Differential and Integral Equations

THE INITIAL VALUE PROBLEM FOR A GENERALIZED BOUSSINESQ EQUATION

Adrian Constantin and Luc Molinet

Department of Mathematics, Lund University, Box 118, 22100 Lund, Sweden and

Département de Mathématiques, Université Paris 13, 93430 Villetaneuse, France

(Submitted by: G. Da Prato)

Abstract. We prove a result on the existence and uniqueness of a local solution to a generalized Boussinesq equation for initial data of low regularity. We also discuss the existence of global solutions and the occurrence of blow-up phenomena. Our results are applicable to several physically relevant equations that are obtained as special cases of our model equation.

1. INTRODUCTION

Let $F \in C^{\infty}(\mathbb{R})$ satisfy F(0) = 0. We consider the well-posedness of the problem

$$u_{tt} = [F(u)]_{xx} + u_{xxtt}, \quad x \in \mathbb{R}, \ t \ge 0, u(x,0) = u_0(x), \quad x \in \mathbb{R}, u_t(x,0) = u_1(x), \quad x \in \mathbb{R},$$
(1.1)

in the Sobolev spaces $H^s(\mathbb{R})$ with $s \geq 0$.

Our interest in the problem (1.1) is motivated by the fact that particularizing the function F, one obtains equations that occur in a wide variety of physical systems. For example,

$$u_{tt} = u_{xx} - (u^2)_{xx} + u_{xxtt}, \quad x \in \mathbb{R}, \ t \ge 0,$$
(1.2)

is a model for nonlinear waves in weakly dispersive media cf. [11], whereas

$$u_{tt} = u_{xx} + (u^3)_{xx} + u_{xxtt}, \quad x \in \mathbb{R}, \ t \ge 0,$$
 (1.3)

is relevant in the study of the properties of non-linear Alfvén waves cf. [7]. The equation

$$u_{tt} = u_{xx} + \frac{1}{5} (u^5)_{xx} + u_{xxtt}, \quad x \in \mathbb{R}, \ t \ge 0,$$
(1.4)

Accepted for publication: November 1999.

AMS Subject Classifications: 35L70.

was derived in [2] to analyze the propagation of longitudinal deformation waves in elastic rods.

In Section 3, we prove the local well-posedness of (1.1) for initial data with quite low regularity. The last section is devoted to a discussion of the problem of existence of global solutions to (1.1). Regarding the question of gain of regularity for (1.1), note that for $F \equiv 0$ and initial data $u_0 \equiv 0$, $u_t = f$, we have the global solution u(t, x) = t f(x). In conclusion, there is no gain in differentiability no matter how smooth the function F is.

The Cauchy problem (1.1) for more regular initial data was recently investigated in [5], [12]. Our study of the local well-posedness for (1.1) and of the global existence extends the results obtained in [5], [12].

2. Preliminaries

In this section we present some useful results from nonlinear microlocal analysis regarding the composition of C^{∞} -functions with Sobolev functions.

We have the following:

Lemma 1. ([3]) Let $F \in C^{\infty}(\mathbb{R})$ be a function vanishing at zero. If $s > \frac{1}{2}$, then, for all $f \in H^{s}(\mathbb{R})$, the function F(f) is also in $H^{s}(\mathbb{R})$. If $s = \frac{1}{2}$ and the derivative F' of F is bounded, then we still have $F(f) \in H^{s}(\mathbb{R})$ when $f \in H^{s}(\mathbb{R})$.

The proof of Lemma 1 given in [3] is based on the Littlewood-Paley decomposition. Below we present an alternative simple proof that can also be used in dealing with the case $s \in [0, \frac{1}{2})$. More precisely, we have:

Lemma 2. Let $F \in C^{\infty}(\mathbb{R})$ be a function vanishing at zero. If $s \in [0, \frac{1}{2}]$ and $f \in H^{s}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, then $F(f) \in H^{s}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.

Proof of Lemmas 1 and 2. We first show that if $F \in C^{\infty}(\mathbb{R})$ is vanishing at zero, then $F(f) \in L^{2}(\mathbb{R})$ for all $f \in L^{2}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.

Indeed, as F(0) = 0, we have for $f : \mathbb{R} \to \mathbb{R}$ that

$$F(f(x)) = f(x) \int_0^1 F'(t f(x)) dt, \quad x \in \mathbb{R}.$$

If $f \in L^2(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, we infer

$$|F(f(x))| \le \sup_{|y| \le ||f||_{L^{\infty}}} \{|F'(y)|\} |f(x)|, \quad x \in \mathbb{R},$$

thus, $F(f) \in L^2(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.

Let us now deal with the case $s \in (0, 1)$. Recall that a function $f \in L^2(\mathbb{R})$, $s \in (0, 1)$, belongs to $H^s(\mathbb{R})$ if and only if the integral

$$\int_{\mathbb{R}} \int_{\mathbb{R}} |f(x+y) - f(x)|^2 \frac{dy}{|y|^{1+2s}} dx$$
 (2.1)

is finite, the integral being equal to a multiple of $\int_{\mathbb{R}} |\hat{f}(\xi)|^2 |\xi|^{2s} d\xi$, cf. [10], while the norm of $H^s(\mathbb{R})$ is given by

$$||f||_{H^s}^2 = \int_{\mathbb{R}} |\hat{f}(\xi)|^2 (1+|\xi|^2)^s d\xi, \quad f \in H^s(\mathbb{R}).$$

It is now easy to see that if $f \in L^{\infty}(\mathbb{R})$, then

$$\begin{aligned} |F(f(x+y)) - F(f(x))| \\ &= \left| [f(x+y) - f(x)] \int_0^1 F' \Big(f(x) + t \left[f(x+y) - f(x) \right] \Big) dt \right| \\ &\leq \sup_{|r| \leq 2 \|f\|_{L^\infty}} \{ |F'(r)| \} |f(x+y) - f(x)| = M |f(x+y) - f(x)|, \quad x, y \in \mathbb{R}. \end{aligned}$$

The above relation shows that the integral (2.1), computed for F(f) instead of f, is finite. We know already that $F(f) \in L^2(\mathbb{R})$. Therefore, $F(f) \in$ $H^s(\mathbb{R})$. If $s \in (\frac{1}{2}, 1)$ we know that $H^s(\mathbb{R}) \subset L^{\infty}(\mathbb{R})$ so there are no changes.

In order to deal with $s \in [1, 2)$, note that if $1 > \alpha \ge \beta > 0$ satisfy $\alpha + \beta > 1$, then the multiplication is a continuous operation from $H^{\alpha}(\mathbb{R}) \times H^{\beta}(\mathbb{R})$ into $H^{\beta}(\mathbb{R})$, cf. [1]. The case s = 1 can be easily dealt with using the chain rule, as $H^1(\mathbb{R}) \subset L^{\infty}(\mathbb{R})$. For $f \in H^s(\mathbb{R})$ with $s \in (1, 2)$, note that $\partial_x F(f) = F'(f) f_x$. As $f \in H^s(\mathbb{R})$ and $[F'(\cdot) - F'(0)] \in C^{\infty}(\mathbb{R})$ is vanishing at zero, the first part of the proof shows that $[F'(f(\cdot)) - F'(0)] \in H^{1-\varepsilon}(\mathbb{R})$ for all $\varepsilon > 0$. As $f_x \in H^{s-1}(\mathbb{R})$ and $F'(0) f_x \in H^{s-1}(\mathbb{R})$, we deduce by the above multiplication theorem that $\partial_x F(f) \in H^{s-1}(\mathbb{R})$. Therefore, $F(f) \in H^s(\mathbb{R})$. We proceed similarly with all cases $s \in [n, n + 1)$ for all n > 2.

Remark. It is natural to impose some additional conditions if $s \in [0, \frac{1}{2}]$ as in this case $H^s(\mathbb{R})$ is not an algebra - the function $F(x) = x^2, x \in \mathbb{R}$, is not admissible without further restrictions. A careful analysis of the above proof shows that instead of imposing $f \in L^{\infty}(\mathbb{R})$ we could ask for the derivative F' to be bounded on \mathbb{R} .

For $s \geq 0$, consider the Banach space $X_s = H^s(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ endowed with the norm

$$||f||_s = ||f||_{H^s} + ||f||_{L^{\infty}}, \quad f \in X_s.$$

The next result is very useful for our approach.

Adrian Constantin and Luc Molinet

Lemma 3. Let $F \in C^{\infty}(\mathbb{R})$. If $f, g \in X_s$, $s \ge 0$, then

$$||F(f) - F(g)||_{s} \le K ||f - g||_{s}, \qquad (2.2)$$

where K depends on $||f||_s$ and $||g||_s$.

Proof. We will deal only with the case $s \in (0, 1)$ - the other cases can be dealt with by using the same approach as in Lemma 2. Throughout this proof K stands for a constant depending on $||f||_s$ and $||g||_s$. Note that

$$|F(f(x)) - F(g(x))| = \left| [f(x) - g(x)] \int_0^1 F' \Big(g(x) + t[f(x) - g(x)] \Big) dt \right|$$

$$\leq \sup_{|r| \leq ||f||_{L^{\infty}} + ||g||_{L^{\infty}}} \{ |F'(r)| \} |f(x) - g(x)| = K |f(x) - g(x)|, \quad x \in \mathbb{R}.$$

This ensures

$$||F(f) - F(g)||_0 \le K ||f - g||_0, \quad f, g \in X_s.$$
(2.3)

To show that F is locally Lipschitz on $H^s(\mathbb{R})$, all we have to do now is to evaluate appropriately the integral (2.1) for [F(f) - F(g)]. Observe that

$$F(f(x+y)) - F((g(x+y)) - F(f(x)) + F(g(x)))$$

$$= [f(x+y) - g(x+y)] \int_0^1 F' \Big(g(x+y) + t [f(x+y) - g(x+y)] \Big) dt$$

$$- [f(x) - g(x)] \int_0^1 F' \Big(g(x) + t [f(x) - g(x)] \Big) dt \qquad (2.4)$$

$$= \alpha(x+y) [f(x+y) - g(x+y)] - \alpha(x) [f(x) - g(x)]$$

$$= \alpha(x+y) [f(x+y) - g(x+y) - f(x) + g(x)]$$

$$+ [\alpha(x+y) - \alpha(x)] [f(x) - g(x)], \qquad x, y \in \mathbb{R},$$

where

$$\alpha(z) := \int_0^1 F'\Big(g(z) + t\left[f(z) - g(z)\right]\Big) dt, \quad z \in \mathbb{R}.$$

On the other hand, denoting

 $A(x,y) := f(x+y) - g(x+y) - f(x) + g(x), \quad x, y \in \mathbb{R},$
for all $t \in [0, 1]$ that

we have for all
$$t \in [0, 1]$$
 that

$$F'(g(x+y) + t[f(x+y) - g(x+y)]) - F'(g(x) + t[f(x) - g(x)])$$

= $[g(x+y) - g(x) + tA(x,y)] \int_0^1 F''(g(x) + t[f(x) - g(x)])$

$$+ r \left[g(x+y) - g(x) + t A(x,y) \right] \right) dr.$$

Since $f, g \in L^{\infty}(\mathbb{R})$, we obtain from the previous relation that for all $x, y \in \mathbb{R}$ and $t \in [0, 1]$,

$$|F'(g(x+y) + t[f(x+y) - g(x+y)]) - F'(g(x) + t[f(x) - g(x)])|$$

$$\leq K |A(x,y)| + K |g(x+y) - g(x)|.$$

This on its turn implies that

$$|\alpha(x+y) - \alpha(x)| \le K |A(x,y)| + K |g(x+y) - g(x)|, \quad x, y \in \mathbb{R}.$$

Using the above relation back in (2.4), we infer

$$|F(f(x+y)) - F((g(x+y)) - F(f(x)) + F(g(x)))|$$

$$\leq K |A(x,y)| + K |g(x+y) - g(x)| |f(x) - g(x)|$$

$$\leq K |A(x,y)| + K |g(x+y) - g(x)| ||f - g||_{L^{\infty}}, \quad x, y \in \mathbb{R}.$$

This last inequality guarantees that the integral (2.1) for [F(f) - F(g)] can be estimated from above by

$$\begin{split} &K \int_{\mathbb{R}} \int_{\mathbb{R}} |A(x,y)|^2 \frac{dy}{|y|^{1+2s}} dx + K \|f - g\|_{L^{\infty}}^2 \int_{\mathbb{R}} \int_{\mathbb{R}} |g(x+y) - g(x)|^2 \frac{dy}{|y|^{1+2s}} dx \\ &\leq K \|f - g\|_{H^s}^2 + K \|f - g\|_{L^{\infty}}^2 \|g\|_{H^s}^2 \leq K \|f - g\|_s^2. \end{split}$$

Taking into account (2.3) we now obtain the statement.

Remark. To ensure in Lemma 3 that $F(f) \in H^s(\mathbb{R})$ for $f \in H^s(\mathbb{R})$, $s \ge 0$, one needs the additional assumption F(0) = 0, cf. Lemma 2.

Proposition. Let $F \in C^{\infty}(\mathbb{R})$ with F(0) = 0. If $f \in X_s$, $s \ge 0$, then

$$||F(f)||_{s} \le K ||f||_{s},$$

where K depends only on $||f||_{L^{\infty}}$.

Proof. Immediate after analyzing carefully the steps of the proof of Lemma 3 with $g \equiv 0$.

3. The Cauchy problem

We consider now the problem of local existence and uniqueness of solutions to (1.1).

Theorem 1. For $u_0, u_1 \in H^s(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, $s \geq 0$, there exists a unique solution $u \in C^2([0,T); H^s(\mathbb{R}) \cap L^{\infty}(\mathbb{R}))$ of (1.1) defined for some maximal

Adrian Constantin and Luc Molinet

T > 0. The solution depends continuously on the initial data. If $T < \infty$, then

$$\limsup_{t\uparrow T} \left(\|u(t,\cdot)\|_{H^s} + \|u_t(t,\cdot)\|_{H^s} + \|u(t,\cdot)\|_{L^{\infty}} + \|u_t(t,\cdot)\|_{L^{\infty}} \right) = \infty.$$

For the proof we need:

Lemma 4. The operator $L := (1 - \partial_x^2)^{-1} \partial_x^2$ is bounded on $H^s(\mathbb{R})$ and on $H^s(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ for all $s \ge 0$.

Proof. For $f \in H^s(\mathbb{R})$, $s \ge 0$, we have

$$\|Lf\|_{H^s}^2 = \int_{\mathbb{R}} (1+\xi^2)^s |\hat{L}f(\xi)|^2 d\xi = \int_{\mathbb{R}} (1+\xi^2)^s \frac{\xi^4}{(1+\xi^2)^2} |\hat{f}(\xi)|^2 d\xi \le \|f\|_{H^s}^2$$

On the other hand, note that

$$(1 - \partial_x^2)^{-1}f = p * f, \quad f \in L^2(\mathbb{R}),$$

where $p(x) := \frac{1}{2} e^{-|x|}, x \in \mathbb{R}$. It is then easy to see that

$$\partial_x^2 \left[p * f \right] = p * f - f, \quad f \in L^2(\mathbb{R}).$$
(3.1)

From the above identities we infer

$$Lf = p * f - f, \quad f \in L^2(\mathbb{R}).$$
(3.2)

From Young's inequality we obtain now that

$$||Lf||_{L^{\infty}} \le 2 ||f||_{L^{\infty}}, \quad f \in L^{2}(\mathbb{R}) \cap L^{\infty}(\mathbb{R}). \qquad \Box$$

Proof of Theorem 1. We can write the equation from (1.1) as

$$u_{tt} = L[F(u)], \quad t > 0,$$

and regard the problem as an ODE-system in the Banach space $X_s = H^s(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$,

$$u_t = v,$$

$$v_t = L[F(u)],$$
(3.3)

with initial data $u(0) = u_0$ and $v(0) = v_0$.

By Lemma 2 and Lemma 3 we know that the map $f \mapsto F(f)$ is locally Lipschitz on $X_s(\mathbb{R})$. As L is a bounded linear operator on X_s in view of Lemma 4, we have that

$$||L[F(u)] - L[F(v)]||_{s} \le |||L|||_{\mathcal{L}(X_{s})} ||u - v||_{s}, \quad u, v \in X_{s}.$$

We deduce that the right-hand side of the above ODE is locally Lipschitz. The statement is now a consequence of the classical Picard iteration procedure for ODE's on Banach spaces (see [6]). \Box

Since $H^{s}(\mathbb{R})$ is imbedded in $L^{\infty}(\mathbb{R})$ for $s > \frac{1}{2}$, we have the following: **Corollary.** ([5]) For $u_{0}, u_{1} \in H^{s}(\mathbb{R}), s > \frac{1}{2}$, there exists T > 0 such that (1.1) has a unique solution $u \in C^{2}([0,T); H^{s}(\mathbb{R}))$.

4. EXISTENCE OF GLOBAL SOLUTIONS

In this section we discuss the existence of global solutions to (1.1) for initial data in the spaces $H^{s}(\mathbb{R})$ with $s > \frac{1}{2}$.

Theorem 2. Let $u_0, v_0 \in H^s(\mathbb{R})$, $s > \frac{1}{2}$, and let T > 0 be the maximal existence time of the corresponding solution u(t) to (1.1). Then $T < \infty$ if and only if

$$\limsup_{t\uparrow T} \|u(t,\cdot)\|_{L^{\infty}} = \infty.$$

Proof. One implication is obvious in view of Theorem 1. Let us prove that if

$$\sup_{t \in [0,T)} \|u(t, \cdot)\|_{L^{\infty}} = K < \infty, \tag{4.1}$$

then $T = \infty$. Using (3.3), we obtain for $t \in (0, T)$ that

$$\frac{1}{2}\frac{d}{dt}\left(\|u\|_{H^s}^2 + \|v\|_{H^s}^2\right) = (u,v)_{H^s} + (v,p*F(u) - F(u))_{H^s}$$
$$\leq \|u\|_{H^s}\|v\|_{H^s} + \|v\|_{H^s}\left(\|p*F(u)\|_{H^s} + \|F(u)\|_{H^s}\right).$$

Using the Fourier transform, it is easy to check that

$$||p * h||_{H^s} \le ||h||_{H^s}, \quad h \in H^s(\mathbb{R}).$$

It follows that

$$\frac{d}{dt}(\|u\|_{H^s}^2 + \|v\|_{H^s}^2) \le (\|u\|_{H^s}^2 + \|v\|_{H^s}^2) + 4\|v\|_{H^s}\|F(u)\|_{H^s}.$$
(4.2)

Since $H^s(\mathbb{R}) \hookrightarrow L^{\infty}(\mathbb{R})$ for $s > \frac{1}{2}$, we deduce from (4.1) and the Proposition that

$$||F(u)||_{H^s} \le C ||u||_{H^s} \tag{4.3}$$

for some constant C > 0. Substituting (4.3) in (4.2), one obtains

$$\frac{d}{dt}\left(\|u\|_{H^s}^2 + \|v\|_{H^s}^2\right) \le (1+2C)\left(\|u\|_{H^s}^2 + \|v\|_{H^s}^2\right), \quad t \in (0,T).$$

The previous relation shows by Gronwall's lemma that the $H^s(\mathbb{R})$ -norms of u(t) and v(t) do not blow-up in finite time. Then $T = \infty$ by Theorem 1. \Box

Looking for conditions that ensure the global existence of solutions to (1.1) for initial data in $H^{s}(\mathbb{R})$, $s \geq 1$, let us introduce the class

$$\Re = \{ w : \mathbb{R}_+ \to (0, \infty), w \text{ nondecreasing and } \int_1^\infty \frac{ds}{sw(s)} = \infty \}.$$

Besides bounded functions, we note that functions with a sublogarithmic growth, i.e., satisfying $w(r) \leq M [\ln(1+r) + 1]$ for $r \geq 0$, belong also to the class \Re .

Theorem 3. Let $F \in C^{\infty}(\mathbb{R})$ be such that F(0) = 0 and

$$|F'(x)|^2 \le w(x^2), \qquad x \in \mathbb{R}, \tag{4.4}$$

for some $w \in \Re$. Then for all $u_0, v_0 \in H^s(\mathbb{R})$, $s \ge 1$, the corresponding solution to (1.1) exists globally in time.

Proof. Fix $u_0, v_0 \in H^s(\mathbb{R})$, $s \geq 1$, and let $u \in C^2([0,T); H^s(\mathbb{R}))$ be the solution of (1.1) with initial data (u_0, v_0) , defined on the maximal interval of existence [0,T) with T > 0, cf. Theorem 1.

Using (3.3), we have for $t \in (0, T)$ that

$$\frac{d}{dt} \int_{\mathbb{R}} (u^2 + u_x^2) \, dx = 2 \int_{\mathbb{R}} uv \, dx + 2 \int_{\mathbb{R}} u_x v_x \, dx$$
$$\leq \int_{\mathbb{R}} (u^2 + u_x^2) \, dx + \int_{\mathbb{R}} (v^2 + v_x^2) \, dx$$

whereas

$$\frac{d}{dt} \int_{\mathbb{R}} (v^2 + v_x^2) \, dx = 2 \int_{\mathbb{R}} v \, L[F(u)] \, dx + 2 \int_{\mathbb{R}} v_x \, \partial_x L[F(u)] \, dx$$
$$= 2 \int_{\mathbb{R}} v \, [p * F(u)] \, dx - 2 \int_{\mathbb{R}} v F(u) \, dx$$
$$+ 2 \int_{\mathbb{R}} v_x \, \partial_x [p * F(u)] \, dx - 2 \int_{\mathbb{R}} v_x \, \partial_x F(u) \, dx$$

if we take into account the formula (3.2). Integration by parts in the third term on the right-hand side of the above identity leads in view of (3.1) to

$$\frac{d}{dt} \int_{\mathbb{R}} (v^2 + v_x^2) \, dx = -2 \, \int_{\mathbb{R}} v_x \, F'(u) u_x \, dx, \quad t \in (0, T).$$

Adding up, we see that

$$\frac{d}{dt} \int_{\mathbb{R}} (u^2 + u_x^2 + v^2 + v_x^2) dx \le \int_{\mathbb{R}} (u^2 + u_x^2 + v^2 + v_x^2) dx + 2 \int_{\mathbb{R}} |v_x| |F'(u)u_x| dx$$
(4.5)

THE INITIAL VALUE PROBLEM FOR A GENERALIZED BOUSSINESQ EQUATION 1069

$$\leq \int_{\mathbb{R}} (u^2 + u_x^2 + v^2 + v_x^2) \, dx + \int_{\mathbb{R}} v_x^2 \, dx + \int_{\mathbb{R}} |F'(u)u_x|^2 \, dx, \quad t \in (0,T).$$

From (4.4), we infer, for $t \in (0,T), x \in \mathbb{R}$,

$$|F'(u(t,x))|^2 \le w(u^2(t,x)) \le w(||u(t,\cdot)||_{L^{\infty}}^2) \le w(||u(t,\cdot)||_{H^1}^2),$$

so that

$$\int_{\mathbb{R}} |F'(u)u_x|^2 dx \le w(||u(t,\cdot)||_{H^1}^2) \int_{\mathbb{R}} u_x^2 dx$$

$$\le ||u(t,\cdot)||_{H^1}^2 w(||u(t,\cdot)||_{H^1}^2), \quad t \in (0,T).$$
(4.6)

Combining (4.5) and (4.6), we obtain

$$\frac{d}{dt} \left(\|u(t,\cdot)\|_{H^{1}}^{2} + \|v(t,\cdot)\|_{H^{1}}^{2} \right) \leq 2 \left(\|u(t,\cdot)\|_{H^{1}}^{2} + \|v(t,\cdot)\|_{H^{1}}^{2} \right) \\
+ \left(\|u(t,\cdot)\|_{H^{1}}^{2} + \|v(t,\cdot)\|_{H^{1}}^{2} \right) w(\|u(t,\cdot)\|_{H^{1}}^{2} + \|v(t,\cdot)\|_{H^{1}}^{2}), \quad t \in (0,T).$$

For $w \in \Re$, we have that $G(\infty) = \infty$, where

$$G(r) := \int_0^r \frac{ds}{s + sw(s)} = \infty, \quad r \ge 0,$$

cf. [4]. From the previous differential inequality, we obtain

$$\|u(t,\cdot)\|_{H^1}^2 + \|v(t,\cdot)\|_{H^1}^2 \le G^{-1}(2t + G(\|u_0\|_{H^1}^2 + \|v_0\|_{H^1}^2)), \quad t \in (0,T).$$

The above inequality ensures that the $H^1(\mathbb{R})$ -norm of u(t) does not blow-up in finite time. This prevents $\limsup_{t\uparrow T} \|u(t,\cdot)\|_{L^{\infty}} = \infty$ for $T < \infty$ so that the solution is global, cf. Theorem 2.

Remark. Besides sublinear functions, we see that $F(x) = x \sqrt{\ln(1+x^2)}$, $x \in \mathbb{R}$, satisfies also the condition (4.4).

Regarding solutions with a finite life-span, we have:

Theorem 4. ([5]) Let $P(x) := \int_0^x F(s) ds, x \in \mathbb{R}$. If there exists $\alpha > 0$ such that

$$(2+\alpha) P(x) \ge xF(x), \quad x \in \mathbb{R},$$

and if $\int_{\mathbb{R}} P(u_0) dx < 0$ for some $u_0 \in H^s(\mathbb{R})$, $s > \frac{1}{2}$, then the solution to (1.1) with initial data $(u_0, 0)$ blows-up in finite time.

Example. In view of Theorem 4, occurrence of blow-up in the spaces $H^{s}(\mathbb{R})$, $s > \frac{1}{2}$, holds for equation (1.2) as well as for equation (1.1) with (i) $F(x) = cx^{2p}, x \in \mathbb{R}$, with $c \in \mathbb{R}^*$ and $p \in \mathbb{N}, p \ge 1$; and (ii) $F(x) = cx^{2p+1}, x \in \mathbb{R}$, with c < 0 and $p \in \mathbb{N}, p \ge 1$.

The next result shows that the negativity of the coefficient in (ii) of the above example is essential.

Theorem 5. Let $P(x) := \int_0^x F(s) ds$, $x \in \mathbb{R}$. Assume that there exists a decomposition $F = F_1 + F_2 + \ldots + F_n$ such that

$$|F_i(x)|^{q_i} \le K P(x), \qquad i = 1, \dots, n, \quad x \in \mathbb{R},$$

for some $q_i > 1$, i = 1, ..., n and K > 0. Then for all $u_0, v_0 \in H^s(\mathbb{R})$, $s > \frac{1}{2}$, the corresponding solution to (1.1) exists globally in time.

Proof. According to Theorem 2, it is enough to ensure that the $L^{\infty}(\mathbb{R})$ norm of the solution u(t) to (1.1) does not blow-up in finite time. We denote
by T > 0 the maximal time of existence of this solution. Also, K > 0 stands
here for a generic constant.

Let us note that it is enough to prove the result for initial data $u_0, v_0 \in H^s(\mathbb{R})$ such that both u_0 and v_0 are derivatives of $H^{s+1}(\mathbb{R})$ -functions. Indeed, passing to Fourier transforms, one can easily see that the latter restricted space is dense in $H^s(\mathbb{R})$ (for details, see [8]). We then argue by the continuous dependence on the initial data of the solutions to (1.1) to obtain the statement in its full generality.

Since $u_0 = w_{0,x}$, $v_0 = z_{0,x}$ for some $w_0, z_0 \in H^{s+1}(\mathbb{R})$, note that for all $t \in [0,T)$, the solution u(t) of the problem (1.1) is given by $u(t,x) = w_x(t,x)$, with (w,z) satisfying the system

$$w_t = z,$$

$$z_t = \partial_x [p * F(w_x)].$$

Indeed, if (w, z) is a solution of the above system, using (3.1), one can see that u defined by $u(t, x) = w_x(t, x)$ solves (1.1). Conversely, if u is a solution to (1.1), then

$$u(t,x) = u_0(x) + \int_0^t v(s,x) \, ds$$

where (u, v) solves the system (3.3). The term $u_0(x)$ is an x-derivative by hypothesis and

$$v(s,x) = v_0(x) + \int_0^s \partial_x^2 (1 - \partial_x^2)^{-1} [F(u)](r,x) dr$$

is also an x-derivative as $v_0 = z_{0,x}$. We deduce the existence of a function w(t,x) with $u(t,x) = w_x(t,x)$. Now it is easy to obtain that

$$w_{tt} = \partial_x \, p * F(u)$$

and to write this second-order equation as the desired first-order system.

Observe that

$$E(t) := \frac{1}{2} \int_{\mathbb{R}} (z^2 + z_x^2) \, dx + \int_{\mathbb{R}} P(u) \, dx, \quad t \in [0, T), \tag{4.7}$$

is conserved in time. Indeed,

$$\frac{d}{dt}E(t) = \int_{\mathbb{R}} (zz_t + z_x z_{xt}) \, dx + \int_{\mathbb{R}} F(u)u_t \, dx$$
$$= \int_{\mathbb{R}} z \, \partial_x \left[p * F(u) \right] \, dx + \int_{\mathbb{R}} z_x \, \partial_x^2 \left[p * F(u) \right] \, dx + \int_{\mathbb{R}} z_x F(u) \, dx$$
$$= \int_{\mathbb{R}} z \, \partial_x \left[p * F(u) \right] \, dx + \int_{\mathbb{R}} z_x \left[p * F(u) \right] \, dx, \quad \text{a.e.} \quad t \in (0, T).$$

From the second to the last line above we applied (3.1). Integration by parts shows that an overall cancellation holds and E(t) = E(0) for $t \in [0, T)$.

On the other hand, note that $u, v \in C^2([0,T); L^2(\mathbb{R}))$. Thus, for a.e. $(t,x) \in (0,T) \times \mathbb{R}$,

$$\frac{1}{2}\frac{d}{dt}[u^2 + v^2 + 2P(u)] = uv + v[p * F(u)]$$

$$\leq \frac{1}{2}[u^2 + v^2 + 2P(u)] + v[p * (\sum_{i=1}^n F_i(u))].$$
(4.8)

By Young's inequality we have

$$\left| v[p * \left(\sum_{i=1}^{n} F_{i}(u)\right)] \right| \leq \frac{n}{2}v^{2} + \frac{1}{2}\sum_{i=1}^{n} \|p * F_{i}(u)\|_{L^{\infty}}^{2}$$
$$\leq \frac{n}{2}v^{2} + \sum_{i=1}^{n} \|p\|_{L^{r_{i}}}^{2} \|F_{i}(u)\|_{L^{q_{i}}}^{2} \leq \frac{n}{2}v^{2} + K\sum_{i=1}^{n} \left(\int_{\mathbb{R}} P(u) \, dx\right)^{\frac{2}{q_{i}}},$$

with $\frac{1}{r_i} + \frac{1}{q_i} = 1, i = 1, ..., n$. From (4.7) we infer

$$\int_{\mathbb{R}} P(u) \, dx \le E(0), \quad t \in [0, T).$$

Using the above estimates back in (4.8), we obtain that for a.e. $(t, x) \in (0, T) \times \mathbb{R}$ the following inequality holds

$$\frac{d}{dt} \left[u^2 + v^2 + 2P(u) \right] \le (n+1) \left[u^2 + v^2 + 2P(u) \right] + K$$

By Gronwall's inequality we conclude from the previous relation that $||u(t, \cdot)||_{L^{\infty}}$ does not blow-up in finite time and therefore $T = \infty$.

Example. Theorem 5 shows that if $F(x) = c x^{2p+1}$, $x \in \mathbb{R}$, with $p \in \mathbb{N}^*$ and c > 0, then for all $u_0, v_0 \in H^s(\mathbb{R})$, $s \in \mathbb{N}^*$, the corresponding solution to (1.1) exists globally in time. Also, all solutions to (1.3) and (1.4) with initial data $u_0, v_0 \in H^s(\mathbb{R})$, $s > \frac{1}{2}$, are global in time.

References

- H. Amann, Multiplication in Sobolev and Besov spaces, in "Nonlinear Analysis", Scuola Norm. Sup. Pisa (1991), 27-50.
- [2] P Clarkson, R. Le Veque, and R. Saxton, Solitary wave interactions in elastic rods, Stud. Appl. Math., (1986), 95-121.
- [3] R. Coifman and Y. Meyer, "Wavelets. Calderón-Zygmund and Multilinear Operators," Cambridge University Press, 1997.
- [4] A. Constantin, Solutions globales des équations différentielles perturbées, C. R. Acad. Sci. Paris, 320 (1995), 1319-1322.
- [5] A. de Godefroy, Blow up of solutions of a generalized Boussinesq equation, IMA J. Appl. Math., 60 (1998), 123-138.
- [6] G. Ladas and V. Lakshmikantham, "Differential Equations in Abstract Spaces," Academic Press, New York, 1974.
- [7] V. Makhankov, Dynamics of classical solitons, Phys. Rev. Lett., 35 (1978), 1-128.
- [8] L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations, J. Differential Equations, 152 (1999), 30-74.
- [9] E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton University Press, 1990.
- [10] R. Strichartz, "A Guide to Distribution Theory and Fourier Transforms," CRC Press, Boca Raton, Florida, 1994.
- [11] S. Turitsyn, Blow-up in the Boussinesq equation, Phys. Rev. E, 73 (1993), 267-269.
- [12] Y. Zhijian, Existence and non-existence of global solutions to a generalized modification of the improved Boussinesq equation, Math. Meth. Appl. Sci., 21 (1998), 1467-1477.