining I = {t ≥ 0 : |μ(t)| ≤ 1} := [a, b] with a = b = +∞ if I = ∅, u is
the unique solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) u ∈ C
(
[0,∞);L1(Ω)

)
, u(0) = u0,

ii) u(t) ≡ μ(t) a.e. on Ω, for any t ∈ (0, a] ∪ [b,∞)

iii) ∃ w ∈ L2
loc(a, b;H1(Ω)) such that u ∈ sign(w) a.e. in Ω

and
∫ b

a

∫
Ω
(ξtu − Dw · Dξ) =

∫ b

a

∫
Γ

ξg, ∀ξ ∈ C1((a, b) × Ω),

compactly supported;

(1.6)

here u0 is given by (1.4). So, the limit function u is a solution of a Hele–Shaw
problem for t ∈ I and u is a constant function in Ω, for t ∈ R

+ \ I. On the
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other hand, we see that I may be empty; for instance, when
∫
Γ g ≥ 0 and∫

−u0 ≥ 1, then u(t) =
∫
−u0 + t

|Ω|
∫
Γ g ≥ 1, for all t ≥ 0.

The existence and uniqueness of a weak solution of (1.3) and (1.1) were
extensively studied in the case where the Dirichlet boundary condition is
prescribed at some part of the lateral boundary, but there are few works with
the Neumann boundary condition; we cite for instance [11, 13]. Briefly, the
main difficulty in considering the Neumann boundary condition remains in
the control of the H1-norm of w in Ω; the L2-norm of Dw in Ω is insufficient,
and we must control the average of w; this is the aim of Lemma 3 and
Lemma 4.

Finally, we notice that using the results of [14], all the arguments of this
paper remain true for the study of the limit of the solution of the Stefan
problem with nonhomogeneous Neumann boundary condition, as the specific
heat c goes to 0. In other words, the limit, as c → 0, of the solution of the
Stefan problem with nonhomogeneous Neumann boundary condition is the
unique solution of (1.6) with the same initial data u0 given by (1.4).

To prove these results, we will use abstract arguments of nonlinear semi-
group theory. So, we will be interested in the limit, as m → ∞, of the
solution to the stationary problem

v = Δvm + f on Ω,
∂vm

∂n
= g on ∂Ω

for any f ∈ L1(Ω) and g ∈ L1(Γ). This is the aim of Section 2. We recall
that this problem was completely solved when g ≡ 0 (see [5] for

∣∣∫−f
∣∣ ≤ 1

and [6] for any f ∈ L1(Ω)). In Section 3, we give a new proof of existence
and uniqueness of a weak solution to the generalized Hele–Shaw problem
(1.3) under natural conditions on initial data χ0 ∈ L2 (Ω) and g ∈ L2(Γ). In
Section 4, we prove existence and uniqueness of a solution to (1.1) and (1.6)
and we prove the convergence result (1.5).

2. The elliptic problem

We consider, first, the elliptic problem

v = Δvm + f on Ω,
∂vm

∂n
= g on ∂Ω (2.1)

with f ∈ L1(Ω) and g ∈ L1(Γ). Applying Theorem 22 in [8], for any m > 0,
there exists a unique solution v of (2.1) in the sense that⎧⎨

⎩
v ∈ L1(Ω), w := |v|m−1v ∈ W 1,1(Ω), a.e. Ω∫
Ω

Dw · Dξ =
∫

Ω
(f − v)ξ +

∫
Γ

gξ, ∀ξ ∈ C1(Ω). (2.2)
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Moreover, if v and v̂ are two solutions corresponding to f, f̂ ∈ L1(Ω) and
g, ĝ ∈ L1(Γ) then (cf. Proposition E in [5])∫

Ω
(v − v̂)+ ≤

∫
Ω
(f − f̂)+ +

∫
Γ
(g − ĝ)+ (2.3)

and ∫
Ω
|v − v̂| ≤

∫
Ω
|f − f̂ | +

∫
Γ
|g − ĝ|. (2.4)

As m → ∞, one has

Proposition 1. Let f ∈ L1(Ω), g ∈ L1(Γ) and for m > 0, let vm be the
unique solution of (2.1).

1) If ∣∣∫−f +
1
|Ω|

∫
Γ

g
∣∣ < 1,

there exists a unique solution (v, w) of⎧⎨
⎩

v ∈ L1(Ω), w ∈ W 1,1(Ω), v ∈ sign(w) a.e. on Ω∫
Ω

Dw · Dξ =
∫

Ω
(f − v)ξ +

∫
Γ

gξ, ∀ ξ ∈ C1(Ω), (2.5)

vm → v in L1(Ω) and |vm|m−1vm ⇀ w in W 1,1(Ω), as m → ∞.
2) If ∣∣∫−f +

1
|Ω|

∫
Γ

g
∣∣ ≥ 1,

then vm →
∫
−f + 1

|Ω|
∫
Γ g in L1(Ω), as m → ∞.

First, we prove the following lemma.

Lemma 1. Let f ∈ L1(Ω), g ∈ L1(Γ) and vm be the solution of (2.1). Then,
vm is precompact in L1(Ω).

Proof. According to [5] (step 3 of the proof of Theorem B′), for all ω ⊂⊂ Ω,
vm is precompact in L1(ω), and since

‖vm‖L1(Ω) ≤ ‖f‖L1(Ω) + ‖g‖L1(Γ),

there exists mk → ∞ and v ∈ L1(Ω) such that

vmk
→ v a.e. Ω. (2.6)

First, we assume that f ∈ L2(Ω) and g ∈ L2(Γ); then we have

‖vm‖L2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(Γ)

)
,
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where C depends only on Ω. This implies that vm is weakly precompact in
L2 (Ω) and in L1(Ω). Then, using (2.6) we deduce that vm is precompact in
L1(Ω).

Now, let f ∈ L1(Ω) and g ∈ L1(Γ). We consider fε ∈ L2(Ω) and gε ∈ L2(Γ)
such that fε → f in L1(Ω) and gε → g in L1(Γ), as ε → 0. Using the first
step of the proof, we denote by vmε the corresponding solution, which is
compact in L1(Ω). Using (2.4) for m ≥ n ≥ 1, we have

‖vn − vm‖1 ≤ ‖vn − vnε‖1 + ‖vm − vmε‖1 + ‖vnε − vmε‖1

≤ 2 {‖f − fε‖1 + ‖g − gε‖1} + ‖vnε − vmε‖1.

So,

lim sup
n→∞

‖vn − vm‖1 ≤ 2 {‖f − fε‖1 + ‖g − gε‖1} → 0, as ε → 0;

then vm is precompact in L1(Ω). �
Proof of Proposition 1. If

|
∫
−f +

1
|Ω|

∫
Γ

g| < 1,

then using Lemma 1, part 1) of the proposition follows exactly in the same
way as in Theorem B in [5].

Let us prove part 2). Due to (2.4), it is enough to prove it for f ∈ L2(Ω),
g ∈ L2(Γ) and |

∫
−f + 1

|Ω|
∫
Γ g| > 1. We may assume without lost of generality

that
∫
−f + 1

|Ω|
∫
Γ g > 1.

According to [5], we have

{(vm)m − Cm}m≥1 is bounded in W 1,1(Ω) (2.7)

where Cm =
∫
−(vm)m. Using Lemma 1, there exists mk → ∞ such that

vk := vmk
→ v in L1(Ω), and using (2.7) we have w̃k := (vmk

)mk−Cmk
⇀ w̃∞

in W 1,1(Ω) and almost everywhere on Ω. Then, using Jensen’s inequality and
the fact that

∫
−vk =

∫
−f + 1

|Ω|
∫
Γ g > 1, we have∫

−(v+
k )mk ≥

(∫
−v+

k

)mk ≥
(∫
−f +

1
|Ω|

∫
Γ

g
)mk → ∞ ;

since
Cmk

|{vk > 0}|
|Ω| ≥

∫
−(v+

k )mk −
∫
− |w̃k|

we deduce Cmk
→ ∞. Then w̃k

Cmk
→ 0 almost everywhere and

( vk

Cmk

) 1
mk =

(
1 +

w̃k

Cmk

) 1
mk → 1 a.e.,
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so that v = limmk→∞(Cmk
)

1
mk is constant almost everywhere on Ω and equal

to
∫
−v =

∫
−f + 1

|Ω|
∫
Γ g. �

These results may be stated in terms of operators in L1(Ω). For m ≥ 1
and g ∈ L1(Γ), let Ag

m be the operator defined in L1(Ω), by

Ag
mv = −Δ|v|m−1v (2.8)

with

D(Am) = {v ∈ L1(Ω) ; w := |v|m−1v ∈ W 1,1(Ω), Δw ∈ L1(Ω)

and
∫

Ω
(Dw · Dξ + Δwξ) =

∫
Γ

gξ, ∀ξ ∈ C1(Ω)}.

Then Ag
m is m-accretive in L1(Ω) and Ag

m → Ag in the graph sense, where
Ag is the multivalued m-accretive operator in L1(Ω) defined by

z ∈ Agv ⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v, z ∈ L1(Ω),
∫
−z = 1

|Ω|
∫
Γ g and

either v = μ a.e. on Ω with μ ∈ R, |μ| ≥ 1
or there exists w ∈ W 1,1(Ω) such that

v ∈ sign(w) a.e. on Ω and∫
Ω Dw · Dξ =

∫
Ω zξ +

∫
Γ gξ ∀ξ ∈ C1(Ω).

(2.9)

Indeed, Ag being defined as above, for f ∈ L1(Ω), we have

v + Agv � f ⇔

⎧⎪⎨
⎪⎩

v ∈ L1(Ω)
∫
−v =

∫
−f + 1

|Ω|
∫
Γ g and

either v = μ a.e. on Ω with μ ∈ R, |μ| ≥ 1 or
there exists w such that (v, w) is the solution of (2.9),

so that according to Proposition 1, there exists a unique solution v of v +
Agv � f and

v = lim
m→∞

(I + Ag
m)−1 f.

Corollary 1. Let f ∈ L1(Ω), g ∈ L1(Γ) and consider fm ∈ L1(Ω), gm ∈
L1(Γ) such that, as m → ∞,

gm → g in L1(Γ) and fm → f in L1(Ω).

Then

(I + Agm
m )−1fm → (I + Ag)−1f in L1(Ω), as m → ∞.

Proof. Using (2.4), we have

‖(I + Agm
m )−1fm − (I + Ag)−1f‖1

≤ ‖(I + Agm
m )−1fm − (I + Ag

m)−1f‖1 + ‖(I + Ag
m)−1f − (I + Ag)−1f‖1
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≤
∫

Γ
|gm − g| +

∫
Ω
|fm − f | + ‖(I + Ag

m)−1u0 − (I + Ag)−1u0‖1.

Then, using the Proposition 1, the result of the corollary follows. �

Proposition 2. For any g ∈ L1(Γ), D(Ag) = D1 ∪ D2 =: D, where D1 =
{u ∈ L∞(Ω) : |u| ≤ 1} , D2 = {u ≡ μ : μ ∈ R, |μ| ≥ 1} and D(Ag) denote
the closure in L1(Ω) of the domain of Ag.

Proof. By the definition of Ag it is clear that D(Ag) ⊆ D and D2 ⊂ D(Ag).
Now we prove that D1 ⊆ D(Ag). For this aim let u ∈ D1 and consider uε a
sequence of D1, such that |

∫
−uε + ε

|Ω|
∫
Γ g| ≤ 1 for all ε > 0 and uε → u in

L1(Ω), as ε → 0. Using Proposition 1, uε ∈ R(I + εAg) and (I + εAg)−1uε ∈
D(Ag), for all ε > 0.

Next, we show that

(I + εAg)−1uε → u in L1(Ω) as ε → 0, (2.10)

which concludes the proof. Since sign(εr) = sign(r) for all ε > 0 and r ∈ R,
(I + εAg)−1uε = (I + Aεg)−1uε, and using Corollary 1, we have

(I + εAg)−1uε → (I + A0)−1u in L1(Ω) as ε → 0.

As ‖u‖∞ ≤ 1 then (I + A0)−1u = u so that (2.10) follows. �
Now if u0 ∈ L1(Ω) and g ∈ L1(Γ) are given, by the general theory of

evolution equations (see [1], [4], [9]), for any m ≥ 1 there exists a unique
mild solution um ∈ C

(
[0,∞);L1(Ω)

)
of

dum

dt
+ Ag

mum � 0 on (0,∞) um(0) = u0 (2.11)

which is given by the exponential formula

um(t) = e−tAg
mu0 = lim

n→∞

(
I +

t

n
Ag

m

)−n
u0.

Using the Brezis–Pazy theorem, for regular perturbations of a nonlinear
semigroup, and the Proposition 1, we have

Corollary 2. Assume that u0 ∈ D. If for m ≥ 1, gm ∈ L1(Γ) and u0m ∈
L1(Ω) are such that gm → g in L1(Γ) and u0m → u0 in L1(Ω), as m → ∞,
then

e−tAg
mu0m → e−tAgm

u0 in C
(
[0,∞);L1(Ω)

)
, as m → ∞.
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3. The generalized Hele–Shaw problem

The aim of this section is the study, using nonlinear semigroup theory, of
the existence and uniqueness of a weak solution to the two-phase Hele–Shaw
problem (1.3) with a natural initial datum χ0 ∈ D1.

Theorem 1. Let χ0 ∈ D1, g ∈ L2(Γ),

μ(t) =
∫
−χ0 +

t

|Ω|

∫
Γ

g, for any t ≥ 0 (3.1)

and
T = max { t > 0 : |μ(t)| ≤ 1 } . (3.2)

If T > 0, then there exists a unique solution u of the generalized Hele–Shaw
problem in the following sense:⎧⎪⎪⎨

⎪⎪⎩
u ∈ L∞(QT ), ∃ w ∈ L2

(
0, T ;H1(Ω)

)
, u ∈ sign(w) a.e. QT

and
∫ ∫

ξtu +
∫

ξ(0, ·)χ0 =
∫ ∫

Dw · Dξ +
∫ ∫

Γ
gξ

∀ξ ∈ H1(QT ), ξ(T, ·) ≡ 0

(3.3)

where QT = (0, T ) × Ω. Moreover, u(t) = e−tAg
χ0, for any t ∈ [0, T ).

Remark 1. This theorem gives the existence and uniqueness of a weak
solution u to the generalized Hele–Shaw problem with initial data χ0 ∈ D1.
Actually, if we assume that g ≥ 0 and χ0 ≥ 0, then using (2.3) we have u ≥ 0
so that u is the unique weak solution of the one-phase Hele–Shaw problem.
Note that there exist particular choices of negative g and nonnegative χ0

such that the one-phase Hele–Shaw problem still has a solution (cf. [10]).

Remark 2. In the one-phase Hele–Shaw problem, T as given above is the
time when the physical model breaks down (cf. [11]).

In order to prove the theorem, we need the following lemmas:

Lemma 2. Let f ∈ L2 (Ω) , g ∈ L2(Γ) and w ∈ H1(Ω) such that∫
Ω

Dw · Dξ =
∫

Ω
fξ +

∫
Γ

gξ, ∀ ξ ∈ C1(Ω).

Then for all ξ ∈ W 2,1(Ω) ∩ L∞(Ω), ξ ≥ 0 and ∂ξ
∂η = 0 on Γ we have∫

Ω
w+(−Δξ) ≤

∫
[w>0]

fξ +
∫

Γ∩[w>0]
gξ, (3.4)

and ∫
Ω

w−(−Δξ) ≤
∫

[w<0]
(−f)ξ +

∫
Γ∩[w<0]

(−g)ξ. (3.5)
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Proof. Since z = −w is the solution of∫
Ω

Dz · Dξ =
∫

Ω
(−f)ξ +

∫
Γ
(−g)ξ, ∀ ξ ∈ C1(Ω),

(3.5) is a consequence of (3.4).
Let us prove (3.4). We consider the sequence jq defined by

jq(r) = (r+)
1
q
+1

, ∀r ∈ R

where q ∈ N and q ≥ 1. Then, jq(w) ∈ H1(Ω) and for all ξ as in the lemma
we have∫

Ω
jq(w)(−Δξ) =

∫
Djq(w) · Dξ =

∫
Ω

j′q(w)Dw · Dξ

=
∫

Ω
Dw · D(ξj′q(w)) −

∫
Ω

ξj′′q (w)|Dw|2

=
∫

Ω
fξj′q(w) +

∫
Γ

gξj′q(w) −
∫

ξj′′q (w)|Dw|2 ≤
∫

Ω
fξj′q(w) +

∫
Γ

gξj′q(w).

This implies that, for all q ≥ 1, we have∫
Ω
(w+)

1
q
+1(−Δξ) ≤ (

1
q

+ 1
{∫

Ω
fξ(w+)

1
q +

∫
Γ

gξ(w+)
1
q

}
.

As q → ∞, we obtain (3.4). �

Lemma 3. Let ε > 0, u, û ∈ L∞(Ω), g ∈ L2(Γ) and w ∈ H1(Ω) such that
u ∈ sign(w) almost everywhere in Ω, |û| ≤ 1 and∫

Ω
Dw · Dξ =

∫
Ω

u − û

ε
+

∫
Γ

gξ, ∀ξ ∈ C1(Ω), ∀ ε > 0.

If |
∫
−u| < 1, then

‖w‖L1(Ω) ≤
C

1 −
∣∣∫−u

∣∣‖g‖L1(Γ)

where C is a constant depending only on Ω.

Proof. First, applying Lemma 2, for any ξ ∈ W 2,1(Ω) ∩ L∞(Ω) with ξ ≥ 0,
∂ξ
∂n = 0 on ∂Ω, we have
∫

Ω
w+(−Δξ) ≤

∫
Γ∩[w>0]

ξg−
∫

[w>0]

u − û

ε
ξ ≤

∫
Γ∩[w>0]

ξg ≤ ‖ξ‖L∞(Ω)‖g‖L1(Γ).
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Let ξ0 be the solution of⎧⎪⎨
⎪⎩

−Δξ0 = u −
∫
−u in Ω

∂ξ0
∂n = 0 on ∂Ω∫
−ξ0 = 0;

we have ξ0 ∈ W 2,p(Ω), for any 1 < p < ∞, and

‖ξ0‖L∞ ≤ C
∥∥∥u −

∫
−u

∥∥∥
L∞

≤ C,

where C is a constant depending only on Ω. Set ξ = ξ0 + C; we have ξ ≥ 0
and ∫

Ω
w+

(
u −

∫
−u

)
=

∫
Ω
|w|(−Δξ) ≤ 2C‖g‖L1(Γ),

and since w+u = w+ almost everywhere in Ω, we have(
1 −

∫
−u

) ∫
Ω

w+ ≤ 2C‖g‖L1(Γ). (3.6)

Now, using (3.5), with ξ1 the solution of⎧⎪⎨
⎪⎩

−Δξ1 = −u +
∫
−u in Ω

∂ξ1
∂n = 0 on ∂Ω∫
−ξ1 = 0,

and since w−u = −w−, we have(
1 +

∫
−u

) ∫
Ω

w− ≤ 2C‖g‖L1(Γ). (3.7)

From (3.6) and (3.7) we deduce that
(
1 −

∣∣∣
∫
−u

∣∣∣)
∫

Ω
|w| ≤ 2C‖g‖L1(Γ),

which completes the proof. �
Proof of Theorem 1. First we show that the mild solution is a solution
of (3.3). By definition of a mild solution, u(t) = L1 − lim uε(t) uniformly for
t ∈ [0, T ], where for ε > 0, uε is an ε-approximate solution corresponding to
a subdivision t0 = 0 < t1 < · · · < tn−1 < T = tn with ti − ti−1 < ε, defined
by uε(0) = χ0, uε(t) = ui for t ∈ (ti−1, ti] where ui ∈ L1(Ω) satisfies

ui − ui−1

ti − ti−1
+ Agui � 0;
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that is, there exists wε defined by wε(t) = wi on (ti−1, ti) where for all
i = 1, . . . , n,⎧⎪⎨

⎪⎩
wi ∈ H1(Ω), ui ∈ sign(wi) a.e. Ω,∫

Ω
Dwi · Dξ =

∫
Γ

gξ −
∫

ui − ui−1

ti − ti−1
ξ, ∀ ξ ∈ C1(Ω).

(3.8)

Since T > 0 and uε(t) → u(t) in L1(Ω) as ε → 0 uniformly for t ∈ [0, T ],
for ε > 0 small enough, one has

∣∣∫−ui

∣∣ ≤ θ for i = 1, . . . , n with θ < 1
independent of ε. Using Lemma 3,∣∣∣

∫
−wi

∣∣∣ ≤ C1‖g‖L1(Γ) for i = 1, . . . , n, (3.9)

with C1 independent of ε.
By density we can replace in (3.8) ξ by wi; we get∫

Ω
|Dwi|2 =

∫
Γ

gwi −
∫

Ω

|wi| − wiui−1

ti − ti−1
≤ ‖wi‖L2(Γ)‖g‖L2(Γ),

and then, by the Poincaré inequality, using (3.9),

‖Dwi‖L2(Ω) ≤ C2‖g‖L2(Γ) (3.10)

with C2 independent of ε.
It follows from (3.9) and (3.10) that wε is bounded in L∞(0, T ;H1(Ω))

as ε → 0. Let εk → 0 such that wεk
⇀ w in L2(0, T ;H1(Ω)). On the other

hand, since uε → u in L1(Q) and uε ∈ sign(wε) almost everywhere on Q, at
the limit u ∈ sign(w) almost everywhere on Q.

Finally, let ũε be the function from [0, T ] into L1(Ω) defined by ũε(ti) = ui

and suppose ũε is linear in [ti−1, ti]; for ξ ∈ H1(Q) with ξ(T, ·) ≡ 0∫ T

0

∫
Ω

ũεξt +
∫

Ω
χ0ξ(0, ·) =

∫ T

0

∫
Ω

Dwε · Dξ +
∫ T

0

∫
Γ

wεg.

Passing to the limit we conclude that u is a solution of (3.3).
To complete the proof, we have to show the uniqueness of the solution to

(3.3). If (u1, w1) and (u2, w2) satisfy (3.3), then∫ T

0

∫
Ω
(u1 − u2)ξt + D(w1 − w2) · Dξ = 0

for all ξ ∈ C1(Q) with ξ(T, ·) ≡ 0 with u1 ∈ sign(w1) and u1 ∈ sign(w1)
almost everywhere on Q. So, applying Lemma A in the appendix of [6] with
H = L2(Ω), V = H1(Ω), a(u, v) =

∫
DuDv, u = u1 − u2 and v = w1 − w2,

the uniqueness follows. �
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Remark 3. In the proof of Theorem 1, we see that the main difficulty
in considering the Neumann boundary condition remains in the control of
the H1-norm of wε with the L2-norm of Dwε in Ω. This is obvious if one
prescribed Dirichlet boundary condition in some part of Γ, by using the
Poincaré inequality; otherwise, we need to control the average of ofwε in Ω;
this is the aim of Lemma 3.

4. The limit as m → ∞
Now, let g ∈ L2(Ω, ) u0 ∈ L2(Ω) and consider the porous-medium equation

(1.1). First, we state the following existence and uniqueness result of a weak
solution:

Proposition 3. For any m ≥ 1, there exists a unique um, a solution of
(1.1) in the sense of⎧⎪⎪⎪⎨

⎪⎪⎪⎩

um ∈ L2(Q), wm := |um|m−1um ∈ L2
loc

(
0,∞;H1(Ω)

)
∫ ∞

0

∫
Ω

ξtum +
∫

Ω
ξ(0, ·)u0 =

∫ ∞

0

∫
Ω

Dwm.Dξ +
∫ ∞

0

∫
Γ

ξg

∀ξ ∈ C1([0,∞) × Ω) compactly supported.

(4.1)

Moreover, um(t) = e−tAg
mu0, for any t ≥ 0.

And, as m → ∞, we have

Theorem 2. Set

μ(t) =
∫
−u0 +

t

|Ω|

∫
Γ

g for t ≥ 0, I = {t ≥ 0 : |μ(t)| ≤ 1} := [a, b]

with a = b = +∞ if I = ∅, and let um be the solution of (4.1).
There exists u ∈ C([0,∞);L1(Ω)) such that

um → u in C((0,∞);L1(Ω)), as m → ∞. (4.2)

If u0 ≥ 0, then u is the unique solution of the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) u ∈ C
(
[0,∞);L1(Ω)

)
, u(0) = u0,

ii) u(t) ≡ μ(t) a.e. on Ω for any t ∈ (0, a] ∪ [b,∞)

iii) ∃ w ∈ L2
loc(a, b;H1(Ω)) such that u ∈ sign(w) a.e. on Ω

and
∫ b

a

∫
Ω

ξtu − Dw · Dξ =
∫ b

a

∫
Γ

ξg, ∀ξ ∈ C1((a, b) × Ω),

compactly supported

(4.3)

where u0 is given by (1.4).
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In order to prove Proposition 3, we need the following result:

Lemma 4. For any m > 0, there exists a constant C depending on m, Ω
and N, such that

‖um‖L2(Ω) ≤ C
{
‖u‖m

L1(Ω) + ‖Dum‖L2(Ω)

}

for any u ∈ L1(Ω) such that um := |u|m−1u ∈ H1(Ω).

Proof. Let u ∈ L1(Ω) such that um := |u|m−1u ∈ H1(Ω) for m > 0 fixed.
Using Lemma A.16 of [3], we have

‖um‖L2(Ω) ≤ λm|Ω| 12 + K
{( |Ω|

|[|u| < λ]|
) 1

2 + 1
}
‖Dum‖L2(Ω)

for all λ > 0. On the other hand, we see that

|[|u| < λ]| = |Ω| − |[|u| ≥ λ]| ≥ |Ω| − 1
λ
‖u‖L1(Ω),

so that

‖w‖L2(Ω) ≤ λm|Ω| 12 + K
{( λ|Ω|

λ|Ω| − ‖u‖L1(Ω)

) 1
2 + 1

}
‖Dum‖L2(Ω)

for all λ > 1
|Ω|‖u‖L1(Ω). Choosing, for instance, λ = 2

|Ω|‖u‖L1(Ω), the result
follows. �
Proof of Proposition 3. To show the uniqueness of a solution u of (4.1),
we apply Lemma A in the appendix of [6] in the same way as in the proof
of Proposition 2.

To prove that the mild solution u = um satisfies (4.1), we consider, as in
the proof of Proposition 2, an ε-approximate solution uε corresponding to a
subdivision t0 < t1 < · · · < tn−1 < T ≤ tn. We have uε(t) = ui on (ti−1, ti]
with ui ∈ L2(Ω), wi := |ui|m−1ui ∈ H1(Ω) and∫

Ω
Dwi · Dξ =

∫
Γ

gξ −
∫

ui − ui−1

ti − ti−1
ξ, ∀ ξ ∈ C1(Ω). (4.4)

It follows that

‖ui‖L1(Ω) ≤ ‖u0‖L1(Ω) + iε

∫
Γ
|g|,

so that

‖uε(t)‖L1(Ω) ≤ M1 := ‖u0‖1 + T

∫
Γ
|g|, ∀t ∈ [0, T ], (4.5)

and, using Lemma 4 and (4.5), we have

‖wi‖H1(Ω) ≤ C
(
1 + ‖Dwi‖L2(Ω)

)
(4.6)
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with C independent of ε. Now, replacing ξ by wi in (4.4), we get

1
m + 1

∫
Ω
|ui|m+1 + ε

∫
Ω
|Dwi|2 ≤ ε

∫
Γ

gwi +
1

m + 1

∫
Ω
|ui−1|m−1

≤ ε‖g‖L2(Γ)‖wi‖H1(Ω) +
1

m + 1

∫
Ω
|ui−1|m+1.

This implies that

1
m + 1

∫
Ω
|ui|m+1 + ε

∫
Ω
|Dwi|2

≤ 1
m + 1

∫
Ω
|ui−1|m+1 + εC‖g‖L2(Γ)

(
1 + ‖Dwi‖L2(Ω)

)

so that wε := |uε|m−1uε satisfies

1
m + 1

∫
|uε|m+1 +

∫ T

0

∫
Ω
|Dwε|2

≤ 1
m + 1

∫
|u0|m+1 + TC‖g‖L2(Γ) +

(∫ T

0

∫
Ω
|Dwε|2

)1/2

.

This implies that Dwε is bounded in L2(Q); then (4.6) implies that wε is
bounded in L2(0, T ;H1(Ω)), and there exists a subsequence that we denote
again by ε such that, as ε → 0,

wε → |u|m−1u weakly in L2(0, T ;H1(Ω)).

At last, let ũε be the function from [0, tn] into L1(Ω) defined by ũε(ti) = ui,
where ũε is linear in [ti−1, ti]; for ξ ∈ W 1,1(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω))
with ξ(T, ·) ≡ 0∫ T

0

∫
Ω

ũεξt +
∫

Ω
u0ξ(0, ·) =

∫ T

0

∫
Ω

Dwε · Dξ +
∫ T

0

∫
Γ

gξ. (4.7)

Passing to the limit in (4.7), we get that u is a solution of (4.1), which ends
the proof of the proposition. �
Proof of Theorem 2. First, we prove the uniqueness of a solution u of (4.3).
By definition, a solution u(t) of (4.3) is perfectly defined on [0, a] ∪ [b,∞).
On the other hand, applying Theorem 1, for a < α < β < b, we find u = uα

on (α, β) × Ω, where uα is the mild solution of⎧⎨
⎩

duα

dt
+ Aguα � 0 on (α, β)

uα(α) = u(α).
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Then, if u1 and u2 are two solutions of (4.3), by the contraction property of
mild solutions, we obtain

‖u1(t) − u2(t)‖L1 ≤ ‖u1(α) − u2(α)‖L1 , ∀ a < α ≤ t < b.

Since u1(α) − u2(α) → 0 in L1(Ω) as α → a, we conclude u1 = u2 on
(a, b) × Ω.

For the existence of a solution to (4.3), let u(t) = e−tAg
u0, for t ≥ 0.

By assumption, u satisfies (4.3–i). Being a mild solution it is clear that
u(t) ∈ D, for any t ≥ 0 and

∫
−u(t) = μ(t); then u satisfies (4.3–ii). At last,

by Theorem 1, u satisfies (4.3–iii).
Now, as the solution of (4.1) (respectively (4.3)) is given by um(t) =

e−tAg
mu0 (respectively u(t) = e−tAg

u0), the convergence result (4.2) follows
from the following lemma, which is based on an idea of [7] (see also [15]),
and this ends the proof of the theorem.

Lemma 5. Let u0 ∈ L1(Ω), u0 ≥ 0 and g ∈ L1(Γ). As m → ∞, we have

e−tAg
mu0 → e−tAg

u0 in C
(
(0,∞);L1(Ω)

)
(4.8)

where u0 is given by (1.4).

Proof. Let 0 < δ ≤ t1 < t2 < ∞. For all t ∈ [t1, t2], we have

‖e−tAg
mu0 − e−tAg

u0‖1 ≤ ‖e−tAg
mu0 − e−(t−δ)Ag

me−δA0
mu0‖1

+ ‖e−(t−δ)Ag
me−δA0

mu0 − e−(t−δ)Ag
u0‖1 + ‖e−(t−δ)Ag

u0 − e−tAg
u0‖1.

Using the L1 contraction property of the operators Ag
m and Ag, we have

‖e−tAg
mu0 − e−tAg

u0‖1 ≤ ‖e−δAg
mu0 − e−δA0

mu0‖1

+ ‖e−(t−δ)Ag
me−δA0

mu0 − e−(t−δ)Ag
u0‖1 + ‖u0 − e−δAg

u0‖1.

And, since

‖(I + λAg
m)−1u0 − (I + λA0

m)−1u0‖1 ≤ λ

∫
Γ
|g|, ∀ λ > 0,

‖e−δAg
mu0 − e−δA0

mu0‖1 ≤ δ

∫
Γ
|g|

and

‖e−tAg
mu0 − e−tAg

u0‖1 ≤ δ

∫
Γ

g + ‖e−(t−δ)Ag
me−δA0

mu0 − e−(t−δ)Ag
∞u0‖1

+‖u0 − e−δAg
∞u0‖1. (4.9)
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Recall that, as m → ∞ (cf. [2]),

e−δA0
mu0 → u0 in L1(Ω)

and u0 ∈ D; then, using the Corollary 2, we have

sup
t∈[t1,t2]

‖e−(t−δ)Ag
me−δA0

mu0 − e−(t−δ)Ag
∞u0‖1 → 0, (4.10)

and (4.9) implies

lim
m→∞

sup
t∈[t1,t2]

‖e−tAg
mu0 − e−tAg

∞u0‖1 ≤ δ

∫
Γ

g + ‖u0 − e−δAg
∞u0‖1 ∀ δ > 0.

At last, let δ → 0; then the result follows. �
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[11] C.M. Elliot and V. Janovský, A variational inequality approach to the Hele–Shaw flow
with a moving boundary, Proc. Roy. Soc. Edinburgh Sect. A, 88 (1981), 93–107.



146 Noureddine Igbida

[12] O. Gil and F. Quiros, Boundary layer formation in the transition from porous medium
to a Hele–Shaw flow, UAM, preprint.

[13] J. Hulshof, Bounded weak solutions of an elliptic–parabolic Neumann problem, Trans.
Am. Math. Soc., 303 (1997), 211–227.

[14] N. Igbida, Large time behavior of solutions to some degenerate parabolic equations, to
appear in Comm. Part. Diff. Eq.

[15] N. Igbida , “Limite singulière de problèmes d’évolution non linéaires,” Thèse de doc-
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