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1. Introduction

In this paper we study the generation of analytic semigroup in the space
L2(Rd), and the characterization of the domain, for a family of degenerate
elliptic operators with unbounded coefficients, which includes some well-
known operators arising in Mathematical Finance, and also in Mathematical
Physics. These results can be employed to obtain existence, uniqueness, and
regularity estimates for the solutions of the associated (linear or semilinear)
parabolic problems, through the well-known theory of analytic semigroups
(e.g., [37]).

This has been done partly in [6] for some so-called “no-arbitrage”operators
arising in contingent claim pricing.

We consider the following differential operator in R
d

A ≡
d∑

i,j=1

ψi(x)ψj(x)ai,j(x)Di,j +
d∑

i=1

bi(x)Di − γ2(x), (1.1)

where {ai,j(x)}d
i,j=1 is a uniformly elliptic bounded and measurable real-

valued d-order matrix on R
d, and the coefficients ψi(x)’s, bi(x)’s and γ(x)

are measurable (not bounded) real-valued functions on R
d, with the ψi(x)’s

allowed to vanish in a negligible set Z at most.
It is well known that, in general, these operators do not generate ana-

lytic or strongly continuous semigroup (e.g. consider the one-dimensional
Ornstein–Uhlenbeck operator σD2u + xDu, where σ is a positive constant).
Indeed, the main difficulty to overcome, to obtain some generation result,
is to manage both the possible unboundedness of all coefficients, and the
possible degeneration of the ones of the second-order terms. However, un-
der suitable growth and compensation conditions on the coefficients, we can
obtain the generation result and the characterization of the domain. The
settlement of these conditions plays a central role in this paper. Actually
they come out as a compromise between our attempt of covering, in a unitary
approach, several operators interesting for the applications, and to avoid as
many technicalities as possible in the proofs.

To give the reader an insight on the above-mentioned conditions and their
application, we anticipate here the simple case of dimension d = 1. In this
case we shall ask for the existence of two suitable constants B1 and B2 with
B1 + B2 < 2 such that

|b(x)| ≤ B1E
1/2 |ψ(x)| γ(x) ∀x ∈ R, (1.2)
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and ∣∣D (
ψ(x)2a(x)

)∣∣ ≤ B2E
1/2 |ψ(x)| γ(x) ∀x ∈ R, (1.3)

where E is the modulus of ellipticity of {ai,j(x)}d
i,j=1. For example, (1.2)

and (1.3) are easily verified by the second-order differential operator

x2D2 + xD − (x2 + 4),

by choosing B1 = 1/2 and B2 = 1. This clearly implies the generation result
for the whole class of the modified Bessel operators x2D2 + xD − (x2 + ν2),
where ν ∈ R.

The above simple example also shows how to exploit the results of this
paper. Namely, the verification of our assumptions for a suitably chosen op-
erator actually yields the desired generation result, and the characterization
of the domain, for a wider family of operators, which is deducible from the
chosen one by some analytic perturbation (see [35]).

We shall show that other classical operators, as the generalized Schrö-
dinger operator, and a wide class of diffusion generators, among which the
Black and Scholes operator, can be handled by the approach outlined above.

Elliptic operators, that possibly degenerate somewhere in the domain, or
have unbounded coefficients, have been studied by many authors. Among
them we recall Baouendi and Goulaouic [3], [4], Clement and Timmerman
[18], and Vespri [50], who have proved the generation of analytic semigroups
for some operators whose coefficients are strongly elliptic in the interior of
their bounded domain, but possibly degenerating in the boundary. We recall
also Aronson and Besala [2], [7], and Cannarsa, Lunardi and Vespri [15], [16],
[38], [39], who have obtained the generation of analytic or strongly contin-
uous semigroups for wide families of operators with unbounded coefficients
in R

d, but satisfying everywhere the strong ellipticity condition. Finally, we
recall Cerrai [17], who uses stochastic methods to handle operators similar to
ours, but with different conditions and results, Campiti and Metafune [14],
[43], who also studied operators similar to ours, but in the one-dimensional
case and with the Ventcel’s boundary conditions, and Colombo, Giuli and
Vespri [20], who obtained the generation of strongly continuous semigroup
for differential operators in R

d, very similar to ours, but in divergence form
and with different compensation conditions.

In this paper we assume that the coefficients of the operator A, given
by (1.1), are defined in all R

d, and we prove first the generation of analytic
semigroups in the space L2(Rd). This is obtained by a straightforward appli-
cation of standard Hilbert-space techniques, relying on suitable preliminary
a priori estimates, which are allowed by a natural choice of the compensation
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conditions on the coefficients of A. Then we obtain the characterization of
the domain of A by a localization procedure adapted to the growth rate of
the weights ψi(x)’s at infinity and close to Z.

In a forthcoming paper, part II of this work, we show how to pass from
L2(Rd) to Lp(Rd), for p > 2, by applying a suitable modification of Stewart’s
method [47, 48, 50].

Our main aim is to provide a unitary framework in which we obtain the
generation of analytic semigroups and the characterization of the domain
for some elliptic operators arising in Mathematical Finance. Indeed, in the
no-arbitrage pricing theory, which plays a central role in modern Mathemat-
ical Finance, it is important to provide general existence, uniqueness and
regularity results for some parabolic equations. The semigroup techniques
are then useful tools to get this kind of results, provided one can establish
the semigroup generation and the characterization of the domain for the el-
liptic operator associated to the parabolic equation considered. In addition,
a remark after Garman (see [28]) lightens the financial role played by the
semigroup property in the framework of no-arbitrage prices. This gives one
more motivation for applying the semigroup theory to problems coming from
Mathematical Finance (see Section 4).

Finally, we point out that the analysis of several operators connected with
financial applications calls for a restriction of the domain of the coefficients
in R

d
+, or even in a subset of it. Thus, an appropriate setting of the Cauchy

problem associated to the operator A is usually the positive orthant R
d
+.

In the above-mentioned forthcoming paper we will show how to overcome
this difficulty in some interesting cases, by imposing suitable boundary con-
ditions. This will allows us to apply our results to prove existence and
uniqueness of the solution of the Cauchy problem associated to the operator
A and to give estimates of the solution of the no-arbitrage price and of its
derivatives for a large class of contingent-claim contracts (see [6]).

The paper is organized as follows. In Section 2 we introduce the notation
and recall some results about weighted spaces and analytic semigroups. Sec-
tion 3 is the heart of the paper and is divided into four parts: the first two
on the generation of analytic semigroup, the third on the characterization of
the domain, and the fourth on the weighted case. Finally, in Section 4 we
show some examples of operators which fit our setting.
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2. Preliminary material and notation

Let Ω be an open subset of the d-dimensional Euclidean space R
d. We de-

note by C∞(Ω) the linear space of all infinitely differentiable complex-valued
functions on Ω, and we write C∞

c (Ω) for the linear submanifold of C∞(Ω) of
all functions with compact support in Ω. For every integer k ≥ 0, and every
real 1 ≤ p < ∞, we denote by C∞,n,p(Ω) the linear submanifold of C∞(Ω)
of all functions ϕ such that

∑
|α|≤n(

∫
Ω |Dαϕ(x)|p dx)1/p < ∞. Here we

are employing the usual multi-index differential notation, α ≡ (α1, . . . , αd),
|α| ≡ ∑d

i=1 αi, Dα ≡ Dα1 · · ·Dαd , Dαi ≡ ∂αi/∂xαi
i . Such a notation will

be dropped in the sequel, writing
∫
Ω |ϕ(x)|p dx,

∑d
i=1

∫
Ω |Diϕ(x)|p dx, and∑d

i,j=1

∫
Ω |Di,jϕ(x)|p dx, rather than

∑
|α|=n

∫
Ω |Dαϕ(x)|p dx , when n =

0, 1, 2, respectively.
We denote by Wn,p(Ω) the usual Sobolev space (see, e.g., [1]), defined as

the completion of C∞
c (Ω) with respect to the norm

‖u‖W n,p(Ω)
def
=

∑
|α|≤n

( ∫
Ω
|Dαu(x)|p dx

)1/p
,

writing Lp(Ω) [resp. Hn(Ω)] rather than W 0,p(Ω) [resp. Wn,2(Ω)], and
using the shorthands Wn,p, Lp and Hn for Wn,p(Rd), Lp(Rd) and Hn(Rd),
respectively.

We denote by Wn,p
loc [resp. Lp

loc, Hn
loc] the linear space of all measurable

complex-valued functions on R
d belonging to Wn,p(Ω) [resp. Lp(Ω), Hn(Ω)]

for every open subset Ω of R
d having compact closure, and, for any fixed

real-valued function ξ ∈ Wn,p
loc , we define the weighted Sobolev space Wn,p

ξ as
the completion of C∞

c (Rd) with respect to the weighted norm

‖u‖W n,p
ξ

def
= ‖ξu‖W n,p .

It is well known that Wn,p
ξ can also be defined as the space of all measurable

functions u such that ξu ∈ Wn,p. Similarly, for any choice of the functions
α, βi, i = 1, . . . , d, δi,j , i, j = 1, . . . , d belonging to Lp

loc, with ess inf |α| > 0,
we introduce the weighted Sobolev spaces W 1,p

(α,β) and W 2,p
(α,β,δ) defined as the

completion of C∞
c (Rd) with respect to the weighted norm

‖u‖
W 1,p

(α,β)

def
= ‖αu‖Lp +

d∑
i=1

‖βiDiu‖Lp
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and

‖u‖
W 2,p

(α,β,δ)

def
= ‖αu‖Lp +

d∑
i=1

‖βiDiu‖Lp +
d∑

i,j=1

‖δi,jDi,ju|Lp ,

respectively, and we introduce also the spaces W 1,p
ξ,(α,β) [resp. W 2,p

ξ,(α,β,δ)] of all

measurable functions u such that ξu ∈ W 1,p
(α,β) [resp. ξu ∈ W 2,p

(α,β,δ)], endowed
with the norms

‖u‖
W 1,p

ξ,(α,β)

def
= ‖ξu‖

W 1,p
(α,β)

[resp. ‖u‖
W 2,p

ξ,(α,β,δ)

def
= ‖ξu‖

W 2,p
(α,β,δ)

].

Finally, we shall also write Lp
ξ , Hn

ξ , Hn
(α,β), Hn

(α,β,δ), Hn
ξ,(α,β) and Hn

ξ,(α,β,δ)

in conformity with the notation introduced above.

3. Generation of analytic semigroups in L2(Rd)

In this section we consider the realization of the operator A in L2. For
clearness we divide the analysis into four subsections:

• first, we consider the easiest case, in which the operator is written in
variational form, and we prove the generation of analytic semigroups,
finding also the consequent estimates for the first derivatives;

• second, we examine the nonvariational case, again proving the gen-
eration of analytic semigroups and the estimates for the first deriva-
tives;

• third, we characterize the domain of the realization A2 of A in L2;
• fourth, we extend the previous results to the case of a weighted space

L2
ξ , for a suitable weight ξ.

3.1. Operators in variational form. Let us consider the second-order
differential operator in variational form

Âu
def
=

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x)Diu) +
d∑

i=1

bi(x)Diu − γ2(x)u, (3.1)

which satisfies the assumption below.

Assumption 3.1. Suppose that the following conditions hold true

(1) For all i, j = 1, . . . , d, the coefficients ai,j(x) are bounded measurable
real-valued functions on R

d such that ai,j(x) = aj,i(x), and satisfying
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the strong ellipticity condition

Re
d∑

i,j=1

ai,j(x)zizj ≥ E |z|2 ∀z ∈ C
d, (3.2)

for a suitable modulus of ellipticity E > 0 independent of x ∈ R
d;

(2) for every i = 1, . . . , d, the coefficients bi(x) are measurable real-valued
functions on R

d, while γ(x) and ψi(x) are real-valued functions in
L2

loc with ess infγ ≥ 1; 2

(3) for every i = 1, . . . , d, we have

|bi(x)| ≤ BE1/2ηi(x) |ψi(x)| γ(x) ∀x ∈ R
d, (3.3)

for a suitable constant B < 2 and measurable real-valued functions
ηi(x) on R

d such that
∑d

i=1 η2
i (x) = 1.

Remark 3.2. Note that in the case bi(x) = 0, for every i = 1, . . . , d, the
operator Âu reduces to a classical generalization of the Schrödinger operator
(see [35]). In this case Âu is clearly formally selfadjoint and it is easily
checked that it is also negative. Hence, it is a classical problem to ask
whether a suitable extension of Â generates an analytic semigroup. On the
other hand, in this particular case, (3.3) is trivially satisfied by choosing
B = 0. Therefore, as a byproduct of our approach, we obtain the generation
and the characterization of the domain for the classical family of generalized
Schrödinger operators.

Remark 3.3. As mentioned in the introduction, we could also consider
more general hypotheses on the coefficients γ and ψi. In particular, by minor
modifications of the arguments below, we could deal with coefficients having
isolated nonintegrable singularities. In addition, the arguments exploited
in the proofs clearly show that assumption (3.1.3), and the forthcoming
(3.10.2), could be relaxed by requiring that they hold true, but a permutation
of the occurring indices. Namely, we could rewrite (3.1.3) as follows:

3′. There exists a permutation σ of {1, . . . , d} such that, for every i =
1, . . . , d, we have

|bi(x)| ≤ BE1/2ησ(i)(x)
∣∣ψσ(i)(x)

∣∣ γ(x) ∀x ∈ R
d.

2This condition could be replaced by the seemingly more general ess infγ > 0, provided
to employ a standard normalization procedure.
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However, for the sake of simplicity, we have preferred to avoid such a more
general formulation, except for the exhibition of a simple example when
treating the nonvariational case.

In order to obtain a realization Â2 : D(Â2) → L2 of the formal operator
Â which generates an analytic semigroup, we begin by defining a suitable
domain.

Write ψ ≡ (ψ1, . . . , ψn) and consider the weighted Sobolev space H1
(γ,ψ)

endowed with the norm ‖ · ‖H1
(γ,ψ)

. This space becomes a dense linear sub-

manifold of L2 thanks to the condition ess infγ ≥ 1. Then define

D(Â2)
def
= {u ∈ H1

(γ,ψ) : ∃K(u)> 0s.t. |â(u, ϕ)| ≤ K(u)‖ϕ‖L2 ∀ϕ∈C∞
c (Rd)},

where â(·, ·) is the sesquilinear form associated to Â2 given by

â(u, v)
def
= −

∫
Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)Djv(x)dx

+
∫

Rd

d∑
i=1

bi(x)Diu(x)v(x)dx −
∫

Rd

γ2(x)u(x)v(x)dx,

for all u, v ∈ L2 such that the above integrals make sense. Since C∞
c (Rd) is

dense in L2, for each u ∈ D(Â2) the antilinear functional ϕ ∈ C∞
c (Rd) →

â(u, ϕ) ∈ C may be continuously extended to the whole of L2. Therefore, by
virtue of Riesz’ theorem, there exists a unique f ∈ L2 such that â(u, ϕ) =
〈f, ϕ〉 , for every ϕ ∈ L2. This implies that if we choose

Â2u
def
= f,

then the operator Â2 : D(Â2) → L2 is well defined. It follows that we
can characterize a function u ∈ D(Â2) as a weak solution of the resolvent
equation

(λ − Â2)u = f, (3.4)
for any fixed λ ∈ C, if and only if we have∫

Rd

f(x)ϕ(x)dx =
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)Djϕ(x)dx

−
∫

Rd

d∑
i=1

bi(x)Diu(x)ϕ(x)dx +
∫

Rd

(λ + γ2(x))u(x)ϕ(x)dx
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for every ϕ ∈ C∞
c (Rd).

Following Lunardi [37, Chapter 3], we establish the announced generation
result for the differential operator Â2 in two steps.

First we show that, for each λ ∈ C such that Re λ > 0, the resolvent
equation (3.4) has a unique solution in D(Â2) for every f ∈ L2. 13 Then we
prove that, for every such λ, the λ-resolvent of the operator Â2 satisfies

‖λR(λ; Â2)‖ ≤ K,

for a suitable K > 0. The above procedure will be performed by applying
some preliminary lemmas.

From now on we write A for maxi,j=1,...,d ‖ai,j‖∞, where

‖ai,j‖∞ ≡ sup
x∈Rd

|ai,j(x)| , for all i, j = 1, . . . , d.

Lemma 3.4. Under assumption (3.1), for all u, v ∈ H1
(γ,ψ), we have∫

Rd

d∑
i,j=1

|ψi(x)ψj(x)ai,j(x)Diu(x)Djv(x)| dx (3.5)

≤ A
( d∑

i=1

‖ψiDiu‖L2

)( d∑
i=1

‖ψiDiv‖L2

)
,

∫
Rd

d∑
i=1

|bi(x)Diu(x)v(x)| dx ≤ BE1/2‖γv‖L2

( d∑
i=1

‖ψiDiu‖L2

)
(3.6)

and ∫
Rd

∣∣(λ + γ2(x))u(x)v(x)
∣∣ dx ≤ (|λ| + 1)‖γu‖L2‖γv‖L2 . (3.7)

Proof. The first claim follows by Schwarz’s inequality, which gives∫
Rd

d∑
i,j=1

|ψi(x)ψj(x)ai,j(x)Diu(x)Djv(x)| dx ≤ A

d∑
i,j=1

‖ψiDiu‖L2‖ψjDjv‖L2 .

Then, by virtue of (3.3), we have
d∑

i=1

∫
Rd

|bi(x)Diu(x)v(x)| dx

3Notice that, as a consequence of this result, the resolvent set of the operator Â2

contains the half plane {λ ∈ C : Re λ > 0}. This implies no loss of generality, thanks to
the already-mentioned analytic perturbation techniques.



1094 Fausto Gozzi, Roberto Monte, and Vincenzo Vespri

≤ BE1/2
d∑

i=1

∫
Rd

|ηi(x)ψi(x)γ(x)Diu(x)v(x)| dx

≤ BE1/2
d∑

i=1

( ∫
Rd

η2
i (x) |γ(x)v(x)|2 dx

)1/2( ∫
Rd

|ψi(x)Diu(x)|2 dx
)1/2

≤ BE1/2
( ∫

Rd

|γ(x)v(x)|2 dx
)1/2

d∑
i=1

( ∫
Rd

|ψi(x)Diu(x)|2 dx
)1/2

,

which is the desired (3.6). Finally, since ess infγ ≥ 1 we can write∣∣(λ + γ2(x))u(x)v(x)
∣∣ ≤ (|λ| + 1) |γ(x)u(x)| |γ(x)v(x)| ,

for every x ∈ R
d, and the latter implies (3.7), by applying again Schwarz’s

inequality. �

Lemma 3.5. Under assumption (3.1), for every u ∈ H1
(γ,ψ), we have

Re
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)Dju(x)dx ≥ E

d∑
i=1

‖ψiDiu‖2
L2 (3.8)

and∫
Rd

d∑
i=1

|bi(x)Diu(x)u(x)| dx ≤ B

2

(
‖γu‖2

L2 + E
d∑

i=1

‖ψiDiu‖2
L2

)
. (3.9)

Proof. Estimate (3.8) follows immediately from (3.2). Furthermore, (3.3)
allows us to write

d∑
i=1

∫
Rd

|bi(x)Diu(x)u(x)| dx

≤ B

d∑
i=1

∫
Rd

∣∣∣E1/2ηi(x)ψi(x)γ(x)Diu(x)u(x)
∣∣∣ dx

≤ B

d∑
i=1

( ∫
Rd

η2
i (x) |γ(x)u(x)|2 dx

)1/2( ∫
Rd

E |ψi(x)Diu(x)|2 dx
)1/2

≤ B
d∑

i=1

1
2

( ∫
Rd

η2
i (x) |γ(x)u(x)|2 dx +

∫
Rd

E |ψi(x)Diu(x)|2 dx
)
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=
B

2

( ∫
Rd

( d∑
i=1

η2
i (x)

)
|γ(x)u(x)|2 dx + E

d∑
i=1

∫
Rd

|ψi(x)Diu(x)|2 dx
)
,

and this completes the proof. �
We are now in a position to carry on our procedure.

Proposition 3.6. Under Assumption (3.1), for each λ ∈ C such that Re λ >

0, equation (3.4) has a unique solution u ∈ D(Â2) for every f ∈ L2(Rd).

Proof. For each λ ∈ C, we introduce the sesquilinear form âλ(·, ·) on the
Hilbert space H1

(γ,ψ) given by

âλ(u, v)
def
=

∫
Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)Djv(x)dx

−
∫

Rd

d∑
i=1

bi(x)Diu(x)v(x)dx +
∫

Rd

(λ + γ2(x))u(x)v(x)dx.

Then (3.5)–(3.7) imply that, for all u, v ∈ H1
(γ,ψ), we have

|âλ(u, v)| ≤ A(
d∑

i=1

‖ψiDiu‖L2)(
d∑

i=1

‖ψiDiv‖L2)

+ BE1/2‖γv‖L2(
d∑

i=1

‖ψiDiu‖L2) + (|λ| + 1)‖γu‖L2‖γv‖L2

≤ H‖u‖H1
(γ,ψ)

‖v‖H1
(γ,ψ)

,

for a suitable H > 0. Moreover, if Re λ > 0, thanks to (3.8) and (3.9), we
can write

Re âλ(u, u) ≥ Re
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)Dju(x)dx

−
∣∣∣ ∫

Rd

d∑
i=1

bi(x)Diu(x)u(x)dx
∣∣∣ + Re λ

∫
Rd

|u(x)|2 dx +
∫

Rd

γ2(x) |u(x)|2 dx

≥E
d∑

i=1

‖ψiDiu‖2
L2 −

B

2
(‖γu‖2

L2 + E
d∑

i=1

‖ψiDiu‖2
L2) + Re λ‖u‖2

L2 + ‖γu‖2
L2

≥ K‖u‖2
H1

(γ,ψ)
,
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for a suitable K > 0. Therefore, since for each f ∈ L2 the map v ∈ H1
(γ,ψ) →

〈f, v〉 defines a continuous antilinear functional on H1
(γ,ψ), a standard ap-

plication of the Lax–Milgram theorem allows us to conclude that for every
f ∈ L2 there exists a unique u ∈ H1

(γ,ψ) satisfying the equation

âλ(u, ϕ) = 〈f, ϕ〉 ,

for every ϕ ∈ C∞
c (Rd). Moreover, since â(u, ϕ) = λ 〈u, ϕ〉 − âλ(u, ϕ), it is

clear that such a u belongs to D(Â2). Therefore, for each λ ∈ C such that
Re λ > 0, the operator λ − Â2 : D(Â2) → L2 is invertible, as desired.

Proposition 3.7. Under assumption (3.1), for every λ ∈ C such that Re λ >

0, the λ-resolvent R(λ; Â2) of Â2 satisfies

‖λR(λ; Â2)‖ ≤ K,

for a suitable K > 0 independent of λ.

Proof. Given any fixed λ ∈ C such that Re λ > 0, let u ∈ D(Â2) be the
solution of (3.4) corresponding to some f ∈ L2. Since

âλ(u, u) = 〈f, u〉 (3.10)

holds true, we have

‖u‖L2‖f‖L2 ≥ Re
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)Dju(x)dx

− Re
∫

Rd

d∑
i=1

bi(x)Diu(x)u(x)dx + Re
∫

Rd

(λ + γ2(x))u(x)u(x)dx

≥ E
d∑

i=1

‖ψiDiu‖2
L2 −

∣∣∣ ∫
Rd

d∑
i=1

bi(x)Diu(x)u(x)dx
∣∣∣ + Re λ‖u‖2

L2 + ‖γu‖2
L2 .

Therefore, thanks to (3.9), we obtain

2
2 − B

‖u‖L2‖f‖L2 ≥ ‖γu‖2
L2 + E

d∑
i=1

‖ψiDiu‖2
L2 . (3.11)

On the other hand, (3.10) also yields∫
Rd

λ |u(x)|2 dx = −
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)DiuDju(x)dx
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+
∫

Rd

d∑
i=1

bi(x)Diu(x)u(x)dx −
∫

Rd

γ2(x) |u(x)|2 dx +
∫

Rd

f(x)u(x)dx,

and the latter, by virtue of (3.5), (3.9) and (3.11), implies

|λ|‖u‖2
L2 ≤ A(

d∑
i=1

‖ψiDiu‖L2)2 +
B

2
(‖γu‖2

L2 + E
d∑

i=1

‖ψiDiu‖2
L2)

+ ‖γu‖2
L2 + ‖f‖L2‖u‖L2

≤ Ad
d∑

i=1

‖ψiDiu‖2
L2 + ‖γu‖2

L2 +
2

2 − B
‖u‖L2‖f‖L2 ≤ K‖u‖L2‖f‖L2 ,

for a suitable K > 0 independent of λ. It then follows

|λ|‖u‖L2 ≤ K‖f‖L2 , (3.12)

which is our claim. �
As a consequence of Propositions 3.6 and 3.7 it follows (see, e.g., [37, p.

37])

Theorem 3.8. Under assumption (3.1), the operator Â2 : D(Â2) → L2

generates an analytic semigroup on L2.

In addition, we have

Corollary 3.9. Under assumption (3.1), every solution u ∈ D(Â2) of (3.4)
satisfies

|λ|1/2 ‖γu‖L2 ≤ K ′‖f‖L2 and |λ|1/2 ‖ψiDiu‖L2 ≤ K ′′‖f‖L2 ,

for suitable K ′, K ′′ > 0 independent of λ.

Proof. The claim immediately follows combining (3.12) with (3.11). �

3.2. Operators in nonvariational form. Let us now consider the formal
second-order differential operator

Au
def
=

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Di,ju +
d∑

i=1

bi(x)Diu − γ2(x)u, (3.13)

whose coefficients satisfy conditions similar to those on the coefficients of
the operator (3.1), except for some slight modifications and some additional
requirements. Namely we suppose
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Assumption 3.10. Conditions (2) and (3) of assumption (3.1) hold true.
In addition,

(1) for all i, j = 1, . . . , d the coefficients ai,j(x) are differentiable on R
d;

(2) for all i = 1, . . . , d the coefficients ψi(x) are differentiable, and we
have

|bi(x)| ≤ B1E
1/2η1,i(x) |ψi(x)| γ(x) ∀x ∈ R

d,

|Dj(ψi(x)ψj(x)ai,j(x))| ≤ B2E
1/2η2,i,j(x) |ψi(x)| γ(x) ∀x ∈ R

d,

(3.14)

for suitable constants B1 and B2 such that B1 +B2 < 2 and measur-
able positive functions η1,i(x) and η2,i,j(x) satisfying

d∑
i=1

η2
1,i(x) = d

d∑
i,j=1

η2
2,i,j(x) = 1.

Remark 3.11. As anticipated in the Introduction, in the one-dimensional
case (3.14) calls for the existence of constants B1 and B2 with B1 + B2 < 2
such that

|b(x)| ≤ B1E
1/2 |ψ(x)| γ(x) ∀x ∈ R

d,

∣∣D(ψ2(x)a(x))
∣∣ ≤ B2E

1/2 |ψ(x)| γ(x) ∀x ∈ R
d.

(3.15)

The latter can be easily verified for several well-known operators, but a trivial
analytic perturbation. Besides the “modified”Bessel operator, we mention
also the infinitesimal generator of the geometric Brownian motion

1
2α2x2D2 + rxD

where α, r ∈ R+.

Remark 3.12. The simplest nontrivial example in higher dimensions is
perhaps the infinitesimal generator of the process which is often used to
model the evolution in time of a basket of correlated risky assets. Suppose
we have a basket of d > 1 correlated risky assets whose evolution in time is
described by the d-dimensional process (Xt)t≥0 ≡ ((X(1)

t )t≥0, . . . , (X
(d)
t )t≥0)

which satisfies the system of differential equations

dX
(k)
t = rkX

(k)
t dt + X

(k)
t

d∑
j=1

αj,k dW
(j)
t , k = 1, . . . d,

where rk, αj,k ∈ R+, for all j, k = 1, . . . d, and (W (j)
t )t≥0, j = 1, . . . d, are

independent Wiener processes. Then, it is well known that the infinitesimal
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generator of the process (Xt)t≥0 is the differential operator

1
2

d∑
j,k=1

xjxk

( d∑
i=1

αj,iαi,k

)
xjxkDj,k +

d∑
k=1

rkxkDk.

This operator clearly satisfies assumption (3.10), but a trivial analytic per-
turbation.

Remark 3.13. As already mentioned, Condition (2) of (3.10) could be re-
laxed by requiring that it holds true, but a permutation of the occurring
indices. For instance this applies to the infinitesimal generator of the Brow-
nian motion in the unit circle, which is the bidimensional stochastic process
(X(k)

t )t≥0, k = 1, 2 satisfying the system of differential equations

dX
(1)
t = −1

2X
(1)
t dt − X

(2)
t dWt,

dX
(2)
t = −1

2X
(2)
t dt + X

(1)
t dWt,

where (Wt)t≥0 is a standard Wiener process. The infinitesimal generator of
the Brownian motion in the unit circle is then given by

1
2

(
x2

2D
2
1 − 2x1x2D1,2 + x2

1D
2
2 − x1D1 − x2D2

)
,

and it satisfies Assumption 3.10, but a permutation of the occurring indices,
and a trivial analytic perturbation.

Assumption (3.10) allows us to reduce the analysis of the nonvariational
case to the analysis of the variational one. Indeed, introducing the sesquilin-
ear form a(·, ·) associated to the operator A, given by

a(u, v)
def
= â(u, v) −

∫
Rd

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x))Diu(x)v(x)dx,

for all u, v ∈ H1
(γ,ψ), and writing

D(A2)
def
=

{
u∈H1

(γ,ψ) : ∃K(u) > 0 s.t. |a(u, ϕ)| ≤ K(u)‖ϕ‖2 ∀ϕ ∈C∞
c (Rd)

}
,

we can study the realization A2 : D(A2) → L2 of A employing the results
obtained for the operator Â2. To this end, following the pattern of the
previous section, we establish some preliminary lemmas.

Lemma 3.14. Under assumption (3.10), for all u, v ∈ H1
(γ,ψ), we have∫

Rd

d∑
i,j=1

|Dj(ψi(x)ψj(x)ai,j(x))Diu(x)v(x)| dx
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≤ B2E
1/2d1/2‖γv‖L2

d∑
i=1

‖ψiDiu‖L2 . (3.16)

Proof. Thanks to (3.14), a straightforward computation similar to that in
the proof of Lemma 3.4 gives

d∑
i,j=1

∫
Rd

|Dj(ψi(x)ψj(x)ai,j(x))Diu(x)v(x)| dx

≤ B2E
1/2

d∑
i,j=1

( ∫
Rd

dη2
2,i,j(x)|γ(x)v(x)|2dx

) 1
2
(1

d

∫
Rd

|ψi(x)Diu(x)|2 dx
) 1

2

= B2E
1/2d1/2‖γv‖L2

d∑
i=1

‖ψiDiu‖L2 ,

which is our claim. �
Note that, if γ(x) is locally bounded, then we have

∣∣∣ ∫
Rd

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x))Diu(x)ϕ(x)dx
∣∣∣

≤ B2E
1/2d1/2 sup

x∈supp(ϕ)
|γ(x)| ‖ϕ‖L2

d∑
i=1

‖ψiDiu‖L2 ,

for every ϕ ∈ C∞
c (Rd), and the above result yields D(A2) = D(Â2).

Lemma 3.15. Under assumption (3.10), for all u ∈ H1
(γ,ψ), we have

∫
Rd

d∑
i,j=1

|Dj(ψi(x)ψj(x)ai,j(x))Diu(x)u(x)| dx

≤ B2

2
(‖γu‖2

L2 + E

d∑
i=1

‖ψiDiu‖2
L2). (3.17)

Proof. By virtue of (3.14), an analysis similar to that in the proof of Lemma
3.5 yields

d∑
i,j=1

∫
Rd

|Dj(ψi(x)ψj(x)ai,j(x))Diu(x)u(x)|
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≤ B2

d∑
i,j=1

∫
Rd

∣∣∣E1/2η2,i,j(x)ψi(x)γ(x)Diu(x)u(x)
∣∣∣ dx

≤ B2

2

( ∫
Rd

d
( d∑

i,j=1

η2
2,i,j(x)

)
|γ(x)u(x)|2 dx +

E

d

d∑
i,j=1

∫
Rd

|ψi(x)Diu(x)|2
)
,

from which the desired result easily follows. �
Now we can prove

Proposition 3.16. Under assumption (3.10), for each λ ∈ C such that
Re λ > 0, the equation

(λ −A2)u = f (3.18)

has a unique solution u ∈ D(A2) for every f ∈ L2(Rd).

Proof. For each λ ∈ C, we introduce the sesquilinear form aλ(·, ·) on H1
(γ,ψ)

given by

aλ(u, v)
def
= âλ(u, v) +

∫
Rd

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x))Diu(x)v(x)dx.

Then, combining (3.5), (3.6), (3.9) and (3.16), for all u, v ∈ H1
(γ,ψ), we have

|aλ(u, v)| ≤ H‖u‖H1
(γ,ψ)

‖v‖H1
(γ,ψ)

,

for a suitable constant H > 0. Moreover, if Re λ > 0, from (3.8), (3.9) and
(3.17) it follows that

Re aλ(u, u) ≥ Re
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)Dju(x)dx

−
∣∣∣ ∫

Rd

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x))Diu(x)u(x)dx
∣∣∣

−
∣∣∣ ∫

Rd

d∑
i=1

bi(x)Diu(x)u(x)dx
∣∣∣ + Re

∫
Rd

(λ + γ2(x)) |u(x)|2 dx

≥ E
d∑

i=1

‖ψiDiu‖2
L2 −

(B1 + B2)
2

(
‖γv‖2

L2 + E
d∑

i=1

‖ψiDiu‖2
L2

)
+ Re λ‖u‖2

L2 + ‖γu‖2
L2 ≥ K‖u‖2

H1
(γ,ψ)

,



1102 Fausto Gozzi, Roberto Monte, and Vincenzo Vespri

for a suitable constant K > 0. Therefore, the same argument as that in the
proof of Proposition 3.6 shows that, for each λ ∈ C such that Re λ > 0, the
operator λ −A2 : D(A2) → L2 is invertible. �

We also have

Proposition 3.17. Under assumption (3.10), for each λ ∈ C such that
Re λ > 0, the λ-resolvent R(λ;A2) of the operator A2 satisfies

‖λR(λ;A2)‖ ≤ K,

for a suitable K > 0 independent of λ.

Proof. For a fixed λ ∈ C such that Re λ > 0, let u ∈ D(A2) be the solution
of equation (3.18) corresponding to some f ∈ L2. Since, as in the variational
case, the equality

aλ(u, u) = 〈f, u〉 (3.19)
holds true, we have

‖u‖2‖f‖2 ≥ Re
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)Dju(x)dx

− Re
∫

Rd

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x))Diu(x)u(x)dx

− Re
∫

Rd

d∑
i=1

bi(x)Diu(x)u(x)dx + Re
∫

Rd

(λ + γ2(x)) |u(x)|2 dx

≥ E
d∑

i=1

‖ψiDiu‖2
L2 −

∣∣∣ ∫
Rd

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x))Diu(x)u(x)dx
∣∣∣

−
∣∣∣ ∫

Rd

d∑
i=1

bi(x)Diu(x)u(x)dx
∣∣∣ + Re λ‖u‖2

L2 + ‖γu‖2
L2 .

Hence, from (3.17) and (3.9), it follows that

‖u‖L2‖f‖L2 ≥ Re λ‖u‖2
L2 +

2 − (B1 + B2)
2

(
‖γu‖2

L2 + E

d∑
i=1

‖ψiDiu‖2
L2

)
,

which implies

2
2 − (B1 + B2)

‖u‖L2‖f‖L2 ≥ (‖γu‖2
L2 + E

d∑
i=1

‖ψiDiu‖2
L2). (3.20)
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Finally, a computation similar to that in the proof of Proposition 3.7, gives

|λ| ‖u‖2
L2 ≤ K‖u‖L2‖f‖L2 , (3.21)

for a suitable K > 0 independent of λ, and this is the desired result. �
From the above results it follows

Theorem 3.18. Under assumption (3.10), the operator A2 : D(A2) → L2

generates an analytic semigroup on L2.

Moreover,

Corollary 3.19. Under assumption (3.10), for every solution u ∈ D(A2) of
(3.18), we have

|λ|1/2 ‖γu‖L2 ≤ K ′‖f‖L2 and |λ|1/2 ‖ψiDiu‖L2 ≤ K ′′‖f‖L2 ,

for suitably chosen K ′, K ′′ > 0 independent of λ.

Proof. As in the variational case, combining (3.21) with (3.20), the desired
result immediately follows. �
3.3. Domain characterization. In this subsection we introduce some ad-
ditional conditions on the coefficients of the operator A2 : D(A2) → L2 that
allow us to characterize its domain. We divide the domain characterization
in two parts: a first part in which we obtain the suitable estimates for the
first-order derivatives and a second part devoted to the estimates for the
second-order derivatives. This division is justified for better collating the
assumptions needed to handle the two cases.

3.3.1. Domain Characterization: first derivatives. Throughout the sequel
we make the following assumption:

Assumption 3.20. Under (1) of assumption (3.1), and (2) and (3)of as-
sumption (3.2), suppose in addition that γ is continuously differentiable and
that, for all i, j = 1, . . . , d, we have

|bi(x)| ≤ B1E
1/2η1,i(x) |ψi(x)| γ(x), ∀x ∈ R

d,

|Dj(ψi(x)ψj(x)ai,j(x))| ≤ B2E
1/2η2,i,j(x) |ψi(x)| γ(x), ∀x ∈ R

d,

2 |ψj(x)Djγ(x)ai,j(x)| ≤ B3E
1/2η3,i,j(x)γ2(x), ∀x ∈ R

d,

(3.22)

for suitable constants B1, B2 and B3 such that B1 + B2 + B3 < 2 and
suitable measurable functions η1,i(x), η2,i,j(x) and η3,i,j(x) on R

d satisfying∑d
i=1 η1,i(x) = d

∑d
i,j=1 η2

2,i,j(x) = d
∑d

i,j=1 η2
3,i,j(x) = 1.



1104 Fausto Gozzi, Roberto Monte, and Vincenzo Vespri

Remark 3.21. Notice that
(i) Assuming γ continuously differentiable implies that the bounded

measurable functions γn given by

γn(x)
def
=

{
γ(x) if γ(x) < n
n elsewhere

for every n ≥ 1, are differentiable almost everywhere in R
d. Indeed,

the set Ln
def
= {x ∈ R

d : γ(x) ≥ n} is closed for every n ≥ 1, and γn is

clearly differentiable in
◦
Ln ∪Lc

n. Furthermore, for every x belonging
to the boundary ∂Ln of Ln we have γ(x) = n, and it is easily seen
that γn is still differentiable in those x ∈ ∂Ln where (dγ)x = 0.
Finally, the set {x ∈ ∂Ln : (dγ)x �= 0}, where γn is not differentiable,
is a continuously differentiable (d − 1)-dimensional submanifold of
R

d, which is negligible.
(ii) The assumption of continuous differentiability of γ could be weak-

ened by recalling that the addition of a bounded measurable zero-
order term does not influence the generation property of our oper-
ators. In fact, exploiting the same arguments, we could treat the
case in which the function γ(x) is written as γ0 + γ̃, where γ0 is
measurable and bounded, and γ̃ is continuously differentiable in R

d.

We have

Proposition 3.22. Under assumption (3.20), both γ2u and ψiγDiu belong
to L2, for every i = 1, . . . , d. More precisely, u belongs to H1

(γ2,γψ), and

‖u‖H1
(γ2,γψ)

≤ K‖f‖L2 (3.23)

holds true for a suitable K > 0. In particular, for every i = 1, . . . , d, also
biDiu belongs to L2, and we have

d∑
i=1

‖biDiu‖L2 ≤ d2B1E
1/2

d∑
i=1

‖ψiγDiu‖L2 . (3.24)

Proof. Let u ∈ D(A2) be the solution of equation (3.18) corresponding to

some f ∈ L2. Choosing un
def
= γ2

nu we have clearly un ∈ L2, and

aλ(u, un) = 〈f, un〉2 , (3.25)

for every n ≥ 1. Thanks to the derivation rule we can rewrite (3.25) as∫
Rd

(λ + γ2(x))γ2
n(x) |u(x)|2 dx (3.26)
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+
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)γ2
n(x)Diu(x)Dju(x)dx

=
∫

Rd

f(x)γ2
n(x)u(x)dx +

∫
Rd

d∑
i=1

bi(x)Diu(x)γ2
n(x)u(x)dx

− 2
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)γn(x)Djγn(x)Diu(x)u(x)dx

−
∫

Rd

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x))Diu(x)γ2
n(x)u(x)dx,

which clearly implies

Re λ

∫
Rd

γ2(x) |u(x)|2 dx +
∫

Rd

γ2
n(x)γ2(x) |u(x)|2 dx

+ Re
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)γ2
n(x)Dju(x)dx

≤
∫

Rd

∣∣f(x)γ2
n(x)u(x)

∣∣ dx +
∫

Rd

d∑
i=1

∣∣bi(x)Diu(x)γ2
n(x)u(x)

∣∣ dx

+ 2
∫

Rd

d∑
i,j=1

|ψi(x)ψj(x)ai,j(x)γn(x)Djγn(x)Diu(x)u(x)| dx

+
∫

Rd

d∑
i,j=1

∣∣Dj(ψi(x)ψj(x)ai,j(x))Diu(x)γ2
n(x)u(x)

∣∣ dx. (3.27)

On the other hand, we have

Re
∫

Rd

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)γ2
n(x)Dju(x)dx

=
∫

Rd

γ2
n(x) Re (

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Diu(x)Dju(x))dx

≥ E

∫
Rd

γ2
n(x)

d∑
i=1

|ψi(x)Diu(x)|2 dx, (3.28)
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and ∫
Rd

∣∣f(x)γ2
n(x)u(x)

∣∣ dx ≤ (
∫

Rd

|f(x)|2 dx)1/2(
∫

Rd

γ4
n(x) |u(x)|2 dx)1/2

≤ 1
2ε

∫
Rd

|f(x)|2 dx +
ε

2

∫
Rd

γ4
n(x) |u(x)|2 dx

≤ 1
2ε

‖f‖2
L2 +

ε

2

∫
Rd

γ2
n(x)γ2(x) |u(x)|2 dx, (3.29)

for every ε > 0. Furthermore, thanks to (3.22), computations similar to
those in the proof of Lemma 3.15 give

∫
Rd

d∑
i=1

∣∣bi(x)Diu(x)γ2
n(x)u(x)

∣∣ dx

≤ B1

∫
Rd

d∑
i=1

E1/2η1,i(x)γ(x)γ2
n(x) |ψi(x)Diu(x)u(x)| dx (3.30)

≤ B1

2
(
∫

Rd

γ2
n(x)γ2(x) |u(x)|2 dx + E

∫
Rd

γ2
n(x)

d∑
i=1

|ψi(x)Diu(x)|2 dx),

and∫
Rd

d∑
i,j=1

∣∣Dj(ψi(x)ψj(x)ai,j(x))Diu(x)γ2
n(x)u(x)

∣∣ dx

≤ B2

∫
Rd

d∑
i,j=1

E1/2η2,i,j(x)γ(x)γ2
n(x) |ψi(x)Diu(x)u(x)| dx (3.31)

≤ B2

2
(
∫

Rd

γ2
n(x)γ2(x) |u(x)|2 dx + E

∫
Rd

γ2
n(x)

d∑
i=1

|ψi(x)Diu(x)|2 dx).

Finally, since (3.22) clearly implies

2 |ψj(x)Djγn(x)ai,j(x)| ≤ B3E
1/2η3,i,j(x)γn(x)γ(x),

for every x ∈ R
d, we have also

2
∫

Rd

d∑
i,j=1

|ψi(x)ψj(x)ai,j(x)γn(x)Djγn(x)Diu(x)u(x)| dx
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≤ B3

∫
Rd

d∑
i,j=1

E1/2η3,i,j(x)γ2
n(x)γ(x) |ψi(x)Diu(x)u(x)| dx (3.32)

≤ B3

2
(
∫

Rd

γ2
n(x)γ2(x) |u(x)|2 dx + E

∫
Rd

γ2
n(x)

d∑
i=1

|ψi(x)Diu(x)|2 dx).

Hence, combining (3.28)–(3.32) with (3.27), it follows that

Re λ

∫
Rd

γ2(x) |u(x)|2 dx +
∫

Rd

γ2
n(x)γ2(x) |u(x)|2 dx

+ E

∫
Rd

γ2
n(x)

d∑
i=1

|ψi(x)Diu(x)|2 dx

≤ 1
2ε

+ ‖f‖2
L2

ε

2

∫
Rd

γ2
n(x)γ2(x) |u(x)|2 dx

+
(B1 + B2 + B3)

2
(
∫

Rd

γ2
n(x)γ2(x) |u(x)|2 dx

+ E

∫
Rd

γ2
n(x)

d∑
i=1

|ψi(x)Diu(x)|2 dx),

and this yields

Re λ

∫
Rd

γ2(x)|u(x)|2dx +
2 − (B1 + B2 + B3 + ε)

2

∫
Rd

γ2
n(x)γ2(x)|u(x)|2dx

+
2 − (B1 + B2 + B3)

2
E

∫
Rd

γ2
n(x)

d∑
i=1

|ψi(x)Diu(x)|2 dx≤ 1
2ε

‖f‖2
L2 . (3.33)

Now, choosing ε small enough, it is easily seen that each term on the left side
of (3.33) is positive. Therefore, letting n → ∞, the monotone convergence
theorem allows us to conclude that both γ2(x)u(x) and γ(x)ψi(x)Diu(x)
belong to L2, and (3.23) holds true. Then, by virtue of (3.22), we can easily
complete the proof. �

As an obvious consequence of the above proposition we have that the sum

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Di,ju(x) (3.34)

belongs to L2.
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3.3.2. Domain Characterization: second derivatives. Aiming to show that
for all i, j = 1, . . . , d the single summand ψi(x)ψj(x)Di,ju(x) belongs to L2,
we need to strengthen our hypotheses on the coefficients ψi(x)’s. Therefore,
having in mind our examples, we will assume then the negligibility of the
set Z ≡ {x ∈ R

d : ψi(x) = 0, for some i = 1, . . . , d}, of all zeros of the
ψi(x)’s, and the existence of a suitable countable covering of R

d − Z which
allows us to perform a localization procedure. Such a covering will be made
by rectangles of the type

R(x0, rψ) ≡ {x ∈ R
d : |xi − x

(0)
i | ≤ r|ψi(x0)|, i = 1, . . . , d},

for x0 ≡ (x(0)
1 , . . . , x

(0)
d ) ∈ R

d − Z and r > 0. More precisely, we assume

Assumption 3.23. Under assumption (3.20), suppose in addition that
(i) for every i = 1, . . . , d, the differentiable function ψi(x) belongs to

H1
loc and the set Z is negligible;

(ii) there exist real numbers r1 > 0 and L > 0 such that for every 0 <
r ≤ r1 we can find a countable set Nr ⊂ R

d − Z such that
(a) the family F1 ≡ {R(x, rψ)}x∈Nr

is a covering of R
d − Z;

(b) each rectangle of the family F2 ≡ {R(x, 2rψ)}x∈Nr
does not

contain any element of Z and has a nonempty intersection with
at most a fixed number nr of other rectangles of F2 itself;

(c) we have
1
L

≤ min
i=1,...,d

inf
x∈R(x0,2rψ)

|ψi(x)|
|ψi(x0)|

≤ max
i=1,...,d

sup
x∈R(x0,2rψ)

|ψi(x)|
|ψi(x0)|

≤ L,

for each x0 ∈ Nr.

Remark 3.24. Notice that
(i) Part (i) of assumption (3.23) is necessary to get estimates for the

second-order derivatives of the solution u of the problem Au = f . In
fact, if some of the ψi(x)’s vanish on some open set, then it is not
possible, in general, to get estimates for Di,iu on this set.

(ii) Part (ii) of (3.23) allows us, via a change of variable that will be in-
troduced later, to transform our degenerate global characterization
problem into a set of nondegenerate local ones (one for every rec-
tangle R(x, rψ)). We will show that we can obtain local estimates
for the ψi(x)ψj(x)ai,j(x)Di,ju’s, which turn out to be independent of
the particular rectangle considered. Finally, thanks to the properties
of the covering given in part (ii)–(a)/(b), these local estimates can
be summed up giving the desired global result.
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(iii) We point out that the real difficulty to overcome in this part is to get
estimates in some open neighborhood D of Z and ∞. In fact, one
can split our problem into two parts, one related to the neighborhood
D and the other to the compact set R

d − D. The latter is a very
classical problem, and it can be handled with well-known techniques
(see [29]). For this reason we will concentrate on getting estimates
on the neighborhood D, while skipping this problem on R

d −D.

Assumption (3.23) is convenient for proving our characterization result
(Proposition 3.29). However, it is not easy to check it for given opera-
tors. Therefore, before showing the characterization result, we will establish
Lemma 3.27, which shows that (3.23) is verified under a more treatable as-
sumption, befitted with our examples coming from financial mathematics
(see Section 4). More precisely, we are show that the assumption (3.25)
below implies (3.23).

Assumption 3.25. Under assumption (3.20), suppose in addition that
(i) Part (i) of assumption (3.23) holds true;
(ii) there exist r0 > 0 (small), R0 > 0 (large), and α > 0 such that for

every x ∈
{
x ∈ R

d : dist(x, Z) < r0 or dist(x, 0) > R0

}
≡ D (r0, R0)

and every i = 1, . . . , d we have

|Djψi(x)| ≤ α;

(iii) for every i = 1, . . . , d the function ψi(x) depends only on the vari-
able xi.

Remark 3.26. Notice that
(i) Part (ii) of assumption (3.25) states essentially that there exists a

neighborhood of Z and of ∞ where all derivatives Djψi are uniformly
bounded. This yields a sublinear behavior of the ψi’s close to Z and
to ∞.

(ii) One can easily verify (3.25) when the operator A belongs to a family
of operators arising in the pricing of a contingent claim in the multi-
dimensional case (e.g., the d-dimensional Black and Scholes operator
for every d ≥ 1; see Section 4).

Lemma 3.27 below shows that (3.25) implies (3.23) and, actually, some-
thing more.

Lemma 3.27. Under assumption (3.25), there exist real numbers r1 > 0
and 1 < L < 2 such that
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(i) for every 0 < r ≤ r1 and x0 ∈ {x ∈ R
d − Z : dist(x, Z) <

r0/2 or dist(x, 0) > 2R0} ≡ D (r0/2, 2R0) we have

1
L

≤ min
i=1,...,d

inf
x∈R(x0,10rψ)

|ψi(x)|
|ψi(x0)|

≤ max
i=1,...,d

sup
x∈R(x0,10rψ)

|ψi(x)|
|ψi(x0)|

≤ L;

(ii) for every r < r1 there exists a countable set Nr ⊂ D (r0/2, 2R0) such
that
(a) the family of rectangles F1 ≡ {R(x0, rψ)}x0∈Nr

is a covering of
D (r0/2, 2R0),

(b) every rectangle of the family F2 ≡ {R(x0, 2rψ)}x0∈Nr
does not

contain any point of Z, and has a nonempty intersection with
at most a fixed number nr of other rectangles of F2 itself.

Proof of (i). Step (i)–1. We start by observing that, for r1 > 0 sufficiently
small, for every 0 < r < r1, and for each x0 ∈ D(r0/2, 2R0), we have
R(x0, 10rψ) ⊂ D(r0, R0). Therefore, for each x0 ∈ D(r0/2, 2R0) and every
x ∈ R(x0, 10rψ), we have

|Djψi(x)| ≤ α,

for all i, j = 1, . . . , d.
Indeed, if x0 ∈ D(r0/2, 2R0), we have either ‖x0‖ < 2R0, or ‖x0‖ ≥ 2R0.

Let ‖x0‖ < 2R0. We have then d (x0, Z) < r0/2, and taking x ∈ R(x0, 10rψ)
we can write

d (x, Z) ≤ d (x0, Z) + ‖x − x0‖ ≤ r0/2 +
( d∑

i=1

|xi − x
(0)
i |2

)1/2
(3.35)

≤ r0/2 +
( d∑

i=1

|10rψi(x0)|2
)1/2

≤ r0/2 + 10d1/2r1‖ψ‖L∞(B(0,2R0)),

where ‖ψ‖L∞(B(0,2R0)) ≡ maxi=1,...,d supx∈B(0,2R0) {|ψi(x)|}. Now, (3.35)
clearly implies that choosing r1 small enough we obtain d (x, Z) < r0. Sup-
pose now x0 ∈ D(r0/2, 2R0) and ‖x0‖ > 2R0. Taking x ∈ R(x0, 10rψ) we
have then ‖x‖ > R0. Indeed,

‖x‖ ≥ ‖x0‖ − ‖x − x0‖ = ‖x0‖ −
( d∑

i=1

|xi − x
(0)
i |2

)1/2

≥ ‖x0‖ − 10r
( d∑

i=1

|ψi (x0) |2
)1/2

. (3.36)
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Now, the point x̃0 ≡ R0
‖x0‖x0 belongs to the boundary of B (0, R0), and the

line segment between x̃0 and x0 is contained entirely in D(r0, R0). Then, by
virtue of the differentiability of ψi and of (3.25)(iii), we get, for i = 1, . . . , d,

ψi (x0) = ψi (x̃0) + Diψi (ξ)
(
x

(0)
i − x̃

(0)
i

)
,

for a suitable ξ ∈ [x̃0, x0] ⊆ D(r0, R0), and it follows that

|ψi (x0) | ≤ |ψi (x̃0) |+α‖x̃0−x0‖ ≤ ‖ψ‖L∞(B(0,R0)) +α (‖x0‖ − R0) . (3.37)

Combining (3.36) and (3.37), we have then

‖x‖ ≥ ‖x0‖ − 10r
(
‖ψ‖L∞(B(0,R0)) + α (‖x0‖ − R0)

)√
d,

namely

‖x‖ ≥ ‖x0‖
(
1 − 10rα

√
d
)
− 10r

(
‖ψ‖L∞(B(0,R0)) − αR0

)√
d.

Finally, wiping off the term αR0 and recalling that ‖x0‖ > 2R0, we have

‖x‖ ≤ 2R0

(
1 − 10rα

√
d
)
− 10r

√
d‖ψ‖L∞(B(0,R0)).

From the latter it easily follows that choosing r1 small enough we obtain the
desired ‖x‖ ≥ R0.

Step (i)–2: Conclusion. We are now in a position to prove (i) of the
lemma. Let x0 ∈ D(r0/2, 2R0), and choose r1 > 0 sufficiently small. Thanks
to (iii) of assumption (3.25), for every i = 1, . . . , d and every x ∈ R(x0, 10rψ),
we can write

ψi(x) = ψi(x0) + Diψi(ξ)(xi − x
(0)
i ), (3.38)

for a suitable ξ ∈ [x, x0]. It follows that

|ψi(x)| ≤ |ψi(x0)| + 10αr|ψi(x0)|,
which implies

|ψi(x)|
|ψi(x0)|

≤ 1 + 10αr. (3.39)

Similarly, from (3.38), we have also

|ψi(x)| ≥ |ψi(x0)| − |Diψi(ξ)||xi − x
(0)
i | ≥ |ψi(x0)| − 10αr|ψi(x0)|,

and the latter yields
|ψi(x)|
|ψi(x0)|

≥ 1 − 10αr. (3.40)

Therefore the claim (i) follows by choosing again r1 small enough.
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Proof of (ii). Now we prove (ii). This proof is more technical and adapts
some arguments used in the proof of the so-called Besicovitch lemma (see
[8, 9, 10]). However, we remark that we cannot apply here the Besicovitch
lemma straightforwardly, since

• the set R
d − Z to cover is not bounded;

• the family of sets F = {R(x, rψ)}x∈Rd−Z is not uniformly regular in
the sense used by Besicovitch (see, e.g., [10]).

We divide the proof into three steps:
Step (ii)–1: Extracting the “good”subfamily. To extract the desired

covering of D (r0/2, 2R0) we use a recursive argument. First, we consider
the family F ≡ {R(x, rψ)}x∈D(r0/2,2R0) of the rectangles having centers in
all points of D (r0/2, 2R0), and, by slicing each side into three equal parts,
we divide every rectangle R(x, rψ) of F into 3d rectangles, each of which has
the i-th side of length 1

3r |ψi (x)| for i = 1, ..., d. We write then R(x, rψ/3)
for the internal rectangle. Next, among all rectangles of F we choose a
subfamily R0 such that

(a) the smallest semiaxis is ≥ r · 20 = r;
(b) the internal rectangles R(x, rψ/3) are pairwise disjoint;
(c) the family is maximal with respect to the inclusion, namely, there

is no subfamily of F enjoying (a) and (b) above and containing R0

strictly).

Clearly, if all ψ(x)’s in the set D (r0/2, 2R0) take values < 1 such a family
is empty. Any case R0 is at most countable, because of the two properties
(a) and (b) above. If R0 covers D (r0/2, 2R0) we stop here. If not we choose
another subfamily R1 of F satisfying

(1) the centers belong to D (r0/2, 2R0)−∪R0, where ∪R0 stands for the
union of all rectangles belonging to R0;

(2) the smallest semiaxis is ≥ r · 2−1 = r/2;
(3) the internal rectangles R(x, rψ/3) are pairwise disjoint, and have also

empty intersection with all internal rectangles of the family R0;
(4) the family is maximal with respect to inclusion; namely, there is

no subfamily of F enjoying the properties above and containing R1

strictly).

As above, if R0 ∪R1 covers D (r0/2, 2R0) we stop here. If not we iterate
the procedure. In any case we generate a sequence {Rn}n≥0 of subfamilies
of F such that every Rn satisfies
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(1) the centers belong to D (r0/2, 2R0)−∪n−1
k=0 (∪Rk), where ∪Rk stands

for the union of all sets belonging to Rk);
(2) the smallest semiaxis is ≥ r · 2−n;
(3) the internal rectangles R(x, rψ/3) are pairwise disjoint and have also

empty intersection with all internal rectangles of the families Rk for
k = 1, . . . , n − 1;

(4) the family is maximal with respect to inclusion.
If this procedure stops after a finite number of steps we have found a count-

able covering. If not, we consider the generated countable family ∪∞
n=0Rn

and we prove below that it is a covering for D (r0/2, 2R0).
Step (ii)–2: The “good”subfamily is a covering. We argue by con-

tradiction. Let x0 ∈ D (r0/2, 2R0)−∪∞
n=0 (∪Rn). Then consider the rectan-

gle R(x0, rψ/3), and let n be the first integer such that mini=1,...,d ψi (x0) ≥
2−n. By the maximality of the families Rk for 0 ≤ k ≤ n, there ex-
ist k ∈ {0, . . . , n} and xk ∈ D (r0/2, 2R0) such that R(xk, rψ) ∈ Rk and
R(x0, rψ/3) ∩ R(xk, rψ/3) �= ∅. This implies that we have∣∣∣x(0)

i − x
(k)
i

∣∣∣ ≤ r

3
(|ψi (x0) | + |ψi (xk) |) . (3.41)

for every i = 1, . . . , d. On the other hand, since x0 /∈ R(xk, rψ), there exists
at least an index i0 ∈ {1, . . . , d} such that

|x(0)
i0

− x
(k)
i0

| > r|ψi0 (xk) |. (3.42)

Combining (3.41) and (3.42), we have then

|ψi0 (xk) | <
1
3

(|ψi0 (xk) | + |ψi0 (x0) |) ,

or equivalently
|ψi0 (x0) |

|ψi0 (xk) vert
> 2. (3.43)

But this is impossible. In fact, by Assumption (3.25)–(iii), we have also

|ψi0 (x0) − ψi0 (xk) | = |Di0ψi0 (ξ) ||x(0)
i0

− x
(k)
i0

|, (3.44)

for suitable ξ ∈ [x0, xk]. Hence, combining (3.41) and (3.43), and taking into
account assumption (3.25)–(ii), we obtain

||ψi0(x0)| − |ψi0(xk)|| ≤ |Di0ψi0(xk)||x(0)
i0

− x
(k)
i0

| ≤ α
r

3
(|ψi0(x0)|+ |ψi0(xk)|),

or equivalently ∣∣∣ |ψi0 (x0) |
|ψi0 (xk) |

− 1
∣∣∣ ≤ α

r

3

( |ψi0 (x0) |
|ψi0 (xk) |

+ 1
)
.
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The latter yields
|ψi0 (x0) |
|ψi0 (xk) |

≤ 1 + α
3 r

1 − α
3 r

,

and choosing r1 small enough, for every 0 < r < r1, we can make

1 + α
3 r

1 − α
3 r

< 2,

which contradicts (3.43).
Step (ii)–3. The “good”subfamily enjoys the finite intersection

property. We write F1 for the countable covering of rectangles defined
above, and we write Nr for the set of all centers of the rectangles of F1.
Hence, we are left to prove that the family F2 ≡ {R(x, 2rψ)}x∈Nr

enjoys the
announced properties.

Notice first that the first two steps of our proof assure that the family
F2 covers D (r0, R0) and has empty intersection with Z. Therefore, we need
only to show that every rectangle of F2 has a nonempty intersection with at
most a fixed number nr of the others. To this end, we fix any x0 ∈ Nr and
we claim that

- if x ∈ Nr is such that R (x, 2rψ)∩R(x0, 2rψ) �= ∅, then x ∈ R(x0, 10rψ);
- there are at most 60d points in Nr ∩ R(x0, 10rψ).
To prove the first claim, take x ∈ Nr such that R(x, 2rψ)∩R(x0, 2rψ) �= ∅.

Then we have
|xi − x

(0)
i | ≤ 2r (|ψi(x)| + |ψi (x0) |) . (3.45)

for every i = 1, . . . , d. In addition, by virtue of the part (i) of the lemma,
for any y ∈ R(x, 2rψ) ∩ R(x0, 2rψ), we have

|ψi (y) |
|ψi (x0) |

< 2 and
1
2

<
|ψi (y) |

|ψi (x) vert
,

so that
|ψi (x) | < 2|ψi (y) | < 4|ψi (x0) |. (3.46)

Hence, combining (3.45) and (3.46), the desired claim immediately follows.
To prove the second claim, we recall that, by construction, we have

|xi − yi| >
r

3
(|ψi(x)| + |ψi(y)|) .

for all x, y ∈ Nr and every i = 1, . . . , d. On the other hand, we have also

|ψi(z)|
|ψi (x0) |

>
1
2
.
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for every z ∈ R(x0, 10rψ). Thus, we can write |xi − yi| > r
3 |ψi (x0) |, for all

x, y ∈ Nr∩R(x0, 10rψ) and every i = 1, . . . , d. The latter implies, by suitably
slicing the rectangle R(x0, 10rψ), that the points x ∈ Nr ∩ R(x0, 10rψ) can
be 60d at most. �

The following lemma is also needed.

Lemma 3.28. Suppose that assumption (3.23) holds true, and let f and g
be measurable functions satisfying∫

B(x,rψ)
|g(y)|2 dy ≤

∫
R(x,2rψ)

|f(y)|2 dy

for every x ∈ Nr. Then g belongs to L2 whenever f does.

Proof. Condition (3.27) (ii) clearly implies that for every x ∈ Nr the
corresponding rectangle R (x, 2rψ) of F2 can be covered by not more than
nr rectangles of the family F1, and that each rectangle of F1 can appear in
not more than nr coverings of different rectangles of the family F2. Therefore
we can write∑

x∈Nr

∫
R(x,2rψ)

|f (y)|2 dy ≤ n2
r

∑
x∈Nr

∫
R(x,rψ)

|f (y)|2 dy. (3.47)

Moreover, since Condition (3.27) (ii) implies also that each rectangle of the
family F1 has nonempty intersection with not more than nr different rect-
angles of F1 itself, we have∑

x∈Nr

∫
R(x,rψ)

|f (y)|2 dy ≤ nr

∫
Rd

|f (y)|2 dy. (3.48)

Combining (3.47) and (3.48), we obtain∫
Rd

|g (y)|2 dy ≤
∑

x∈Nr

∫
R(x,rψ)

|g (y)|2 dy ≤
∑

x∈Nr

∫
B(x,2rψ)

|f (y)|2 dy

≤ n3
r

∫
Rd

|f (y)|2 dy,

which yields the lemma. �
We are now in a position to carry on our localization procedure, to obtain

a full characterization of the domain.
For each x0 ≡ (x(0)

1 , . . . , x
(0)
d ) ∈ R

d − Z, consider the change of variables
Tx0,ψ : R

d → R
d given by

Tx0,ψ(x)
def
=

(
(x1−x

(0)
1 )/|ψ1(x0)|, . . . , (xd−x

(0)
d )/|ψd(x0)|

)
≡ (x̃1, . . . , x̃d) ≡ x̃
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with inverse

T−1
x0,ψ(x̃) = (x(0)

1 + |ψ1(x0)| x̃1, . . . , x
(0)
d + |ψd(x0)| x̃d) = (x1, . . . , xd) = x.

Clearly Tx0,ψ(R(x0, rψ)) = R(0, r) and T−1
x0,ψ(R(0, r)) = R(x0, rψ), where,

for every r > 0, we write R(0, r) for the d-dimensional cube of R
d centered

at 0 with semiaxes of length r. Exploiting Lemmas 3.28 and 3.27, we obtain

Proposition 3.29. Under assumption (3.23), the functions

ψi(x)ψj(x)Di,ju(x)

belong to L2 for all i, j = 1, . . . , d. More precisely, we have u ∈ H2
(γ2,γψ,ψ2)

and the estimate

|λ|‖u‖L2 + |λ|1/2‖u‖H1
(γ,ψ)

+ ‖u‖H2
(γ2,γψ,ψ2)

≤ K‖f‖L2 (3.49)

holds true for a suitable K > 0.

Proof. Writing

p(x)
def
=

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Di,ju(x), (3.50)

we know that p belongs to L2, and it is easily seen that, for each x0 ∈ R
d−Z,

the change of variables x
def
= T−1

x0,ψ(x̃) allows us to rewrite (3.50) in the form

p̃(x̃)
def
= p

(
T−1

x0,ψ(x̃)
)

=
d∑

i,j=1

ψ̃i(x̃)ψ̃j(x̃)
|ψi(x0)| |ψj(x0)|

ãi,j(x̃)D̃i,j ũ(x̃), (3.51)

with obvious meaning of the “tilda”-labeled functions, and with p̃ still be-
longing to L2. Now, given any smooth cut-off function on R

d such that

θr(x̃) =
{

1 if x̃ ∈ R(0, r)
0 if x̃ /∈ R(0, 2r) ,

we can consider the function v(x̃)
def
= θr(x̃)ũ(x̃). Clearly, v ∈ L2 and, as a

distribution, it satisfies
d∑

i,j=1

ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)Di,jv = θr(x)p̃ (3.52)

+
d∑

i,j=1

ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x) (ũDi,jθr(x) + Diθr(x)Dj ũ + Djθr(x)Diũ) .
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(here we dropped the cumbersome “tilda”label for the independent vari-
ables since no confusion can arise) whose right hand side, say q̃, fulfills
q̃ ∈ L2(R(0, 2r)), and q̃ = 0 on ∂R(0, 2r). On the other hand, under our
hypotheses, the second-order differential operator

v →
d∑

i,j=1

ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)Di,jv

is strongly elliptic in R(0, 2r), and, thanks to well known regularity results
(see [26, Theorem 17.2, p. 67], [29, 8.3, p. 173] and [19]), it follows that
v ∈ H2(R(0, 2r)). In addition, using assumption (3.10), a similar argument
to that in the proof of [29, Theorem 8.8, p.173] assures us that there exists a
suitable constant K > 0, independent of the particular rectangle R(x, 2rψ)
considered, such that the estimate

‖v‖H2(R(0,r)) ≤ K
(
‖q̃‖L2(R(0,2r)) +

d∑
i=1

1
|ψi(x0)|

‖γ̃ψ̃iDiv‖L2(R(0,2r))

)
(3.53)

holds true.
Indeed, to prove (3.53), observe first that, for every ϕ ∈ C∞

c (R(0, 2r)), we
have∫

R(0,2r)
q̃(x)ϕ(x)dx =

∫
R(0,2r)

d∑
i,j=1

ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)Di,jv(x)ϕ(x)dx.

(3.54)
In particular, choosing any h ∈ R such that

0 < |2h| < dist(supp(ϕ), ∂R(0, 2r)),

and replacing ϕ in (3.54) with the difference quotient

�hϕ
def
=

ϕ(x + hek) − ϕ(x)
h

,

for some k = 1, . . . , d, we obtain∫
R(0,2r)

d∑
i,j=1

ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)Di,jv(x)�−hϕ(x)dx

= −
∫

R(0,2r)

d∑
i,j=1

Dj

( ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)
)
Div(x)�−hϕ(x)dx
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+
∫

R(0,2r)

d∑
i,j=1

�h
( ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)Div(x)
)
Djϕ(x)dx. (3.55)

On the other hand, we have

�h
( ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)Djv(x)
)

=
ψ̃i(x + hek)ψ̃j(x + hek)

|ψi(x0)| |ψj(x0)|
ãi,j(x + hek)Dj�hv(x)

+ �h
( ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)
)
Djv(x). (3.56)

Therefore, combining (3.54), (3.55) and (3.56), it follows that∫
R(0,2r)

d∑
i,j=1

ψ̃i(x + hek)ψ̃j(x + hek)
|ψi(x0)| |ψj(x0)|

ãi,j(x + hek)Di�hv(x)Djϕ(x)dx

=
∫

R(0,2r)
q̃(x)�−hϕ(x)dx

+
∫

R(0,2r)

d∑
i,j=1

Dj

( ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)
)
Div(x)�−hϕ(x)dx

−
∫

R(0,2r)

d∑
i,j=1

�h
( ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)
)
Div(x)Djϕ(x)dx. (3.57)

Now, writing ‖Dϕ‖L2(R(0,2r)) as a shorthand for
∑d

i=1

∫
R(0,2r) |Diϕ(x)|2 dx,

and applying [29, Lemma 7.23, p. 161], we have∫
R(0,2r)

∣∣∣q̃(x)�−hϕ(x)
∣∣∣ dx ≤ ‖q̃‖L2(R(0,2r))‖Dϕ‖L2(R(0,2r)). (3.58)

Moreover, since (3.14) of assumption (3.10) implies∣∣∣Dj(ψ̃i(x)ψ̃j(x)ãi,j(x))
∣∣∣ ≤ B2E

1/2 |ψj(x0)| |ψ̃i(x)|γ̃(x),

we can write∫
R(0,2r)

d∑
i,j=1

∣∣∣Dj

( ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)
)
Div(x)�−hϕ(x)

∣∣∣dx
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≤ B2E
1/2d

∫
R(0,2r)

d∑
i=1

|ψ̃i(x)|γ̃(x)
|ψi(x0)|

Div(x)�−hϕ(x)dx

≤ B2E
1/2d‖Dϕ‖L2(R(0,2r))

d∑
i=1

1
|ψi(x0)|

‖ψ̃iγ̃Div‖L2(R(0,2r)), (3.59)

and similarly∫
R(0,2r)

d∑
i,j=1

�h
( ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

ãi,j(x)
)
Div(x)Djϕ(x)dx

≤ B2E
1/2d‖Dϕ‖L2(R(0,2r))

d∑
i=1

1
|ψi(x0)|

‖ψ̃iγ̃Div‖L2(R(0,2r). (3.60)

Hence, combining (3.57) with (3.58), (3.59) and (3.60), we obtain

∫
R(0,2r)

d∑
i,j=1

ψ̃i(x + hek)ψ̃j(x + hek)
|ψi(x0)| |ψj(x0)|

ãi,j(x + hek)Di�hv(x)Djϕ(x)dx

(3.61)

≤‖Dϕ‖L2(R(0,2r))

(
‖q̃‖L2(R(0,2r))+2B2E

1
2 d

d∑
i=1

1
|ψi(x0)|

‖ψ̃iγ̃Div‖L2(R(0,2r))

)
.

From the ellipticity condition, we obtain that

E

∫
R(0,2r)

d∑
i=1

|Diϕ(x)|2 dx ≤
∫

R(0,2r)

d∑
i,j=1

ãi,j(x + hek)Diϕ(x)Djϕ(x)dx.

(3.62)
On the other hand, since v has compact support, by the usual density argu-
ment, we can replace ϕ(x) with �hv in (3.62). Therefore, combining (3.61)
with (3.62), and taking into account (i) of Lemma 3.27, we can write

E

∫
R(0,2r)

d∑
i=1

∣∣∣Di�hv(x)
∣∣∣2 dx ≤ L2‖D�hv‖L2(R(0,2r))

×
(
‖q̃‖L2(R(0,2r)) + 2B2Ed

d∑
i=1

1
|ψi(x0)|

‖ψ̃iγ̃Div‖L2(R(0,2r))

)
. (3.63)

Finally, thanks to Young’s inequality, the desired (3.53) follows.
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Now, since ∣∣∣det J(T−1
x0,ψ)(x)

∣∣∣ =
d∏

i=1

|ψi(x0)| ,

changing the variables back, and recalling the definition of q̃, we have

d∑
i,j=1

‖ψi(x)ψj(x)Di,ju(x)‖L2(B(x0,rψ))

=
d∏

i=1

|ψi(x0)|1/2
d∑

i,j=1

∥∥∥ ψ̃i(x)ψ̃j(x)
|ψi(x0)| |ψj(x0)|

Di,j ũ(x)
∥∥∥

L2(R(0,r))
(3.64)

≤ L2
d∏

i=1

|ψi(x0)|1/2
d∑

i,j=1

‖Di,j ũ(x)‖L2(R(0,r))

≤ KL2
d∏

i=1

|ψi(x0)|1/2
(
‖q̃‖L2(R(0,2r)) +

d∑
i=1

∥∥∥γ̃
ψ̃i

|ψi(x0)|
Diũ

∥∥∥
L2(R(0,2r))

)

≤ KL2
(
‖g‖L2(B(x0,2rψ)) +

d∑
i=1

‖γψiDiu‖L2(B(x0,2rψ))

)
,

where g(x)
def
= q̃ ((Tx0,ψ(x)) for every x ∈ B(x0, 2rψ). Moreover, since

max
i=1,...,d

sup
x∈B(x0,2rψ)

|Diθr (Tx0,ψ(x))| ≤ 1
r
‖Dθ‖∞,

max
i,j=1,...,d

sup
x∈B(x0,2rψ)

|Di,jθr (Tx0,ψ(x))| ≤ 1
r2

‖D2θ‖∞,

it follows that∣∣∣ d∑
i,j=1

ψ̃i(x̃)ψ̃j(x̃)
|ψi(x0)| |ψj(x0)|

ãi,j(x̃)ũ(x̃)Di,jθr(x̃)
∣∣∣

=
∣∣∣ d∑

i,j=1

ψi(x)ψj(x)
|ψi(x0)| |ψj(x0)|

ai,j(x)u(x)Di,jθr (Tx0,ψ(x))
∣∣∣ (3.65)

≤
d∑

i,j=1

∣∣∣ ψi(x)ψj(x)
ψi(x0)ψj(x0)

∣∣∣‖aij‖∞ |u(x)| 1
r2

‖D2θ‖∞ ≤ 1
r2

d2AL2‖D2θ‖∞ |u(x)| ,
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and

∣∣∣ d∑
i,j=1

ψ̃i(x̃)ψ̃j(x̃)
|ψi(x0)| |ψj(x0)|

ãi,j(x̃)Diθr(x̃)Dj ũ(x̃)
∣∣∣

=
∣∣∣ d∑

i,j=1

ψi(x)ψj(x)
|ψi(x0)|

ai,j(x)Diθr (Tx0,ψ(x))Dju(x)
∣∣∣

≤
d∑

i,j=1

∣∣∣∣ψi(x)ψj(x)
ψi(x0)

∣∣∣∣ ‖aij‖∞
1
r
‖Dθ‖∞ |Dju(x)|

≤ 1
r
dAL‖Dθ‖∞

d∑
j=1

|ψj(x)| |Dju(x)| . (3.66)

Combining (3.52) with (3.65) and (3.66), we can write

‖h‖L2(B(x0,2rψ)) ≤ ‖g‖L2(B(x0,2rψ)) +
1
r2

d2AL2‖D2θ‖∞‖u‖L2(B(x0,2rψ))

+
2
r
dAL‖Dθ‖∞

d∑
i=1

‖ψiDiu‖L2(B(x0,2rψ)), (3.67)

and, by virtue of (3.64) and (3.67), it follows that

d∑
i,j=1

‖ψi(x)ψj(x)Di,ju(x)‖L2(B(x0,rψ))

≤ KL2

(
(‖g‖L2(B(x0,2rψ)) +

1
r2

d2AL2‖D2θ‖∞‖u‖L2(B(x0,2rψ))) (3.68)

+
2
r
dAL‖Dθ‖∞

d∑
i=1

‖ψiDiu‖L2(B(x0,2rψ)) +
d∑

i=1

‖γψiDiu‖L2(B(x0,2rψ))

)
.

Summing up to the covering, thanks to Lemma 3.28 and (3.23), we can
conclude that u ∈ H2

(γ2,γψ,ψ2).
With regard to the proof of (3.49), notice that, rewriting (3.18) as

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)Di,ju =
(
λ + γ2(x)

)
u −

d∑
i=1

bi(x)Diu − f(x),
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we obtain

p(x) =
(
λ + γ2(x)

)
u −

d∑
i=1

bi(x)Diu − f(x).

Hence,

‖p‖L2 ≤ |λ|‖u‖L2 + ‖γ2u‖L2 +
d∑

i=1

‖biDiu‖L2 + ‖f‖L2 .

Finally, combining the latter with the global estimate which arises from
(3.68) by summing on the covering, and taking into account (3.24), we can
complete the proof. �

3.4. Generation in L2
ξ(R

d). In this subsection we consider the problem
of the generation of analytic semigroups on a weighted Sobolev space for a
suitable modification of the differential operator considered up to now. For
this task we choose a weight function ξ ∈ Hn

loc, and we invoke the related
weighted Sobolev spaces L2

ξ , H1
ξ,(γ,ψ) and H2

ξ,(γ2,γψ,ψ2) defined in Section 2.
Our result is

Theorem 3.30. Assume that assumption (3.20) still holds true when re-
placing the first-order term of the operator A with

d∑
i=1

biDi +
d∑

i,j=1

ψiψjai,j

(Diξ

ξ
Dj +

Djξ

ξ
Di

)
and the zero-order term with

−γ2 +
d∑

i,j=1

ψiψjai,j

(Di,jξ

ξ
+ 2

DiξDjξ

ξ2

)
+

d∑
i=1

bi
Diξ

ξ
;

then the operator A has a realization A2,ξ : D(A2,ξ) → L2
ξ which generates an

analytic semigroup on L2
ξ . Moreover, for each λ ∈ C such that Re λ > 0, the

resolvent equation λu −A2,ξu = f has, for every f ∈ L2, a unique solution
u ∈ D(A2,ξ), which satisfies the estimate

|λ|‖u‖L2
ξ
+ |λ|1/2‖u‖

H1,2
ξ,(γ,ψ)

+ ‖u‖
H2,2

ξ,(γ2,γψ,ψ2)

≤ C‖f‖L2
ξ
, (3.69)

for a suitable constant C > 0. In particular we have D(A2,ξ) = H2
ξ,(γ2,γψ,ψ2).

Proof. Given f ∈ L2
ξ , let us consider the formal resolvent equation

λu −Au = f.
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Multiplying both the sides by the weight ξ, we can write

λξu −A(ξu) + (A(ξu) − ξAu) = ξf.

On the other hand, we have

ξAu−A(ξu) =
d∑

i,j=1

ψiψjai,j ((Di,jξ)u + DjξDiu + DiξDju) +
d∑

i=1

bi(Diξ)u,

and since

DiξDju =
Diξ

ξ
(ξDju) =

Diξ

ξ
(Dj(ξu) − uDjξ) ,

we can rewrite

A(ξu) − ξAu =
d∑

i,j=1

ψi(x)ψj(x)ai,j(x)

×
(Di,jξ(x)

ξ(x)
ξ(x)u +

Diξ

ξ(x)
Dj(ξu) +

Djξ

ξ(x)
Di(ξu) + 2

DiξDjξ

ξ2
(ξu)

)

+
d∑

i=1

bi
Diξ

ξ
(ξu).

Therefore, if we consider the operator A2 : D(A2) → L2 given by D(A2)
def
=

D(A2), and

A2v
def
= Av +

d∑
i,j=1

ψi(x)ψj(x)ai,j(x)
( Diξ

ξ(x)
Djv +

Djξ

ξ(x)
Div

)

+
d∑

i,j=1

ψi(x)ψj(x)ai,j(x)
Di,jξ(x)

ξ(x)
v +

d∑
i=1

bi
Diξ

ξ
v,

our hypotheses assure that, for each λ ∈ C such that Re λ > 0, the resolvent
equation

(λ −A2)v = g

has, for every g ∈ L2, a unique solution v ∈ D(A2), which satisfies the
estimate

|λ|‖v‖L2 + |λ|1/2‖v‖H1
(γ,ψ)

+ ‖v‖H2
(γ2,γψ,ψ2)

≤ K‖g‖L2 , (3.70)

for a suitable K > 0. Now, writing

D(A2,ξ)
def
=

{
u ∈ L2

ξ : uξ ∈ D(A2)
}

, A2,ξu
def
= Au,
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and multiplying by ξ, the resolvent equation λu −A2,ξu = f becomes

λ(ξu) −A2(ξu) = ξf.

Therefore, (3.69) follows by a straightforward application of (3.70) to v =
ξu. Finally, we have D(A2,ξ) = H2

ξ,(γ2,γψ,ψ2), as it easily follows from the
definition of our weighted spaces (see Section 2).

Remark 3.31. The problem of determining the type of weights for which the
assumptions of the above proposition are satisfied now arises. For instance,
it can be checked that, choosing ξ(x) =

(
c + |x|2d

)−1, where c ∈ R+, the
contribution of the terms depending on ξ in the operator A in Assumption 1
goes to zero as d increases. It follows that one can always find a good weight
of the form described above, for which Proposition 3.30 holds true.

4. Examples

Example 4.1. We consider here the PDE for the price of a European contin-
gent claim (see, e.g., [51]) in the multifactor case. Assume that the price pro-
cess of the given underlying d ≥ 1 assets (Xt)t≥0, where Xt =

(
X1

t , . . . , Xd
t

)
satisfies the SDE

dXt = rXtdt + σ (diagXt) dWt, ∀t ≥ 0

where (diagXt) is the diagonal matrix with the components of (Xt)t≥0 on
the main diagonal, r is the interest rate of a reference riskless asset in the
market, σ is a given d-order matrix such that, writing σ∗ for the transpose
of σ, the matrix σ∗σ is positive definite, and (Wt)t≥0, is a d-dimensional
Wiener process, Wt =

(
W 1

t , . . . , W d
t

)
.

Write v ≡ v(x, t), where x ≡ (x1, . . . , xd), for the no-arbitrage price of a
contingent claim having payoff g ≡ g(x) at the expiration time T . Then,
under the so-called no-arbitrage assumption, it is well known that v solves
the backward Kolmogorov PDE, Dtv +Av = 0, with the terminal condition
v(x, T ) = g(x), where

Av =
1
2
Tr ((σdiagx) (Di,jv) (σdiagx)∗) + r

d∑
i=1

xiDiv − rv,

and (Di,jv) denotes the d-order matrix having entries for Di,jv, for i, j =
1, . . . , d.

It can be easily verified that the second-order operator A fits all our
assumptions. Of course, for financial applications we are interested in solving
the above PDE on the positive orthant, not in all R

d, but this does not
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affect our results. Indeed, it can be proved that the operator A generates a
positivity-preserving semigroup (see the second part of this paper).

Notice that this equation can be also studied (and solved explicitly) by
taking the change of variable (see [11, 51]) yi = lnxi for all i = 1, . . . , d.
Our approach has the advantage of proving a general generation property
and a characterization of the domain which turns out to be useful when one
considers some modifications of the basic model above. A first example is
the case when σ depends on x, but preserves differentiability and strong
ellipticity (see, e.g., [51]). Another example is discussed below.

Assume that the underlying assets pay dividends with a rate ρ ≡ ρ(x, t),
and that they are subjected to a tax rate ε ≡ ε(x, t). Then we have the
following no-arbitrage PDE

Dtv +
1
2
Tr ((σdiagx) (Di,jv) (σdiagx)∗) + (r − ρ)(1 − ε)

d∑
i=1

xiDiv − rv,

with the terminal condition v(x, T ) = g(x). In the case d = 1, ρ = 0,
ε = 0 and g(x) = (x − E)+, where E is the maturity price, we obtain the
well-known Black and Scholes equation described in [11]. Also multifactor
models, such as the ones appearing in [24], options on futures contracts, and
swaps can be treated in our framework (see [6], [51]), along with the example
below.

Example 4.2. We consider here the structure model of interest rate deriva-
tives. For the so-called affine single-term structure model the interest rate is
modeled by the stochastic process (Xt)t≥0 satisfying the differential equation

dXt = (α1(t) + α2(t)Xt) dt + (β1(t) + β2(t)Xt) dWt. (4.1)

Suitably choosing the coefficients α1(t), α2(t), β1(t) and β2(t), different term-
structure models can be obtained. In particular (see part II of this work),
two models fitting our framework can be obtained by choosing

(1) α1 = α2 = β1 = 0 [23]
(2) β1 = 0 [12].

The price of a zero-coupon bond maturing at date T is the solution of the
Cauchy problem

Dtv + Av = 0,

with the end terminal condition v(x, T ) = 1, where

Av = 1
2(β1 + β2x)2Dx,xv + (α1 + α2x)Dxv.
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We remark in addition that our results allow us to treat also multifactor
models with time-dependent coefficients (see [24, 6]), and also semilinear
perturbations of the above equations, as already shown in the previous ex-
ample.

Example 4.3. The following equation, coming from nonlinear filtering, is
considered in [5, 46]:

Dt = Dx,x + xDxv − x2v, t > 0, x ∈ R

with initial condition v(0, x) = g(x). It can be easily checked that the second
order operator defined by the right-hand side of the above equation satisfies
our assumptions.

Acknowledgments. Thanks to E. Barucci for useful suggestions about
financial applications and G. Da Prato and A. Lunardi for useful discussions.
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tiques dégénérés, applications, J. Funct. Anal., 9 (1972), 208–248.

[5] J.S. Baras, G.L. Blankeship, and W.E. Hopkins Jr., Existence, uniqueness and asymp-
totic behaviour of solutions to a class of Zakai equations with unbounded coefficients,
IEEE Transactions on Automatic Control, 28 (1983), 203–214.

[6] E. Barucci, F. Gozzi, and V. Vespri, On a semigroup approach to no-arbitrage pricing
theory, Preprint DIMADEFAS, University of Florence, accepted for publications in
the “Proceedings of the Seminar on Stochastic Analysis, Random Fields and Appli-
cations” (conference held in Ascona, Switzerland, September 1996).

[7] P. Besala, On the existence of a fundamental solution for a parabolic differential equa-
tion with unbounded coefficients, Ann. Polon. Math., 29 (1975), 403–409.

[8] A.S. Besicovitch, On the fundamental properties of linearly measurable plane sets of
points, I, Math. Ann., 98 (1928), 422–464.

[9] A.S. Besicovitch, On the fundamental properties of linearly measurable plane sets of
points, II, Math. Ann., 115 (1938), 296–329.

[10] A.S. Besicovitch, On the fundamental properties of linearly measurable plane sets of
points, III, Math. Ann., 116 (1939), 394–357.

[11] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political
Economy, 81 (1973), 637–654.

[12] M. Brennan and E. Schwartz, Analyzing convertible bonds, J. Financial and Quanti-
tative Analysis, 17 (1982), 75–100.



generation of analytic semigroups 1127

[13] R. Brown and S. Shafer, Interest rate volatility and the shape of the term structure,
Philosophical Transactions of the Royal Society, Physical Sciences and Engineering,
347 (1993), 449–598.

[14] M. Campiti and G. Metafune, Ventcel’s boundary conditions and analytic semigroups,
preprint.

[15] P. Cannarsa and V. Vespri, Generation of analytic semigroups by elliptic operators
with unbounded coefficients, SIAM J. Math. Anal., 18 (1987), 857–872.

[16] P. Cannarsa and V. Vespri, Generation of analytic semigroups in the Lp topology by
elliptic operators in R

n, Israel J. of Math., 61 (1988), 235–255.
[17] S. Cerrai, Analytic semigroups and degenrate elliptic operators with unbounded coef-

ficients: a probabilistic approach, J. Diff. Eq., to appear.
[18] P.H. Clement and C.A. Timmermann, On C0-semigroups generated by differential

operators satisfying Ventcel’s boundary conditions, Indag. Math., 89 (1986), 379–387.
[19] M. Chicco, Sulle equazioni ellittiche del secondo ordine a coefficienti continui, Ann.

Mat. Pura e Appl., 88 (1971), 123–133.
[20] F. Colombo, M. Giuli, and V. Vespri, Generation of smoothing semigroups, by elliptic

operators and some applications to mathematical finance, Com. Appl. Anal., 3 (1999),
283–299.

[21] J. Cox, J. Ingersoll, and S. Ross, A theory of the term structure of interest rates,
Econometrica, 53 (1985), 385–408.

[22] J. Cox and M. Rubinstein, “Options Markets,” Prentice Hall, 1985.
[23] M. Dothan, On the term structure of interest rates, J. Financial Economics, 7 (1978),

229–264.
[24] D. Duffie, “Dynamic Asset Pricing Theory,” Princeton University Press, Princeton,

1996.
[25] D. Duffie and M. Garman, Arbitraje intertemporal y valoración markov de las ac-

ciones, Cuadernos Economicos de ICE, (1991), 37–60.
[26] R.A. Adams, “Partial Differential Equations,” Holt, Rineheart and Winston, Inc.,

New York–Chicago–San Francisco, 1975.
[27] A. Friedman, “Stochastic Differential Equations and Applications,” Academic Press,

New York, 1975.
[28] M. Garman, Towards a semigroup pricing theory, Journal of Finance, XL (1985),

847–862.
[29] Gilbarg and Trudinger. “Elliptic Partial Differential Equations of Second Order,”

Springer-Verlag, Berlin–Heidelberg–New York, 1977.
[30] A. Gleit, Valuation of general contingent claims: Existence uniqueness, and compar-

isons of solutions, J. Financial Economics, 6 (1978), 71–87.
[31] T. Ho and S. Lee, Term structure movements and pricing interest rate contingent

claims, J. Finance, 41 (1986), 1011–1029.
[32] J. Hull and A. White, One-factor interest-rate models and the valuation of interest-

rate derivative securities, J. Financial and Quantitative Analysis, 28 (1993), 235–254.
[33] R. Jarrow and A. Rudd, Approximate option valuation for arbitrary stochastic pro-

cesses, J. Financial Economics, 10 (1982), 347–369.
[34] I. Karatzas and S. Shreve, “Brownian Motion and Stochastic Calculus,” Springer-

Verlag, New York, 1988.



1128 Fausto Gozzi, Roberto Monte, and Vincenzo Vespri

[35] T. Kato, “Perturbation Theory for Linear Operators,” Springer-Verlag, New York,
1988.

[36] N. Krylov, “Controlled Diffusion Processes,” Springer-Verlag, Berlin, 1980.
[37] A. Lunardi, “Analytic Semigroups and Optimality Regularity in Parabolic Problems,”
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