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Abstract. We prove a result on the existence and uniqueness of a
local solution to a generalized Boussinesq equation for initial data of
low regularity. We also discuss the existence of global solutions and the
occurrence of blow-up phenomena. Our results are applicable to several
physically relevant equations that are obtained as special cases of our
model equation.

1. Introduction

Let F ∈ C∞(R) satisfy F (0) = 0. We consider the well-posedness of the
problem

utt = [F (u)]xx + uxxtt, x ∈ R, t ≥ 0,
u(x, 0) = u0(x), x ∈ R,
ut(x, 0) = u1(x), x ∈ R,

(1.1)

in the Sobolev spaces Hs(R) with s ≥ 0.
Our interest in the problem (1.1) is motivated by the fact that particu-

larizing the function F , one obtains equations that occur in a wide variety
of physical systems. For example,

utt = uxx − (u2)xx + uxxtt, x ∈ R, t ≥ 0, (1.2)

is a model for nonlinear waves in weakly dispersive media cf. [11], whereas

utt = uxx + (u3)xx + uxxtt, x ∈ R, t ≥ 0, (1.3)

is relevant in the study of the properties of non-linear Alfvén waves cf. [7].
The equation

utt = uxx + 1
5 (u5)xx + uxxtt, x ∈ R, t ≥ 0, (1.4)
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was derived in [2] to analyze the propagation of longitudinal deformation
waves in elastic rods.

In Section 3, we prove the local well-posedness of (1.1) for initial data
with quite low regularity. The last section is devoted to a discussion of the
problem of existence of global solutions to (1.1). Regarding the question of
gain of regularity for (1.1), note that for F ≡ 0 and initial data u0 ≡ 0, ut =
f, we have the global solution u(t, x) = t f(x). In conclusion, there is no
gain in differentiability no matter how smooth the function F is.

The Cauchy problem (1.1) for more regular initial data was recently in-
vestigated in [5], [12]. Our study of the local well-posedness for (1.1) and of
the global existence extends the results obtained in [5], [12].

2. Preliminaries

In this section we present some useful results from nonlinear microlocal
analysis regarding the composition of C∞-functions with Sobolev functions.

We have the following:

Lemma 1. ([3]) Let F ∈ C∞(R) be a function vanishing at zero. If s > 1
2 ,

then, for all f ∈ Hs(R), the function F (f) is also in Hs(R). If s = 1
2 and

the derivative F ′ of F is bounded, then we still have F (f) ∈ Hs(R) when
f ∈ Hs(R).

The proof of Lemma 1 given in [3] is based on the Littlewood-Paley de-
composition. Below we present an alternative simple proof that can also be
used in dealing with the case s ∈ [0, 1

2). More precisely, we have:

Lemma 2. Let F ∈ C∞(R) be a function vanishing at zero. If s ∈ [0, 1
2 ]

and f ∈ Hs(R) ∩ L∞(R), then F (f) ∈ Hs(R) ∩ L∞(R).

Proof of Lemmas 1 and 2. We first show that if F ∈ C∞(R) is vanishing
at zero, then F (f) ∈ L2(R) for all f ∈ L2(R) ∩ L∞(R).

Indeed, as F (0) = 0, we have for f : R → R that

F (f(x)) = f(x)
∫ 1

0
F ′(t f(x)

)
dt, x ∈ R.

If f ∈ L2(R) ∩ L∞(R), we infer

|F (f(x))| ≤ sup
|y|≤‖f‖L∞

{|F ′(y)|} |f(x)|, x ∈ R,

thus, F (f) ∈ L2(R) ∩ L∞(R).
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Let us now deal with the case s ∈ (0, 1). Recall that a function f ∈ L2(R),
s ∈ (0, 1), belongs to Hs(R) if and only if the integral∫

R

∫
R

|f(x + y) − f(x)|2 dy

|y|1+2s
dx (2.1)

is finite, the integral being equal to a multiple of
∫

R

|f̂(ξ)|2|ξ|2s dξ, cf. [10],

while the norm of Hs(R) is given by

‖f‖2
Hs =

∫
R

|f̂(ξ)|2(1 + |ξ|2)s dξ, f ∈ Hs(R).

It is now easy to see that if f ∈ L∞(R), then

|F (f(x + y)) − F (f(x))|

=
∣∣∣[f(x + y) − f(x)]

∫ 1

0
F ′

(
f(x) + t [f(x + y) − f(x)]

)
dt

∣∣∣
≤ sup

|r|≤2‖f‖L∞
{|F ′(r)|} |f(x + y) − f(x)| = M |f(x + y) − f(x)|, x, y ∈ R.

The above relation shows that the integral (2.1), computed for F (f) instead
of f , is finite. We know already that F (f) ∈ L2(R). Therefore, F (f) ∈
Hs(R). If s ∈ (1

2 , 1) we know that Hs(R) ⊂ L∞(R) so there are no changes.
In order to deal with s ∈ [1, 2), note that if 1 > α ≥ β > 0 satisfy α+β >

1, then the multiplication is a continuous operation from Hα(R) × Hβ(R)
into Hβ(R), cf. [1]. The case s = 1 can be easily dealt with using the
chain rule, as H1(R) ⊂ L∞(R). For f ∈ Hs(R) with s ∈ (1, 2), note that
∂x F (f) = F ′(f) fx. As f ∈ Hs(R) and [F ′(·)−F ′(0)] ∈ C∞(R) is vanishing
at zero, the first part of the proof shows that [F ′(f(·))−F ′(0)] ∈ H1−ε(R) for
all ε > 0. As fx ∈ Hs−1(R) and F ′(0) fx ∈ Hs−1(R), we deduce by the above
multiplication theorem that ∂x F (f) ∈ Hs−1(R). Therefore, F (f) ∈ Hs(R).

We proceed similarly with all cases s ∈ [n, n + 1) for all n ≥ 2. �
Remark. It is natural to impose some additional conditions if s ∈ [0, 1

2 ] as
in this case Hs(R) is not an algebra - the function F (x) = x2, x ∈ R, is not
admissible without further restrictions. A careful analysis of the above proof
shows that instead of imposing f ∈ L∞(R) we could ask for the derivative
F ′ to be bounded on R.

For s ≥ 0, consider the Banach space Xs = Hs(R) ∩ L∞(R) endowed
with the norm

‖f‖s = ‖f‖Hs + ‖f‖L∞ , f ∈ Xs.

The next result is very useful for our approach.
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Lemma 3. Let F ∈ C∞(R). If f, g ∈ Xs, s ≥ 0, then

‖F (f) − F (g)‖s ≤ K ‖f − g‖s, (2.2)

where K depends on ‖f‖s and ‖g‖s.
Proof. We will deal only with the case s ∈ (0, 1) - the other cases can be
dealt with by using the same approach as in Lemma 2. Throughout this
proof K stands for a constant depending on ‖f‖s and ‖g‖s. Note that

|F (f(x)) − F (g(x))| =
∣∣∣[f(x) − g(x)]

∫ 1

0
F ′

(
g(x) + t[f(x) − g(x)]

)
dt

≤ sup
|r|≤‖f‖L∞+‖g‖L∞

{|F ′(r)|} |f(x) − g(x)| = K|f(x) − g(x)|, x ∈ R.

This ensures

‖F (f) − F (g)‖0 ≤ K‖f − g‖0, f, g ∈ Xs. (2.3)

To show that F is locally Lipschitz on Hs(R), all we have to do now is to
evaluate appropriately the integral (2.1) for [F (f) − F (g)]. Observe that

F (f(x + y)) − F ((g(x + y)) − F (f(x)) + F (g(x))

= [f(x + y) − g(x + y)]
∫ 1

0
F ′

(
g(x + y) + t [f(x + y) − g(x + y)]

)
dt

− [f(x) − g(x)]
∫ 1

0
F ′

(
g(x) + t [f(x) − g(x)]

)
dt (2.4)

= α(x + y) [f(x + y) − g(x + y)] − α(x) [f(x) − g(x)]

= α(x + y) [f(x + y) − g(x + y) − f(x) + g(x)]

+ [α(x + y) − α(x)] [f(x) − g(x)], x, y ∈ R,

where

α(z) :=
∫ 1

0
F ′

(
g(z) + t [f(z) − g(z)]

)
dt, z ∈ R.

On the other hand, denoting

A(x, y) := f(x + y) − g(x + y) − f(x) + g(x), x, y ∈ R,

we have for all t ∈ [0, 1] that

F ′
(
g(x + y) + t [f(x + y) − g(x + y)]

)
− F ′

(
g(x) + t [f(x) − g(x)]

)

= [g(x + y) − g(x) + tA(x, y)]
∫ 1

0
F ′′

(
g(x) + t [f(x) − g(x)]
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+ r [g(x + y) − g(x) + t A(x, y)]
)

dr.

Since f, g ∈ L∞(R), we obtain from the previous relation that for all x, y ∈ R

and t ∈ [0, 1],

|F ′(g(x + y) + t [f(x + y) − g(x + y)]
)
− F ′(g(x) + t [f(x) − g(x)]

)
|

≤ K |A(x, y)| + K |g(x + y) − g(x)|.
This on its turn implies that

|α(x + y) − α(x)| ≤ K |A(x, y)| + K |g(x + y) − g(x)|, x, y ∈ R.

Using the above relation back in (2.4), we infer

|F (f(x + y)) − F ((g(x + y)) − F (f(x)) + F (g(x)) |
≤ K |A(x, y)| + K |g(x + y) − g(x)| |f(x) − g(x)|
≤ K |A(x, y)| + K |g(x + y) − g(x)| ‖f − g‖L∞ , x, y ∈ R.

This last inequality guarantees that the integral (2.1) for [F (f) − F (g)] can
be estimated from above by

K

∫
R

∫
R

|A(x, y)|2 dy

|y|1+2s
dx + K‖f − g‖2

L∞

∫
R

∫
R

|g(x + y) − g(x)|2 dy

|y|1+2s
dx

≤ K‖f − g‖2
Hs + K ‖f − g‖2

L∞‖g‖2
Hs ≤ K‖f − g‖2

s.

Taking into account (2.3) we now obtain the statement. �
Remark. To ensure in Lemma 3 that F (f) ∈ Hs(R) for f ∈ Hs(R), s ≥ 0,
one needs the additional assumption F (0) = 0, cf. Lemma 2.
Proposition. Let F ∈ C∞(R) with F (0) = 0. If f ∈ Xs, s ≥ 0, then

‖F (f)‖s ≤ K ‖f‖s,

where K depends only on ‖f‖L∞.
Proof. Immediate after analyzing carefully the steps of the proof of Lemma
3 with g ≡ 0. �

3. The Cauchy problem

We consider now the problem of local existence and uniqueness of solutions
to (1.1).
Theorem 1. For u0, u1 ∈ Hs(R) ∩ L∞(R), s ≥ 0, there exists a unique
solution u ∈ C2([0, T );Hs(R) ∩ L∞(R)) of (1.1) defined for some maximal
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T > 0. The solution depends continuously on the initial data. If T < ∞,
then

lim sup
t↑T

(
‖u(t, ·)‖Hs + ‖ut(t, ·)‖Hs + ‖u(t, ·)‖L∞ + ‖ut(t, ·)‖L∞

)
= ∞.

For the proof we need:
Lemma 4. The operator L := (1 − ∂2

x)−1 ∂2
x is bounded on Hs(R) and on

Hs(R) ∩ L∞(R) for all s ≥ 0.
Proof. For f ∈ Hs(R), s ≥ 0, we have

‖Lf‖2
Hs =

∫
R

(1 + ξ2)s|L̂f(ξ)|2 dξ =
∫

R

(1 + ξ2)s ξ4

(1 + ξ2)2
|f̂(ξ)|2 dξ ≤ ‖f‖2

Hs .

On the other hand, note that

(1 − ∂2
x)−1f = p ∗ f, f ∈ L2(R),

where p(x) := 1
2 e−|x|, x ∈ R. It is then easy to see that

∂2
x [p ∗ f ] = p ∗ f − f, f ∈ L2(R). (3.1)

From the above identities we infer

Lf = p ∗ f − f, f ∈ L2(R). (3.2)

From Young’s inequality we obtain now that

‖Lf‖L∞ ≤ 2 ‖f‖L∞ , f ∈ L2(R) ∩ L∞(R). �

Proof of Theorem 1. We can write the equation from (1.1) as

utt = L[F (u)], t > 0,

and regard the problem as an ODE-system in the Banach space Xs =
Hs(R) ∩ L∞(R),

ut = v,
vt = L[F (u)], (3.3)

with initial data u(0) = u0 and v(0) = v0.
By Lemma 2 and Lemma 3 we know that the map f �→ F (f) is locally

Lipschitz on Xs(R). As L is a bounded linear operator on Xs in view of
Lemma 4, we have that

‖L[F (u)] − L[F (v)]‖s ≤ |||L|||L(Xs)‖u − v‖s, u, v ∈ Xs.

We deduce that the right-hand side of the above ODE is locally Lipschitz.
The statement is now a consequence of the classical Picard iteration proce-
dure for ODE’s on Banach spaces (see [6]). �
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Since Hs(R) is imbedded in L∞(R) for s > 1
2 , we have the following:

Corollary. ([5]) For u0, u1 ∈ Hs(R), s > 1
2 , there exists T > 0 such that

(1.1) has a unique solution u ∈ C2([0, T );Hs(R)).

4. Existence of global solutions

In this section we discuss the existence of global solutions to (1.1) for
initial data in the spaces Hs(R) with s > 1

2 .

Theorem 2. Let u0, v0 ∈ Hs(R), s > 1
2 , and let T > 0 be the maximal

existence time of the corresponding solution u(t) to (1.1). Then T < ∞ if
and only if

lim sup
t↑T

‖u(t, ·)‖L∞ = ∞.

Proof. One implication is obvious in view of Theorem 1. Let us prove that
if

sup
t∈[0,T )

‖u(t, ·)‖L∞ = K < ∞, (4.1)

then T = ∞. Using (3.3), we obtain for t ∈ (0, T ) that

1
2

d

dt
(‖u‖2

Hs + ‖v‖2
Hs) = (u, v)Hs + (v, p ∗ F (u) − F (u))Hs

≤ ‖u‖Hs‖v‖Hs + ‖v‖Hs

(
‖p ∗ F (u)‖Hs + ‖F (u)‖Hs

)
.

Using the Fourier transform, it is easy to check that

‖p ∗ h‖Hs ≤ ‖h‖Hs , h ∈ Hs(R).

It follows that
d

dt
(‖u‖2

Hs + ‖v‖2
Hs) ≤ (‖u‖2

Hs + ‖v‖2
Hs) + 4‖v‖Hs ‖F (u)‖Hs . (4.2)

Since Hs(R) ↪→ L∞(R) for s > 1
2 , we deduce from (4.1) and the Proposition

that
‖F (u)‖Hs ≤ C‖u‖Hs (4.3)

for some constant C > 0. Substituting (4.3) in (4.2), one obtains

d

dt
(‖u‖2

Hs + ‖v‖2
Hs) ≤ (1 + 2C) (‖u‖2

Hs + ‖v‖2
Hs), t ∈ (0, T ).

The previous relation shows by Gronwall’s lemma that the Hs(R)-norms of
u(t) and v(t) do not blow-up in finite time. Then T = ∞ by Theorem 1. �
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Looking for conditions that ensure the global existence of solutions to
(1.1) for initial data in Hs(R), s ≥ 1, let us introduce the class

 = {w : R+ → (0,∞), w nondecreasing and
∫ ∞

1

ds

sw(s)
= ∞}.

Besides bounded functions, we note that functions with a sublogarithmic
growth, i.e., satisfying w(r) ≤ M [ln(1 + r) + 1] for r ≥ 0, belong also to the
class .
Theorem 3. Let F ∈ C∞(R) be such that F (0) = 0 and

|F ′(x)|2 ≤ w(x2), x ∈ R, (4.4)

for some w ∈ . Then for all u0, v0 ∈ Hs(R), s ≥ 1, the corresponding
solution to (1.1) exists globally in time.
Proof. Fix u0, v0 ∈ Hs(R), s ≥ 1, and let u ∈ C2([0, T );Hs(R)) be the
solution of (1.1) with initial data (u0, v0), defined on the maximal interval
of existence [0, T ) with T > 0, cf. Theorem 1.

Using (3.3), we have for t ∈ (0, T ) that

d

dt

∫
R

(u2 + u2
x) dx = 2

∫
R

uv dx + 2
∫

R

uxvx dx

≤
∫

R

(u2 + u2
x) dx +

∫
R

(v2 + v2
x) dx,

whereas
d

dt

∫
R

(v2 + v2
x) dx = 2

∫
R

v L[F (u)] dx + 2
∫

R

vx ∂xL[F (u)] dx

= 2
∫

R

v [p ∗ F (u)] dx − 2
∫

R

vF (u) dx

+ 2
∫

R

vx ∂x[p ∗ F (u)] dx − 2
∫

R

vx ∂xF (u) dx

if we take into account the formula (3.2). Integration by parts in the third
term on the right-hand side of the above identity leads in view of (3.1) to

d

dt

∫
R

(v2 + v2
x) dx = −2

∫
R

vx F ′(u)ux dx, t ∈ (0, T ).

Adding up, we see that
d

dt

∫
R

(u2 + u2
x + v2 + v2

x)dx≤
∫

R

(u2 + u2
x + v2 + v2

x)dx + 2
∫

R

|vx||F ′(u)ux|dx

(4.5)
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≤
∫

R

(u2 + u2
x + v2 + v2

x) dx +
∫

R

v2
x dx +

∫
R

|F ′(u)ux|2 dx, t ∈ (0, T ).

From (4.4), we infer, for t ∈ (0, T ), x ∈ R,

|F ′(u(t, x))|2 ≤ w(u2(t, x)) ≤ w(‖u(t, ·)‖2
L∞) ≤ w(‖u(t, ·)‖2

H1),

so that∫
R

|F ′(u)ux|2 dx ≤ w(‖u(t, ·)‖2
H1)

∫
R

u2
x dx

≤ ‖u(t, ·)‖2
H1 w(‖u(t, ·)‖2

H1), t ∈ (0, T ). (4.6)

Combining (4.5) and (4.6), we obtain
d

dt

(
‖u(t, ·)‖2

H1 + ‖v(t, ·)‖2
H1

)
≤ 2

(
‖u(t, ·)‖2

H1 + ‖v(t, ·)‖2
H1

)

+
(
‖u(t, ·)‖2

H1 + ‖v(t, ·)‖2
H1

)
w(‖u(t, ·)‖2

H1 + ‖v(t, ·)‖2
H1), t ∈ (0, T ).

For w ∈ , we have that G(∞) = ∞, where

G(r) :=
∫ r

0

ds

s + sw(s)
= ∞, r ≥ 0,

cf. [4]. From the previous differential inequality, we obtain

‖u(t, ·)‖2
H1 + ‖v(t, ·)‖2

H1 ≤ G−1(2t + G(‖u0‖2
H1 + ‖v0‖2

H1)), t ∈ (0, T ).

The above inequality ensures that the H1(R)-norm of u(t) does not blow-up
in finite time. This prevents lim supt↑T ‖u(t, ·)‖L∞ = ∞ for T < ∞ so that
the solution is global, cf. Theorem 2. �
Remark. Besides sublinear functions, we see that F (x) = x

√
ln(1 + x2),

x ∈ R, satisfies also the condition (4.4).
Regarding solutions with a finite life-span, we have:

Theorem 4. ([5]) Let P (x) :=
∫ x

0
F (s) ds, x ∈ R. If there exists α > 0

such that
(2 + α)P (x) ≥ xF (x), x ∈ R,

and if
∫

R

P (u0) dx < 0 for some u0 ∈ Hs(R), s > 1
2 , then the solution to

(1.1) with initial data (u0, 0) blows-up in finite time.
Example. In view of Theorem 4, occurrence of blow-up in the spaces Hs(R),
s > 1

2 , holds for equation (1.2) as well as for equation (1.1) with
(i) F (x) = cx2p, x ∈ R, with c ∈ R

∗ and p ∈ N, p ≥ 1; and
(ii) F (x) = cx2p+1, x ∈ R, with c < 0 and p ∈ N, p ≥ 1.
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The next result shows that the negativity of the coefficient in (ii) of the
above example is essential.

Theorem 5. Let P (x) :=
∫ x

0
F (s) ds, x ∈ R. Assume that there exists a

decomposition F = F1 + F2 + ... + Fn such that

|Fi(x)|qi ≤ K P (x), i = 1, ..., n, x ∈ R,

for some qi > 1, i = 1, ..., n and K > 0. Then for all u0, v0 ∈ Hs(R), s > 1
2 ,

the corresponding solution to (1.1) exists globally in time.
Proof. According to Theorem 2, it is enough to ensure that the L∞(R)-
norm of the solution u(t) to (1.1) does not blow-up in finite time. We denote
by T > 0 the maximal time of existence of this solution. Also, K > 0 stands
here for a generic constant.

Let us note that it is enough to prove the result for initial data u0, v0 ∈
Hs(R) such that both u0 and v0 are derivatives of Hs+1(R)-functions. In-
deed, passing to Fourier transforms, one can easily see that the latter re-
stricted space is dense in Hs(R) (for details, see [8]). We then argue by the
continuous dependence on the initial data of the solutions to (1.1) to obtain
the statement in its full generality.

Since u0 = w0,x, v0 = z0,x for some w0, z0 ∈ Hs+1(R), note that for all
t ∈ [0, T ), the solution u(t) of the problem (1.1) is given by u(t, x) = wx(t, x),
with (w, z) satisfying the system

wt = z,

zt = ∂x [p ∗ F (wx)].

Indeed, if (w, z) is a solution of the above system, using (3.1), one can see
that u defined by u(t, x) = wx(t, x) solves (1.1). Conversely, if u is a solution
to (1.1), then

u(t, x) = u0(x) +
∫ t

0
v(s, x) ds

where (u, v) solves the system (3.3). The term u0(x) is an x-derivative by
hypothesis and

v(s, x) = v0(x) +
∫ s

0
∂2

x(1 − ∂2
x)−1 [F (u)](r, x) dr

is also an x-derivative as v0 = z0,x. We deduce the existence of a function
w(t, x) with u(t, x) = wx(t, x). Now it is easy to obtain that

wtt = ∂x p ∗ F (u)
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and to write this second-order equation as the desired first-order system.
Observe that

E(t) :=
1
2

∫
R

(z2 + z2
x) dx +

∫
R

P (u) dx, t ∈ [0, T ), (4.7)

is conserved in time. Indeed,
d

dt
E(t) =

∫
R

(zzt + zxzxt) dx +
∫

R

F (u)ut dx

=
∫

R

z ∂x [p ∗ F (u)] dx +
∫

R

zx ∂2
x [p ∗ F (u)] dx +

∫
R

zxF (u) dx

=
∫

R

z ∂x [p ∗ F (u)] dx +
∫

R

zx [p ∗ F (u)] dx, a.e. t ∈ (0, T ).

From the second to the last line above we applied (3.1). Integration by parts
shows that an overall cancellation holds and E(t) = E(0) for t ∈ [0, T ).

On the other hand, note that u, v ∈ C2([0, T );L2(R)). Thus, for a.e.
(t, x) ∈ (0, T ) × R,

1
2

d

dt
[u2 + v2 + 2P (u)] = uv + v[p ∗ F (u)]

≤ 1
2
[u2 + v2 + 2P (u)] + v[p ∗

( n∑
i=1

Fi(u)
)
]. (4.8)

By Young’s inequality we have
∣∣∣v[p ∗

( n∑
i=1

Fi(u)
)
]
∣∣∣ ≤ n

2
v2 +

1
2

n∑
i=1

‖p ∗ Fi(u)‖2
L∞

≤ n

2
v2 +

n∑
i=1

‖p‖2
Lri‖Fi(u)‖2

Lqi ≤
n

2
v2 + K

n∑
i=1

(∫
R

P (u) dx
) 2

qi ,

with 1
ri

+ 1
qi

= 1, i = 1, ..., n. From (4.7) we infer∫
R

P (u) dx ≤ E(0), t ∈ [0, T ).

Using the above estimates back in (4.8), we obtain that for a.e. (t, x) ∈
(0, T ) × R the following inequality holds

d

dt
[u2 + v2 + 2P (u)] ≤ (n + 1) [u2 + v2 + 2P (u)] + K.

By Gronwall’s inequality we conclude from the previous relation that
‖u(t, ·)‖L∞ does not blow-up in finite time and therefore T = ∞. �
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Example. Theorem 5 shows that if F (x) = c x2p+1, x ∈ R, with p ∈ N
∗

and c > 0, then for all u0, v0 ∈ Hs(R), s ∈ N
∗, the corresponding solution

to (1.1) exists globally in time. Also, all solutions to (1.3) and (1.4) with
initial data u0, v0 ∈ Hs(R), s > 1

2 , are global in time.
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