
Differential and Integral Equations Volume 15, Number 8, August 2002, Pages 945–972

NODAL SOLUTIONS TO SEMILINEAR ELLIPTIC
EQUATIONS IN A BALL ∗

Walter Dambrosio

Dipartimento di Matematica, Università di Torino
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Abstract. In this paper we are concerned with the existence and mul-
tiplicity of nodal solutions to the Dirichlet problem associated to the
elliptic equation Δu + q(|x|)g(u) = 0 in the unit ball in RN . The non-
linearity g has a linear growth at infinity and zero, while the weight
function q is nonnegative in [0, 1] and strictly positive in some inter-
val [r1, r2] ⊂ [0, 1]. By means of a topological degree approach, we are
able to prove the existence of solutions with prescribed nodal properties,
depending on the behaviour of the ratio g(u)/u at infinity and zero.

1. Introduction

In this paper we deal with the existence and multiplicity of radial solutions
to the Dirichlet problem{

Δu + q(|x|)g(u) = 0 if x ∈ Ω

u(x) = 0 if x ∈ ∂Ω,
(1.1)

where Ω is the unit ball in RN , N ≥ 1. We assume that g : R −→ R is locally
Lipschitz and that q : [0, 1] −→ R is continuous. This kind of problem has
been faced by many authors, with different methods and techniques; without
seek of completeness, we refer for instance to the papers [1, 2, 6, 8, 12, 15,
16, 25].

We are concerned with the case when g has a linear growth both in zero
and at infinity; a precise mathematical formulation of this condition is given
in (3.3) and (3.4). Here, for simplicity, we assume that there exist g0 > 0
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and g∞ > 0 such that

lim
u→0

g(u)
u

= g0 (1.2)

and

lim
|u|→+∞

g(u)
u

= g∞. (1.3)

As far as the function q is concerned, we assume that q(r) ≥ 0, for every
r ∈ [0, 1], and that there exist q0 > 0 and [r1, r2] ⊂ (0, 1] such that

q(r) ≥ q0, ∀ r ∈ [r1, r2]. (1.4)

Moreover, we set Q = max{q(r) : r ∈ [0, 1]}. As corollaries of our main
results (Theorems 3.1 and 3.2), we will prove the following:
Theorem A. Under the previous conditions, let j be the smallest integer
such that

(Qg0)(N−1)/2(
√

Qg0 − 1) < π
(
j +

1
2
)

(1.5)

and let l be the largest integer such that

π
(
l +

3
2
)

< rN−1
1 (r2 − r1)

√
q0g∞. (1.6)

If j+1 ≤ l, then for every integer n ∈ [j+1, l] there exist two radial solutions
un and vn to (1.1) such that vn(0) < 0 < un(0). Moreover, un and vn have
exactly n zeros in (0, 1).
Theorem B. Under the previous conditions, let j′ be the largest integer such
that

π
(
j′ +

3
2
)

< rN−1
1 (r2 − r1)

√
q0g0 (1.7)

and let l′ be the smallest integer such that

(Qg∞)(N−1)/2(
√

Qg∞ − 1) < π
(
l′ +

1
2
)
. (1.8)

If l′ + 1 ≤ j′, then for every integer n ∈ [l′ + 1, j′] there exist two radial
solutions un and vn to (1.1) such that vn(0) < 0 < un(0). Moreover, un and
vn have exactly n zeros in (0, 1).

Roughly speaking, Theorems A and B ensure the existence of radial solu-
tions to (1.1), provided there is a sufficiently large gap between g0 and g∞.
In turns, this is equivalent to require that the asymptotic behaviours of g at
zero and infinity are different.

In the literature there are several papers concerning boundary value prob-
lems when the nonlinearity is asymptotically linear [3, 4, 9, 11, 15, 17, 18, 20,
21, 24]. In [9, 18, 24] the authors study equations like u′′+f(t, u) = p(t, u, u′),
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(then N = 1), when f is asymptotically linear only at infinity; they give ex-
istence and multiplicity results depending on the function p.

A completely different approach is considered in [11]: according to the
celebrated conjecture in [21], the authors prove multiplicity results for (1.1),
with N = 1, assuming conditions like (1.2)-(1.3) and q strictly positive in
[0, 1]. On the same lines, results comparing the behaviour of g at zero and
infinity are obtained in [17] for autonomous equations involving p-laplacian
like operators. As for the case N > 1, we refer to the paper [15], where a
result similar to Theorems A and B is given in the autonomous case. We also
mention the very recent article [4], which generalizes to systems of second
order equations many of the previous quoted results.

Finally, we refer to the papers [3, 20] for the search of multiple solutions
to (1.1) in the non-radial case.

To the best of our knowledge, the study of asymptotically linear problems
when q has zeros in [0, 1], as in the present article, is new. Indeed, there are
few papers dealing with non-negative functions q having zeros in [0, 1]. In
[19] some qualitative and oscillatory results are given; in [13, 14] the authors
study the existence of multiple positive solutions to (1.1), in dimension N =
1, assuming that the limits in (1.2) and (1.3) are zero or infinity.

In order to prove Theorems A and B, we recall that the search of radial
solutions to (1.1) can be performed through the study of the boundary value
problem

(rN−1u′)′ + rN−1q(r)g(u) = 0, u′(0) = 0 = u(1), (1.9)
where r = |x| and u = u(r). Therefore, classical methods of ordinary differ-
ential equations can be applied. In particular, we combine some phase-plane
analysis with a topological degree approach; indeed, we introduce the homo-
topy

(rs(N−1)u′)′ + rs(N−1)qs(r)g(u) = 0, u′(0) = 0 = u(1), (1.10)

where qs(r) = sq(r) + (1 − s)q0, s ∈ [0, 1], which carries (1.9) into an au-
tonomous non-singular problem (corresponding to s = 0). Then, in order
to study (1.10), we apply a Leray-Schauder type continuation theorem (see
Theorem 3.9 and [7]) for an abstract fixed point equation equivalent to (1.10).

To this end, we observe that a compactness argument (see (2.34) and
the related discussion) shows that nontrivial solutions u to (1.10) have a
finite number n(u) of (simple) zeros in (0, 1). The continuation theorem
will give the existence of solutions to (1.10) with a certain number of zeros,
provided some admissibility condition is fulfilled (see (3.23)). This leads to
the study of the asymptotic properties of n(u) as a function of initial data
of u; the needed estimates (see Propositions 2.11, 2.15, 2.18 and 2.21) are
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obtained by a phase-plane analysis which involves the growth conditions of
g and q. We also notice that results analogous to Theorems A and B can be
obtained when the laplacian Δ in (1.1) is replaced by the p-laplacian (see
also Remark 3.11). The author wishes to thank Professor Anna Capietto for
useful suggestions.

2. Qualitative results and asymptotic behaviour of the

rotation number

In this section we are concerned with the differential equation

(rs(N−1)u′)′ + rs(N−1)qs(r)g(u) = 0, (2.1)

where N ≥ 1, qs ∈ C([0, 1],R+), for every s ∈ [0, 1], and g : R −→ R is
a locally Lipschitz function. Moreover, the function s 	→ qs is continuous.
For every u ∈ R, we set G(u) =

∫ u
0 g(v) dv. We will prove some results

concerning the behaviour of solutions to initial value problems or boundary
value problems associated to (2.1).

To this aim, we will assume the following conditions on g and qs:

g(u)u > 0, ∀ u ∈ R, u 
= 0, (2.2)
lim

|u|→+∞
G(u) = +∞, (2.3)

∃ a′ > 0 : |g(u)| ≤ a′|u|, ∀ u ∈ R, (2.4)
∃ Cg,G > 0 : |g(u)|2 ≤ Cg,GG(u), ∀ u ∈ R, (2.5)
qs(r) ≥ 0, ∀ r ∈ [0, 1], s ∈ [0, 1]. (2.6)

Throughout the paper, we will denote by (H) the set of assumptions (2.2)-
(2.3)-(2.4)-(2.5)-(2.6). Moreover, for every function u defined in [0, 1], we
denote

||u||1 = max
r∈[0,1]

√
u(r)2 + u′(r)2.

Existence and uniqueness results for initial value problems associ-
ated to (2.1). We first give a global existence and continuous dependence
result for (2.1); in the proof we will adapt some arguments introduced in [6].
In opposition to [6], in the present case the function qs could have zeros in
[0, 1].

Proposition 2.1. Assume that (2.4) and (2.5) hold. Then, for every ε > 0
there exists dε ∈ (0, ε] such that if ud,s is the solution to{

(rs(N−1)u′)′ + rs(N−1)qs(r)g(u) = 0

u(0) = d, u′(0) = 0,
(2.7)
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with |d| ≤ dε, then ud,s can be defined on [0, 1] and ||ud,s||1 ≤ ε.

Remark 2.2. 1. We observe that the existence and uniqueness of the solu-
tion to (2.7) follow from standard fixed point arguments (see e.g. [23]).

2. We stress the fact that the constant dε given in Proposition 2.1 is
independent from s ∈ [0, 1].

Proposition 2.1 is based on some estimates on the function Es defined by

Es(r, d) =
1
2
u′

d,s(r)
2 + G(ud,s(r)). (2.8)

Proof. Let ud,s be the solution of (2.7) and let [0, ρ] ⊂ [0, 1] be the maximal
interval of definition of ud,s; we will show that, when |d| is sufficiently small,
ud,s and u′

d,s are uniformly bounded in [0, ρ].
For simplicity, we will denote the function ud,s by u and we will set

v(r) = Es(r, d), ∀ r ∈ [0, ρ]. (2.9)

Using the fact that u is a solution to (2.1), we simply deduce

v′(r) = u′(r)u′′(r) + g(u(r))u′(r)

= −s(N − 1)
r

u′(r)2 + (1 − qs(r)) g(u(r))u′(r)

≤ (1 − qs(r)) g(u(r))u′(r), ∀ r ∈ [0, ρ];

(2.10)

therefore, from assumption (2.5), we obtain

v′(r) ≤ (1 − qs(r)) g(u(r))u′(r) ≤ 1
2

(
(1 − qs(r))2g(u(r))2 + u′(r)2

)
≤ 1

2
(
CCg,GG(u(r)) + u′(r)2

)
≤ 2 + CCg,G

2
v(r), ∀ r ∈ [0, ρ],

(2.11)

where C = max{(1 − qs(r))2 : r ∈ [0, 1], s ∈ [0, 1]}. Now, integrating (2.11)
on (0, r), we infer that

v(r) ≤ v(0)e(2 + CCg,G)r/2 ≤ HG(d), (2.12)

where H = exp((2 + CCg,G)/2). Next, we fix (a1, a2) ∈ (0, 1)2 such that
a1 + a2 ≤ 1/2 and 2a2 < 1; moreover, let us consider dε ∈ (0, a1ε) such that

HG(d) ≤ a2
2ε

2

2
, ∀ |d| ≤ dε. (2.13)

From (2.12), we then deduce that

|u′(r)| ≤
√

2v(r) ≤ a2ε ≤
ε

2
, ∀ r ∈ [0, ρ]
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and

|u(r)| ≤ d +
∫ r

0
|u′(t)| dt ≤ (a1 + a2)ε ≤

ε

2
, ∀ r ∈ [0, ρ].

This implies that u can be extended to [0, 1] and that

||u||1 = max
r∈[0,1]

√
|u(r)|2 + |u′(r)|2 ≤ ε. �

In the sequel, we will also be interested in solutions u of (2.1) satisfying
u(r0) = 0 = u′(r0), for some r0 ∈ (0, 1]. For these solutions, arguing as in the
proof of Proposition 2.1, it is possible to show the validity of the following:

Proposition 2.3. Assume that conditions (2.4) and (2.5) hold. Let u be a
solution of {

(rs(N−1)u′)′ + rs(N−1)qs(r)g(u) = 0

u(r0) = 0 = u′(r0), r0 ∈ (0, 1].
(2.14)

Then, u ≡ 0 in [0, 1].

Global behaviour of solutions with large initial values. In what fol-
lows, we will consider solutions to (2.1) with u′(0) = 0 and u(1) = 0; we
assume that u(0) = d > 0. The case when u(0) < 0 can be treated in a
similar way. Let us first define

ĝ(x) =

{
supv∈[0,x] g(v) if x ≥ 0

supv∈[x,0] g(v) if x < 0
(2.15)

and let us set
Q = max{qs(r) : r ∈ [0, 1], s ∈ [0, 1]}. (2.16)

For every d > 0, let us consider the solution u = ud,s to (2.1) such that
u(0) = d and u′(0) = 0; from (2.2) and (2.6), we deduce that

(rs(N−1)u′)′ = −rs(N−1)qs(r)g(u(r)) ≤ 0,

for every r ∈ [0, 1] such that u(r) > 0. Since u(1) = 0, for every θ ∈ [0, 1)
we can consider the first number r0(d) such that

u(r0(d)) = θd. (2.17)

We now prove an estimate on r0, depending on qs and g; the technique based
on the study of the asymptotic properties of r0 has been introduced in [8]
and it is now standard in developing shooting argument for solutions to (2.1)
(see also [6, 16]):
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Lemma 2.4. Assume that conditions (2.2) and (2.6) hold. Moreover, let ĝ,
Q and r0 as in (2.15), (2.16) and (2.17), respectively. Then, for every d > 0
and for every θ ∈ (0, 1), we have

r0(d) ≥
√

2(1 − θ)
Q

√
d

ĝ(d)
. (2.18)

Remark 2.5. An analogous statement holds true when d < 0.

Proof. Let us consider d > 0, θ ∈ (0, 1) and r0 as in (2.17). For every
r ∈ (0, r0(d)), we integrate (2.1) from 0 to r to obtain

rs(N−1)u′(r) = −
∫ r

0
ts(N−1)qs(t)g(u(t)) dt, ∀ r ∈ (0, r0(d));

hence, recalling (2.16), we deduce that

−rs(N−1)u′(r) ≤ Qĝ(d)
rs(N−1)+1

s(N − 1) + 1
, ∀ r ∈ (0, r0(d)),

i.e.,

u′(r) ≥ − Qĝ(d)
s(N − 1) + 1

r, ∀ r ∈ (0, r0(d)).

By integrating this relation from 0 to r0(d), recalling (2.17), we get

(1 − θ)d ≤ Qĝ(d)
2(s(N − 1) + 1)

r0(d)2

and so

r0(d) ≥
√

2(s(N − 1) + 1)(1 − θ)
Q

√
d

ĝ(d)
.

The result is proved. �
By means of (2.18) we are able to give an important estimate on the

function Es defined in (2.8). Indeed, we can prove the following:

Lemma 2.6. Assume that condition (H) holds true. Then, we have

lim
d→+∞

Es(r, d) = +∞,

uniformly in r ∈ [0, 1] and s ∈ [0, 1].

Remark 2.7. As before, a completely analogous result holds true when
d → −∞.
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Proof. For simplicity, we will write u instead of ud,s. We fix θ ∈ (0, 1); with
r0 as in (2.17), it is easy to see that for every d > 0 we have

Es(r, d) ≥ G(θd), ∀ r ∈ [0, r0(d)], s ∈ [0, 1]. (2.19)

Therefore, by (2.3), for every M > 0 there exists d′M > 0, independent from
s, such that for every d ≥ d′M we have

Es(r, d) ≥ M, ∀ r ∈ [0, r0(d)], s ∈ [0, 1]. (2.20)

Let us now fix
γ = max{2N − 1, Cg,G(1 + Q)2/2}, (2.21)

where Cg,G and Q are given in (2.5) and (2.16), respectively. For every r > 0
we have

E′
s(r, d) +

γ

r
Es(r, d) (2.22)

= −s(N − 1)
r

u′(r)2 + (1 − qs(r))g(u(r))u′(r) +
γ

2r
u′(r)2 +

γ

r
G(u(r));

now, from (2.5) and recalling (2.16), we obtain

|(1 − qs(r))g(u(r))u′(r)| ≤ 1
2
(1 + Q)2g(u(r))2 +

1
2
u′(r)2, (2.23)

for every r ∈ [0, 1] and s ∈ [0, 1]. Therefore, from (2.22) and (2.23), we
deduce that

E′
s(r, d) +

γ

r
Es(r, d) ≥

((γ

2
− s(N − 1)

)1
r
− 1

2
)
u′(r)2

+
γ

r
G(u(r)) − (1 + Q)2

2
g(u(r))2,

(2.24)

for every r > 0. Recalling the choice of γ in (2.21) and using (2.5), we finally
obtain

E′
s(r, d) +

γ

r
Es(r, d) ≥

( γ

Cg,G

1
r
− (1 + Q)2

2
)
g(u(r))2 ≥ 0, (2.25)

for every r > 0. Now, let us multiply (2.25) by r0(d)γ and let us integrate
from r0(d) to r: we obtain

Es(r, d) ≥ rγ
0

rγ
Es(r0, d) ≥ G(θd)rγ

0 , (2.26)

for every r > r0, s ∈ [0, 1]. Using (2.18), we deduce that there exists K > 0
such that

Es(r, d) ≥ KG(θd)
( d

ĝ(d)
)γ/2

, (2.27)
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for every r > r0, s ∈ [0, 1]. Now, from conditions (2.4) and the definition of
ĝ, we deduce that there exists C ′ > 0 such that

d

ĝ(d)
≥ C ′, ∀ d ≥ 0; (2.28)

from (2.3) and (2.28) we obtain

lim
d→+∞

G(θd)
( d

ĝ(d)
)γ/2 = +∞. (2.29)

Therefore, from (2.27) and (2.29) we infer that for every M > 0 there exists
d′′M > 0, independent from s, such that for every d ≥ d′′M we have

Es(r, d) ≥ M, ∀ r ∈ [r0(d), 1], s ∈ [0, 1]. (2.30)

The relations (2.20) and (2.30) prove the result. �
Now, it is easy to deduce from Lemma 2.6 the following result:

Lemma 2.8. Assume condition (H). Then, the following statements hold
true:

1. For every R1 > 0 there exists R2 = R2(R1) ≥ R1 such that for every
solution u = ud,s to (2.7) with u(1) = 0 we have

|d| ≤ R1 ⇒ u(r)2 + u′(r)2 ≤ R2, ∀ r ∈ [0, R].

2. For every R1 > 0 there exists R2 = R2(R1) ≥ R1 such that for every
solution u = ud,s to (2.7) with u(1) = 0, we have

|d| ≥ R2 ⇒ u(r)2 + u′(r)2 ≥ R1, ∀ r ∈ [0, R].

Remark 2.9. Lemma 2.8 is usually referred as the ‘elastic property’; it is
crucial in proving existence results for boundary value problems associated
to (2.1), especially when g has a superlinear growth at infinity. In previous
works (see e.g. [7, 16]) it has been proved in the case when qs > 0.

On the number of zeros of solutions to (2.1). We pass to the study of
the oscillatory properties of solutions to the boundary value problem

(rs(N−1)u′)′ + rs(N−1)qs(r)g(u) = 0, u′(0) = 0 = u(1). (2.31)

Beside condition (H), we will suppose that there exist q0 > 0 and [r1, r2] ⊂
(0, 1] such that

qs(r) ≥ q0, ∀ r ∈ [r1, r2], s ∈ [0, 1]. (2.32)

Recalling Proposition 2.3, by means of a compactness argument, we deduce
that every nontrivial solution u to (2.31) has a finite number of (simple)
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zeros in [0, 1]. Moreover, from Proposition 2.1 we infer that for every d > 0
there exists μd > 0 such that for every solution u to (2.31) we have

|u(0)| ≥ d ⇒ u(r)2 + u′(r)2 ≥ μd, ∀ r ∈ [0, R]. (2.33)

Next, for every d > 0, let us denote by Σd the set of pairs (u, s), where u
is a solution to (2.31) such that |u(0)| ≥ d; by the previous remark, we can
define the map

n : Σd −→ N
(u, s) 	−→ n(u), (2.34)

where n(u) is the number of zeros of u in [0, 1). Moreover, from [16, Lemma
3.1] and (2.33), we immediately deduce the validity of the following:

Lemma 2.10. Assume conditions (2.4) and (2.5). Then, the application n
is continuous in Σd, for every d > 0.

Our aim is to study the asymptotic behaviour of n when |u(0)| → +∞
and |u(0)| → 0. We will be able to give such estimates on n depending on
the behaviour of g at infinity and zero, respectively. We give our first result:

Proposition 2.11. Assume conditions (H) and (2.32). Moreover, suppose
that there exist Z∞ > 0 and g−∞ > 0 such that

g(u)
u

≥ g−∞, ∀ |u| ≥ Z∞. (2.35)

Then, for every χ > 0 there exists dχ > 0 such that for every solution u to
(2.31), we have

|u(0)| ≥ dχ ⇒ n(u) ≥
√

q0g
−∞

rN−1
1 (r2 − r1)

π
− 1 − χ. (2.36)

Proof. We first take η = η(χ) > 0 such that

√
q0g

−∞
rN−1
1 (r2 − r1)

π
− 1 − χ =

r2 − r1 − 2η − π√
r
2(N−1)
1 q0g

−∞

2η +
π√

r
2(N−1)
1 q0g

−∞

. (2.37)

With this choice of η, we are led to prove that there exists dχ > 0 such that

|u(0)| ≥ dχ ⇒ n(u) ≥

r2 − r1 − 2η − π√
r
2(N−1)
1 q0g

−∞

2η +
π√

r
2(N−1)
1 q0g

−∞

. (2.38)
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It is easy to see that

1 ≤ r−s(N−1) ≤ r
−(N−1)
1 , ∀ r ∈ [r1, r2], s ∈ [0, 1]. (2.39)

Moreover, from assumption (2.32) and (2.35) we deduce that

rs(N−1)qs(r)g(u)u ≥ q0r
N−1
1 g−∞u2, ∀ r ∈ [r1, r2], |u| ≥ Z∞, s ∈ [0, 1].

(2.40)
An application of Proposition 2.8, Statement 2, with R1 = (1 + 4/η(ξ)2)Z2

∞
gives the existence of dχ = R2(R1) > 0 such that for every solution u to
(2.31), we have

|u(0)| ≥ dχ ⇒ u(r)2 + u′(r)2 ≥
(
1 +

4
η2

)
Z2
∞, ∀ r ∈ [r1, r2]. (2.41)

From now on, we will consider a solution u satisfying |u(0)| ≥ dχ; in order
to prove (2.38), it is sufficient to show that

|u(0)| ≥ dχ ⇒ n∗(u) ≥

r2 − r1 − 2η − π√
r
2(N−1)
1 q0g

−∞

2η +
π√

r
2(N−1)
1 q0g

−∞

, (2.42)

where n∗(u) denotes the number of zeros of u in [r1, r2). To this aim, we
will estimate the length of the intervals where |u(r)| ≤ Z∞ or |u(r)| ≥ Z∞,
respectively.

First, let us consider an interval [r′, r′′] ⊂ [r1, r2] where |u(r)| ≤ Z∞. By
(2.41), we necessarily have

|u′(r)| ≥ 2Z∞
η

, ∀ r ∈ [r′, r′′]. (2.43)

Assume for instance that u′(r) ≥ 2Z∞/η (the other case is similar). We infer
that

u(r′′) = u(r′) +
∫ r′′

r′
u′(r) dr ≥ u(r′) +

2Z∞
η

(r′′ − r′); (2.44)

recalling that |u(r)| ≤ Z∞ in [r′, r′′], we finally get

r′′ − r′ ≤ η. (2.45)

Now, we assume that [r′, r′′] is such that |u(r)| ≥ Z∞, for every r ∈ [r′, r′′],
and |u(r′)| = |u(r′′)| = Z∞. Again, we suppose that u(r) ≥ Z∞ in [r′, r′′]
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(the other case can be treated in a similar way). We recall that the equation
in (2.31) is equivalent to the first order system{

u′ = r−s(N−1)y

y′ = −rs(N−1)qs(r)g(u).
(2.46)

From the second equation in (2.46) and condition (2.2) we deduce that y
is decreasing in [r′, r′′]. Moreover, since u has a maximum in [r′, r′′], there
exists r∗ ∈ [r′, r′′] such that y(r∗) = 0; this point r∗ is unique and so we can
conclude that

y(r) ≥ 0 for every r ∈ [r′, r∗]
y(r) ≤ 0 for every r ∈ [r∗, r′′] (2.47)

and
u is increasing in [r′, r∗]
u is decreasing in [r∗, r′′]. (2.48)

Now, we consider the interval [r′, r∗]. From (2.39)-(2.40) and (2.46) we
deduce that

u′(r) ≤ r
−(N−1)
1 y(r)

y′(r) ≤ −q0r
N−1
1 g−∞u(r),

(2.49)

for every r ∈ [r′, r∗]. We then multiply by q0r
N−1
1 g−∞u(r) the first inequality

in (2.49) and by r
−(N−1)
1 y(r) the second one; adding up, we obtain

r
2(N−1)
1 q0g

−
∞u(r)u′(r) + y(r)y′(r) ≤ 0, ∀ r ∈ [r′, r∗]. (2.50)

This implies that the function

1
2
y(r)2 +

r
2(N−1)
1 q0g

−
∞

2
u(r)2 (2.51)

is decreasing in [r′, r∗]; therefore, we deduce that

y(r∗)2 + r
2(N−1)
1 q0g

−
∞u(r∗)2 ≤ u′(r)2 + r

2(N−1)
1 q0g

−
∞u(r)2, (2.52)

for every r ∈ [r′, r∗]. This implies that

r
2(N−1)
1 q0g

−
∞

[
u(r∗)2 − u(r)2

]
≤ u′(r)2, (2.53)

for every r ∈ [r′, r∗]. Solving with respect to u′(r) and integrating on (r′, r∗),
we obtain

r∗ − r′ ≤ 1√
r
2(N−1)
1 q0g

−∞

∫ u(r∗)

Z∞

dz√
u(r∗)2 − z2

≤ π

2
1√

r
2(N−1)
1 q0g

−∞

. (2.54)
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In an analogous way, we are able to prove that

r′′ − r∗ ≤ π

2
1√

r
2(N−1)
1 q0g

−∞

. (2.55)

From (2.54) and (2.55) we conclude that

r′′ − r′ ≤ π√
r
2(N−1)
1 q0g

−∞

. (2.56)

Now, using (2.45) and (2.56), a simple computation shows that

r2 − r1 ≤ (n∗(u) + 1)
(
2η +

π√
r
2(N−1)
1 q0g

−∞

)
.

We then deduce that

n∗(u) ≥

r2 − r1 − 2η − π√
r
2(N−1)
1 q0g

−∞

2η +
π√

r
2(N−1)
1 q0g

−∞

;

hence, (2.42) is fulfilled and the result is proved. �

Remark 2.12. When qs(r) ≥ q0 for every r ∈ [0, r2], the result of Propo-
sition 2.11 holds true for every r1 ∈ [0, r2]. It is useful to observe that the
natural choice r1 = 0 leads to a very poor estimate (due to the presence
of the factor rN−1

1 in (2.36)); henceforth, the optimal choice is the value r1

which maximizes the quantity rN−1
1 (r2− r1). It is easy to see that this value

is r1 = r2(1− 1/N); according to this observation, we can restate the result
as follows:

Proposition 2.13. Assume conditions (H) and (2.35). Moreover, suppose
that there exist q0 > 0 and [0, r2] ⊂ [0, 1] such that

qs(r) ≥ q0, ∀ r ∈ [0, r2], s ∈ [0, 1].

Then, for every χ > 0 there exists dχ > 0 such that for every solution u to
(2.31), we have

|u(0)| ≥ dχ ⇒ n(u) ≥
√

q0g
−∞

rN
2 (N − 1)N−1

NNπ
− 1 − χ. (2.57)



958 Walter Dambrosio

Remark 2.14. In the case when N = 1 and q(r) ≥ q0 on [0, 1], it is possible
to refine the proof and to show that

|u(0)| ≥ dχ ⇒ n(u) ≥
√

q0g
−∞

π
− 1

2
− χ. (2.58)

We observe that, when dealing with solutions u satisfying the boundary con-
ditions u′(0) = 0 = u(1), the presence of the term 1/2 in (2.58) is standard.
Indeed, as it is clear for instance from [10, Sect. 3], the estimate (2.58) is
sharp.

Proposition 2.15. Assume conditions (H). Moreover, suppose that there
exist Z∞ > 0 and g+

∞ > 0 such that

g(u)
u

≤ g+
∞, ∀ |u| ≥ Z∞. (2.59)

Finally, let Q as in (2.16). Then, for every χ > 0 there exists d′χ > 0 such
that for every solution u to (2.31), we have

|u(0)| ≥ d′χ ⇒ n(u) ≤ (Qg+
∞)(N−1)/2

π
(
√

Qg+∞ − 1) + χ. (2.60)

Remark 2.16. It is obvious that, when Qg+
∞ = 1, the estimate (2.60) means

that n(u) = 0, i.e., u is positive in (0, 1). Moreover, when Qg+
∞ < 1, (2.60)

simply means that (3.1) has no solutions u with |u(0)| ≥ d′χ.
An analogous observation holds for (2.97) in Proposition 2.21.

Proof. We first consider the case Qg+
∞ > 1. We take η = η(χ) > 0 such

that

(Qg+
∞)(N−1)/2

π
(
√

Qg+∞ − 1) + χ =
(Qg+

∞)(N−1)/2

π − 2η
(
√

Qg+∞ − 1). (2.61)

With this choice, we are led to prove that there exists d′χ > 0 such that

|u(0)| ≥ d′χ ⇒ n(u) ≤ (Qg+
∞)(N−1)/2

π − 2η
(
√

Qg+∞ − 1). (2.62)

Now, let η∗ ∈ (0, 1) be such that

|x| ≤ η∗ ⇒ | arcsin x| ≤ η. (2.63)

From (2.16) and (2.59) we deduce that

rs(N−1)qs(r)g(u)u ≤ Qg+
∞u2, ∀ r ∈ [0, 1], |u| ≥ Z∞, s ∈ [0, 1]. (2.64)
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Using (2.59) and recalling the definition of ĝ (see (2.15), it is easy to deduce
that there exists d′′ > 0 such that for every |d| ≥ d′′ we have

√
2√
Q

√
d

ĝ(d)
≥ 1√

Qg+∞
. (2.65)

Now, we apply Proposition 2.8, Statement 2, with R1 = Z2
∞/η∗2: we infer

that there exists d∗χ = R2(R1) ≥ Z∞ > 0 such that for every solution u to
(2.31) we have

|u(0)| ≥ d∗χ ⇒ u(r)2 + u′(r)2 ≥ Z2
∞

η2∗
, ∀ r ∈ [0, 1]. (2.66)

From now on, we will consider a solution u satisfying |u(0)| ≥ d′χ, with
d′χ = max(d′′, d∗χ). We estimate the length of an interval [r′, r′′] ⊂ (0, 1)
such that |u(r)| ≥ Z∞, for every r ∈ [r′, r′′], and |u(r′)| = |u(r′′)| = Z∞.
We suppose that u(r) ≥ Z∞ in [r′, r′′] (the other case can be treated in a
similar way); arguing as in the proof of Proposition 2.11, we deduce that y
is decreasing in [r′, r′′] and there exists r∗ ∈ [r′, r′′] such that

y(r) ≥ 0 for every r ∈ [r′, r∗]
y(r) ≤ 0 for every r ∈ [r∗, r′′] (2.67)

and
u is increasing in [r′, r∗]
u is decreasing in [r∗, r′′]. (2.68)

Moreover, since u′(r∗) = 0, from (2.66) we deduce that u(r∗) ≥ Z∞/η∗;
therefore, from (2.63) we get

arcsin
Z∞

u(r∗)
≤ η. (2.69)

Now, we consider the interval [r′, r∗]. From (2.39) and (2.64) we deduce that

u′(r) ≥ y(r)
y′(r) ≥ −Qg+

∞u(r), (2.70)

for every r ∈ [r′, r∗]. We then multiply by Qg+
∞u(r) the first inequality in

(2.70) and by y(r) the second one; adding up, we obtain

Qg+
∞u(r)u′(r) + y(r)y′(r) ≥ 0, ∀ r ∈ [r′, r∗]. (2.71)

This implies that the function

1
2
y(r)2 +

Qg+
∞

2
u(r)2 (2.72)
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is increasing in [r′, r∗]; therefore, we deduce that

y(r∗)2 + Qg+
∞u(r∗)2 ≥ r′2(N−1)

u′(r)2 + Qg+
∞u(r)2, (2.73)

for every r ∈ [r′, r∗]. This implies that

Qg+
∞

[
u(r∗)2 − u(r)2

]
≥ r′2(N−1)

u′(r)2, (2.74)

for every r ∈ [r′, r∗]. Solving with respect to u′(r) and integrating on (r′, r∗),
taking into account (2.69), we obtain

r∗ − r′ ≥ r′N−1√
Qg+∞

∫ u(r∗)

Z∞

dz√
u(r∗)2 − z2

≥ r′N−1√
Qg+∞

(π

2
− η

)
. (2.75)

In an analogous way, we are able to prove that

r′′ − r∗ ≥ r′N−1√
Qg+∞

(π

2
− η

)
. (2.76)

From (2.75) and (2.76) we conclude that

r′′ − r′ ≥ r′N−1√
Qg+∞

(π − 2η) . (2.77)

Now, let us denote by r0 the first zero of u; r0 is the point defined by (2.17)
with θ = 0. Therefore, from (2.18) and (2.65), we have

r0 ≥ 1√
Qg+∞

. (2.78)

Finally, using (2.77) and (2.78), a simple computation shows that

1 ≥ n(u) (π − 2η)
( 1√

Qg+∞

)N
+

1√
Qg+∞

.

We then deduce that

n(u) ≤ (
√

Qg+∞)N − (
√

Qg+∞)(N−1)

π − 2η

and this proves the result. When Qg+
∞ = 1, from (2.78) we immediately

deduce that for large initial values any solution u to (3.1) is positive in
(0, 1). Analogously, estimate (2.78) implies that (3.1) has no solutions with
large initial values if Qg+

∞ < 1. �
Remark 2.17. In the case when N = 1 and q(r) ≥ q0 on [0, 1], it is possible
to improve the result and to obtain the sharp estimate

|u(0)| ≥ d′χ ⇒ n(u) ≤
√

Qg+∞
π

− 1
2

+ χ. (2.79)
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Proposition 2.18. Assume conditions (H) and (2.32). Moreover, suppose
that there exist Z0 > 0 and g−0 > 0 such that

g(u)
u

≥ g−0 , ∀ |u| ≤ Z0, u 
= 0. (2.80)

Then, there exists d0 > 0 such that for every solution u to (2.31), we have

|u(0)| ≤ d0 ⇒ n(u) ≥
√

q0g
−
0

rN−1
1 (r2 − r1)

π
− 1. (2.81)

Proof. We first apply Proposition 2.1 with ε = Z0. We get the existence of
d0 = dZ0 such that for every solution u to (2.31) we have

|u(0)| ≤ d0 ⇒ |u(r)| ≤ Z0, ∀ r ∈ [0, 1]. (2.82)

From now on, we will consider a solution u satisfying |u(0)| ≤ d0. From
assumptions (2.32) and (2.80), recalling (2.82), we deduce that

rs(N−1)qs(r)g(u(r))u(r) ≥ q0r
N−1
1 g−0 u(r)2, ∀ r ∈ [r1, r2], s ∈ [0, 1]. (2.83)

We now estimate the length of an interval [r′, r′′] ⊂ [r1, r2], where r′ and r′′

are two consecutive zeros of u. Without loss of generality, we assume that
u(r) > 0, for every r ∈ (r′, r′′). Arguing as in the proof of Proposition 2.11,
it is easy to see that there exists r∗ ∈ (r′, r′′) such that

y(r) ≥ 0 for every r ∈ [r′, r∗]
y(r) ≤ 0 for every r ∈ [r∗, r′′] (2.84)

and
u is increasing in [r′, r∗]
u is decreasing in [r∗, r′′]. (2.85)

Now, we consider the interval [r′, r∗]. From (2.39)-(2.40) and (2.83) we
deduce that

u′(r) ≤ r
−(N−1)
1 y(r)

y′(r) ≤ −q0r
N−1
1 g−0 u(r),

(2.86)

for every r ∈ [r′, r∗]. We then multiply by q0r
N−1
1 g−0 u(r) the first inequality

in (2.86) and by r
−(N−1)
1 y(r) the second one; adding up, we obtain

r
2(N−1)
1 q0g

−
0 u(r)u′(r) + y(r)y′(r) ≤ 0, ∀ r ∈ [r′, r∗]. (2.87)

This implies that the function

1
2
y(r)2 +

r
2(N−1)
1 q0g

−
0

2
u(r)2 (2.88)
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is decreasing in [r′, r∗]; therefore, we deduce that

y(r∗)2 + r
2(N−1)
1 q0g

−
0 u(r∗)2 ≤ u′(r)2 + r

2(N−1)
1 q0g

−
0 u(r)2, (2.89)

for every r ∈ [r′, r∗]. This implies that

r
2(N−1)
1 q0g

−
0

[
u(r∗)2 − u(r)2

]
≤ u′(r)2, (2.90)

for every r ∈ [r′, r∗]. Solving with respect to u′(r) and integrating on (r′, r∗),
we obtain

r∗ − r′ ≤ 1√
r
2(N−1)
1 q0g

−
0

∫ u(r∗)

0

dz√
u(r∗)2 − z2

=
π

2
1√

r
2(N−1)
1 q0g

−
0

. (2.91)

In an analogous way, we are able to prove that

r′′ − r∗ ≤ π

2
1√

r
2(N−1)
1 q0g

−
0

. (2.92)

From (2.91) and (2.92) we conclude that

r′′ − r′ ≤ π√
r
2(N−1)
1 q0g

−
0

. (2.93)

Now, a simple computation shows that

r2 − r1 ≤ (n∗(u) + 1)
π√

r
2(N−1)
1 q0g

−
0

,

where n∗(u) denotes the number of zeros of u in [r1, r2). We then deduce
that

n∗(u) ≥
√

q0g
−
0

rN−1
1 (r2 − r1)

π
− 1

and the result is proved. �
Arguing as in Remark 2.12, it is possible to prove the following:

Proposition 2.19. Assume conditions (H) and (2.80). Moreover, suppose
that there exist q0 > 0 and [0, r2] ⊂ [0, 1] such that

qs(r) ≥ q0, ∀ r ∈ [0, r2], s ∈ [0, 1].

Then, there exists d0 > 0 such that for every solution u to (2.31) we have

|u(0)| ≤ d0 ⇒ n(u) ≥
√

q0g
−
0

rN
2 (N − 1)N−1

NNπ
− 1. (2.94)
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Remark 2.20. As in Proposition 2.11, when N = 1 and q(r) ≥ q0 on [0, 1],
it is possible to refine the proof and to show that

|u(0)| ≤ d0 ⇒ n(u) ≥

√
q0g

−
0

π
− 1

2
. (2.95)

Proposition 2.21. Assume conditions (H). Moreover, suppose that there
exist Z0 > 0 and g+

0 > 0 such that

g(u)
u

≤ g+
0 , ∀ |u| ≤ Z0, u 
= 0. (2.96)

Finally, let Q as in (2.16). Then, there exists d′0 > 0 such that for every
solution u to (2.31), we have

|u(0)| ≤ d′0 ⇒ n(u) ≤ (Qg+
0 )(N−1)/2

π
(
√

Qg+
0 − 1). (2.97)

Proof. We first apply Proposition 2.1 with ε = Z0: we get the existence of
d′0 = d′Z0

such that for every solution u to (2.31) we have

|u(0)| ≤ d′0 ⇒ |u(r)| ≤ Z0, ∀ r ∈ [0, 1]. (2.98)

From now on, we will consider a solution u satisfying |u(0)| ≤ d′0. From
assumption (2.96), recalling (2.82), we deduce that

rs(N−1)qs(r)g(u(r))u(r) ≤ QrN−1
1 g+

0 u(r)2, ∀ r ∈ [0, 1], s ∈ [0, 1]. (2.99)

We now estimate the length of an interval [r′, r′′] ⊂ [r1, r2], where r′ and r′′

are two consecutive zeros of u. Without loss of generality, we assume that
u(r) > 0, for every r ∈ (r′, r′′). Arguing as in the proof of Proposition 2.11,
it is easy to see that there exists r∗ ∈ (r′, r′′) such that

y(r) ≥ 0 for every r ∈ [r′, r∗]
y(r) ≤ 0 for every r ∈ [r∗, r′′] (2.100)

and
u is increasing in [r′, r∗]
u is decreasing in [r∗, r′′]. (2.101)

Now, we consider the interval [r′, r∗]. From (2.99) we deduce that

u′(r) ≥ y(r)
y′(r) ≥ −Qg+

0 u(r), (2.102)

for every r ∈ [r′, r∗]. We then multiply by Qg+
0 u(r) the first inequality in

(2.102) and by y(r) the second one; adding up, we obtain

Qg+
0 u(r)u′(r) + y(r)y′(r) ≥ 0, ∀ r ∈ [r′, r∗]. (2.103)
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This implies that the function

1
2
y(r)2 +

Qg+
0

2
u(r)2 (2.104)

is increasing in [r′, r∗]; therefore, we deduce that

y(r∗)2 + Qg+
0 u(r∗)2 ≥ r′2(N−1)

u′(r)2 + Qg−0 u(r)2, (2.105)

for every r ∈ [r′, r∗]. This implies that

Qg+
0

[
u(r∗)2 − u(r)2

]
≥ r′2(N−1)

u′(r)2, (2.106)

for every r ∈ [r′, r∗]. Solving with respect to u′(r) and integrating on (r′, r∗),
we obtain

r∗ − r′ ≥ r′N−1√
Qg+

0

∫ u(r∗)

0

dz√
u(r∗)2 − z2

=
π

2
r′N−1√

Qg+
0

. (2.107)

In an analogous way, we are able to prove that

r′′ − r∗ ≥ π

2
r′N−1√

Qg+
0

. (2.108)

From (2.107) and (2.108) we conclude that

r′′ − r′ ≥ r′N−1 π√
Qg+

0

. (2.109)

Now, let us denote by r0 the first zero of u; r0 is the point defined by (2.17)
with θ = 0. Therefore, from (2.18) and (2.96), recalling the definition of
(2.15), we can conclude that

r0 ≥ 1√
Qg+

0

. (2.110)

Now, using (2.109) and (2.110), a simple computation shows that

1 ≥ n(u)
π

(Qg+
0 )N/2

+
1√
Qg+

0

.

We then deduce that

n(u) ≤ (Qg+
0 )N/2 − (Qg+

0 )(N−1)/2

π

and the result is proved. �
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Remark 2.22. As in the previous situations, in the case when N = 1 and
q(r) ≥ q0 on [0, 1], it is possible to improve the result and to obtain the
sharp estimate

|u(0)| ≤ d′0 ⇒ n(u) ≤

√
Qg+

0

π
− 1

2
. (2.111)

3. The main results

In this section we present our main result. We are concerned with the
existence and multiplicity of radial solutions to the Dirichlet problem{

Δu + q(|x|)g(u) = 0 if x ∈ Ω
u(x) = 0 if x ∈ ∂Ω,

(3.1)

where Ω is the unit ball in RN , N ≥ 1. We assume that g : R −→ R is
locally Lipschitz and that q : [0, 1] −→ R is continuous; moreover, let us
suppose that

g(u)u > 0, ∀ u ∈ R, u 
= 0, (3.2)
and that there exist 0 < Z0 ≤ Z∞ and g±0 > 0, g±∞ > 0 such that

g−0 ≤ g(u)
u

≤ g+
0 , ∀ |u| ≤ Z0, u 
= 0, (3.3)

and

g−∞ ≤ g(u)
u

≤ g+
∞, ∀ |u| ≥ Z∞. (3.4)

On the function q, we assume that

q(r) ≥ 0, ∀ r ∈ [0, 1], (3.5)

and that there exist [r1, r2] ⊂ (0, 1] and q0 > 0 such that

q(r) ≥ q0, ∀ r ∈ [r1, r2]. (3.6)

Moreover, we set Q = max{q(r) : r ∈ [0, 1]}. We will prove the following
results:

Theorem 3.1. Assume conditions (3.2), (3.3), (3.4), (3.5) and (3.6). More-
over, let j be the smallest integer such that

(Qg+
0 )(N−1)/2(

√
Qg+

0 − 1) < π
(
j +

1
2
)

(3.7)

and let l be the largest integer such that

π
(
l +

3
2
)

< rN−1
1 (r2 − r1)

√
q0g

−∞. (3.8)
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If j+1 ≤ l, then for every integer n ∈ [j+1, l] there exist two radial solutions
un and vn to (3.1) such that vn(0) < 0 < un(0). Moreover, un and vn have
exactly n zeros in (0, 1).

Theorem 3.2. Assume conditions (3.2), (3.3), (3.4), (3.5) and (3.6). More-
over, let j′ be the largest integer such that

π
(
j′ +

3
2
)

< rN−1
1 (r2 − r1)

√
q0g

−
0 (3.9)

and let l′ be the smallest integer such that

(Qg+
∞)(N−1)/2(

√
Qg+∞ − 1) < π

(
l′ +

1
2
)
. (3.10)

If l′ + 1 ≤ j′, then for every integer n ∈ [l′ + 1, j′] there exist two radial
solutions un and vn to (3.1) such that vn(0) < 0 < un(0). Moreover, un and
vn have exactly n zeros in (0, 1).

Remark 3.3. It is interesting to observe the role played by the dimension
of the space RN in Theorems 3.1 and 3.2. Since rN−1 → 0 when N → +∞,
it is clear that, for large values of N , there are not integers l or j′ satisfying
(3.8) or (3.9), respectively. This implies that, when N is big, we are not able
to give existence and multiplicity results for (3.1); however, we are confident
in the fact that this is not due to the technique of the proof and that, in
general, for N large, (3.1) could not have solutions.

On the other hand, the inequalities (3.7) and (3.8) suggest another feature
of the problem: given N , as large as we want, and two integers j and l (with
j + 1 ≤ l), in order (3.7) and (3.8) to be fulfilled it is sufficient to take g+

0
small enough and g−∞ large enough. This means that, in high dimension,
multiplicity results can be obtained when the behaviour of g in zero and
infinity is sensitively different (i.e. when the difference g−∞−g+

0 is large). An
analogous remark holds in the dual case (g−0 − g+

∞ large) for Theorem 3.2.

Remark 3.4. In the case when N = 1 and q(r) ≥ q0 > 0 in [0, 1], taking
into account Remarks 2.14, 2.17, 2.20 and 2.22, it is possible to see that
Theorems 3.1 and 3.2 reduce to the results contained in [11] and in [17] (for
the case of p-laplacian like operators). See also the forthcoming paper [4].

Remark 3.5. In the situation when q(r) ≥ q0 in some interval [0, r2] ⊂ [0, 1],
recalling Remark 2.12 and Propositions 2.13 and 2.19, it is possible to prove
results analogous to Theorems 3.1 and 3.2. Indeed, it is sufficient to replace
(3.8) and (3.9) with

π
(
l +

3
2
)

<
rN
2 (N − 1)N−1

NN

√
q0g

−∞ (3.11)
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and

π
(
j′ +

3
2
)

<
rN
2 (N − 1)N−1

NN

√
q0g

−
0 , (3.12)

respectively.

In the particular case when the ratio g(u)/u admits limits at infinity and
zero, we can restate our results in the following way:

Corollary 3.6. Assume (3.2)-(3.5) and (3.6). Moreover, suppose that there
exist g0 > 0 and g∞ > 0 such that

lim
u→0

g(u)
u

= g0, lim
|u|→+∞

g(u)
u

= g∞. (3.13)

Let j and j′ be the smallest and the largest integer such that

(Qg0)(N−1)/2(
√

Qg0 − 1) < π
(
j +

1
2
)

(3.14)

and
π
(
j′ +

3
2
)

< rN−1
1 (r2 − r1)

√
q0g0, (3.15)

respectively. Let also l and l′ be the largest and the smallest integer such that

π
(
l +

3
2
)

< rN−1
1 (r2 − r1)

√
q0g∞ (3.16)

and
(Qg∞)(N−1)/2(

√
Qg∞ − 1) < π

(
l′ +

1
2
)
, (3.17)

respectively. If j +1 ≤ l (or if l′+1 ≤ j′), then for every integer n ∈ [j +1, l]
(or n ∈ [l′ + 1, j′], respectively) there exist two radial solutions un and vn

to (3.1) such that vn(0) < 0 < un(0). Moreover, un and vn have exactly n
zeros in (0, 1).

The following result gives sufficient conditions for the existence of radial
solutions to (3.1) with a prescribed number of zeros; for simplicity, we con-
sider the situation when the limits of g(u)/u at infinity and zero exist:

Corollary 3.7. Assume (3.2)-(3.5) and (3.6). Moreover, suppose that there
exist g0 > 0 and g∞ > 0 such that

lim
u→0

g(u)
u

= g0, lim
|u|→+∞

g(u)
u

= g∞. (3.18)

For every integer n ≥ 1, there exist 0 < bn ≤ cn such that if

(g0, g∞) ∈ (0, bn) × (cn,+∞)
⋃

(cn,+∞) × (0, bn) (3.19)
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then there exist at least two radial solutions un and vn to (3.1), such that
vn(0) < 0 < un(0), having exactly n zeros in (0, 1).

Remark 3.8. According to Remarks 2.14-2.17-2.20 and 2.22, it is possible
to show that, when N = 1, [r1, r2] = [0, 1] and q0 = q(r) = Q, for every
r ∈ [0, 1], the numbers bn and cn are given by

bn = cn =
π2(n + 1/2)2

Q
.

Therefore, condition (3.19) reduces to the expected√
Qg0 < π

(
n +

1
2
)

<
√

Qg∞ or
√

Qg∞ < π
(
n +

1
2
)

<
√

Qg0.

Proof. By Corollary 3.6, we can prove the existence of radial solutions with
n zeros in (0, 1) if

(Qg0)(N−1)/2(
√

Qg0 − 1) < π
(
n − 1

2
)
, π

(
n +

3
2
)

< rN−1
1 (r2 − r1)

√
q0g∞
(3.20)

or if

(Qg∞)(N−1)/2(
√

Qg∞ − 1) < π
(
n − 1

2
)
, π

(
n +

3
2
)

< rN−1
1 (r2 − r1)

√
q0g0.

(3.21)
For every n ≥ 1, let us denote by φn the (unique) point such that

φN
n − φN−1

n = π
(
n − 1

2
)
;

setting

bn =
φ2

n

Q
, cn =

π2

r
2(N−1)
1 (r2 − r1)2

(n + 3/2)2

q0
,

it is easy to see that (3.20)-(3.21) are equivalent to (3.19). �
The proofs of Theorem 3.1 and Theorem 3.2 are based on a topological

degree approach. To this aim, we need to introduce a continuation the-
orem and to develop an homotopy between problem (3.1) and a suitable
autonomous problem.

A Leray-Schauder type continuation theorem. Let us consider an ab-
stract equation of the form

u = G(u, s), (3.22)
where X is a Banach space and G : dom G ⊂ X× [0, 1] −→ X is a completely
continuous operator. Moreover, we shall consider an open set C such that
C̄ ⊂ dom G.
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Let Σ be the set of the solutions of (3.22), i.e., Σ = {(u, s) : u = G(u, s)}
and, for any subset D ⊂ X× [0, 1], let us denote the section of D at s ∈ [0, 1]
by Ds = {x ∈ X : (x, s) ∈ D}; we also set Gs = G(·, s). We have the
following theorem (see e.g. [5, 7]):

Theorem 3.9. ([5, Th. 3.4]) Let k : Σ∩ C̄ −→ N be a continuous function;
suppose that there exists n ∈ N satisfying the following conditions:

n /∈ k(∂C̄) (3.23)

and
k−1(n) is bounded. (3.24)

Then, for an open set Un
0 such that (k−1(n))0 ⊂ Un

0 ⊂ Un
0 ⊂ C̄0 and Σ0 ∩

Un
0 = (k−1(n))0, the Leray-Schauder degree deg(I − G0, U

n
0 ) is defined. If

deg(I − G0, U
n
0 ) 
= 0, (3.25)

then there is a continuum Cn ⊂ Σ with

{s ∈ [0, 1] : ∃u ∈ X : (u, s) ∈ Cn} = [0, 1]

and such that (u, s) ∈ Cn =⇒ (u, s) ∈ C and k(u, s) = n. In particular there
is at least one solution ũ ∈ C1 of the operator equation u = G(u, 1) with
k(ũ, 1) = n.

Proofs of the main results. We first observe that, if u(x) is a radial
solution to (3.1), then, setting r = |x|, u(r) is a solution of the boundary
value problem

(rN−1u′)′ + rN−1q(r)g(u) = 0, u′(0) = 0 = u(1). (3.26)

Thus, we are led to study (3.26); to this aim, let us consider the problem

(rs(N−1)u′)′ + rs(N−1)qs(r)g(u) = 0, u′(0) = 0 = u(1), (3.27)

where s ∈ [0, 1] and qs(r) = sq(r) + (1 − s)q0, with q0 given in (3.6). It is
clear that (3.26) correspond to (3.27) with s = 1.

We now observe that, from (3.2)-(3.3)-(3.4)-(3.5)-(3.6) and the definition
of qs, conditions (H) and (2.32) of Section 2 are fulfilled: indeed, it is easy
to see that (2.4) holds true for some a′ ≥ max(g+

0 , g+
∞) and that (2.5) is

satisfied with a constant Cg,G depending on g±0 and g±∞. Moreover, we also
have Q = max{qs(r) : r ∈ [0, 1], s ∈ [0, 1]}. Therefore, we can apply to
solutions of (3.27) all the results proved in Section 2.

Using standard arguments (see e.g. [22]), it is possible to see that (3.27) is
equivalent to a fixed point equation of the form (3.22), for a suitable operator
G defined on the space

X = {u ∈ C1([0, 1]) : u′(0) = 0 = u(1)}.
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Now, let us conclude the proof of Theorem 3.1; in Remark 3.10 we will give
the (minor) changes needed to prove Theorem 3.2. Let us fix χ > 0 such
that √

q0g
−∞

rN
1 (r2 − r1)

π
− χ > l +

3
2

(3.28)

and let us consider the numbers d∞ = dχ and d′0 given in Proposition 2.11
and Proposition 2.21, respectively. Moreover, let us set

C = {(u, s) ∈ X × [0, 1] : d′0 < u(0) < d∞}. (3.29)

Finally, for every (u, s) ∈ Σ ∩ C̄, let us define

k(u, s) = n(u),

where n(u) is the number of zeros of u in [0, 1). From Lemma 2.10, the
function k is continuous in Σ∩ C̄; therefore, in order to apply Theorem 3.9,
we need to verify (3.23)-(3.24) and (3.25).

To this aim, let us fix an integer n ∈ [j + 1, l]. Assume that there exists
(u, s) ∈ Σ ∩ ∂C such that k(u, s) = n; this implies that u is a solution to
(3.27) such that n(u) = n and u(0) = d∞ or u(0) = d′0. In the former case,
from Proposition 2.11 and (3.8)-(3.28), we deduce that n(u) > l and this
contradicts the choice of n; in the latter, from Proposition 2.21 and (3.7), we
deduce that n(u) < j + 1, which is again a contradiction. Therefore, (3.23)
is fulfilled.

Moreover, since |u(0)| ≤ d∞, for every (u, s) ∈ Σ ∩ C̄, an application of
Lemma 2.8, Statement 1, with R1 = d∞, gives the existence of R2 > 0 such
that ||(u, s)|| ≤ R2; henceforth, also (3.24) is satisfied.

As far as (3.25) is concerned, we observe that it requires that some local
degree associated to solutions of the autonomous non-singular problem

u′′ + q0g(u) = 0, u′(0) = 0 = u(1) (3.30)

is different from zero. The study of (3.30), based on the notion of ‘time-
map’, has been widely developed (see e.g. [10]); in particular, from [10, Th.
2.3.10] and [10, Th. 2.4.4], we deduce that there exists Un

0 such that (3.25)
holds true if √

q0g
+
0 < π

(
n +

1
2
)

<

√
q0g

−∞ (3.31)

(recall that the numbers π2(n+ 1
2)2 are the eigenvalues of −u′′ with boundary

conditions u′(0) = 0 = u(1).)
It is immediate to see that (3.8) and n ≤ l ensure that

π
(
n +

1
2
)

<

√
q0g

−∞.
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Finally, by means of a careful computation, it is possible to show that (3.7)
and j ≤ n guarantee the validity of the left inequality in (3.31).

Hence, an application of Theorem 3.9 gives the existence of a solution un

to (3.26) such that un(0) > 0 and having exactly n zeros in (0, 1).
It is clear that, taking

C = {(u, s) ∈ X × [0, 1] : −d∞ < u(0) < −d′0},
we obtain the existence of the solution vn such that vn(0) < 0. Then,
Theorem 3.1 is proved.

Remark 3.10. In order to prove Theorem 3.2, it is sufficient to take χ > 0
such that

(Qg+
∞)(N−1)/2

π

(√
Qg+∞ − 1

)
+ χ <

(
l′ +

1
2
)

and to define

C = {(u, s) ∈ X × [0, 1] : d0 < u(0) < d′∞},
where d0 and d′∞ = d′χ are given in Proposition 2.18 and Proposition 2.15,
respectively. The proof follows the same lines of the one developed above.

Remark 3.11. We underline the fact that existence and multiplicity results
on the lines of Theorems 3.1 and 3.2 can be obtained also when the laplacian
Δ in (3.1) is replaced by the p-laplacian (or even more general strongly non-
linear operators, see e.g. [6, 16]). In this case, we need to assume conditions
like (3.3) and (3.4) relating the growth of g and φp(u) = u|u|p−2.
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