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Abstract. We prove a result on the existence and uniqueness of a
local solution to a generalized Boussinesq equation for initial data of
low regularity. We also discuss the existence of global solutions and the
occurrence of blow-up phenomena. Our results are applicable to several
physically relevant equations that are obtained as special cases of our
model equation.

1. INTRODUCTION

Let F' € C*°(R) satisfy F'(0) = 0. We consider the well-posedness of the
problem
Ut = [F(u)]mx + Ugytt, T E R, t> 07
u(z,0) = up(z), = €R, (1.1)
ut(.TC,O) :u1($)7 z €R,
in the Sobolev spaces H*(R) with s > 0.
Our interest in the problem (1.1) is motivated by the fact that particu-
larizing the function F', one obtains equations that occur in a wide variety
of physical systems. For example,

Ut = Uggy — (uz)x:c + Ugztt, T E R, t> 0, (12)
is a model for nonlinear waves in weakly dispersive media cf. [11], whereas
Ut = Ugg + (ug)rm + Ugatt, T E R; t> 07 (13)

is relevant in the study of the properties of non-linear Alfvén waves cf. [7].
The equation

1 5
Ut = Ugg + 5 (U ):m: + Upztt, T E R) t> O, (14)
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was derived in [2] to analyze the propagation of longitudinal deformation
waves in elastic rods.

In Section 3, we prove the local well-posedness of (1.1) for initial data
with quite low regularity. The last section is devoted to a discussion of the
problem of existence of global solutions to (1.1). Regarding the question of
gain of regularity for (1.1), note that for F' = 0 and initial data ug = 0, u; =
f, we have the global solution u(t,z) = t f(x). In conclusion, there is no
gain in differentiability no matter how smooth the function F is.

The Cauchy problem (1.1) for more regular initial data was recently in-
vestigated in [5], [12]. Our study of the local well-posedness for (1.1) and of
the global existence extends the results obtained in [5], [12].

2. PRELIMINARIES

In this section we present some useful results from nonlinear microlocal
analysis regarding the composition of C°°-functions with Sobolev functions.
We have the following:

Lemma 1. ([3]) Let F' € C*°(R) be a function vanishing at zero. If s > 3,
then, for all f € H*(R), the function F(f) is also in H*(R). If s = % and
the derivative F' of F is bounded, then we still have F(f) € H*(R) when
f e H(R).

The proof of Lemma 1 given in [3] is based on the Littlewood-Paley de-
composition. Below we present an alternative simple proof that can also be
used in dealing with the case s € [0, %) More precisely, we have:

Lemma 2. Let F € C®(R) be a function vanishing at zero. If s € [0, 3]
and f € H*(R) N L®(R), then F(f) € H*(R) N L®(R).

Proof of Lemmas 1 and 2. We first show that if ' € C°°(R) is vanishing
at zero, then F(f) € L?(R) for all f € L?(R) N L>®(R).
Indeed, as F(0) = 0, we have for f : R — R that

1
F(f(x))—f(:c)/o F(tf@))dt, zeR.

If f € L?(R) N L>=(R), we infer

[F(fe)l < sup {[F' (W]} [f(@)], =eR,
[yI< /11200

thus, F(f) € L*(R) N L¥(R).
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Let us now deal with the case s € (0,1). Recall that a function f € L?(R),
€ (0,1), belongs to H*(R) if and only if the integral

[ 1 - s o (2.1)

is finite, the integral being equal to a multiple of / \f(g)]2|§]25 d¢, cf. [10],
R
while the norm of H*(R) is given by

1 = [ 1FQPa+ Py ds, 1 e H )
It is now easy to see that if f € L>°(R), then
[F(f(x+y) = F(f(z))l

1
= it )= £@) [ F(5@) +t 15+ 9) - @) at
< s (PO @ ty) — S@)] = MIf@ty) - f@), ryeR

r|<2[[fll oo

The above relation shows that the integral (2.1), computed for F(f) instead
of f, is finite. We know already that F(f) € L?*(R). Therefore, F(f) €
H*(R). If s € (3,1) we know that H*(R) C L*(R) so there are no changes.

In order to deal with s € [1,2), note that if 1 > o > 3 > 0 satisfy a+ 5 >
1, then the multiplication is a continuous operation from H®(R) x H®(R)
into HA(R), cf. [1]. The case s = 1 can be easily dealt with using the
chain rule, as H'(R) C L*®(R). For f € H*(R) with s € (1,2), note that
O F(f)=F'(f) fo- As f € H*(R) and [F'(-) — F'(0)] € C*°(R) is vanishing
at zero, the first part of the proof shows that [F'(f(-))—F'(0)] € H=¢(R) for
alle > 0. As f, € H*"}(R) and F'(0) f, € H*"'(R), we deduce by the above
multiplication theorem that 9, F(f) € HS~}(R). Therefore, F(f) € H*(R).

We proceed similarly with all cases s € [n,n + 1) for all n > 2. O

Remark. It is natural to impose some additional conditions if s € [0, %] as

in this case H*(R) is not an algebra - the function F(x) = 22, x € R, is not
admissible without further restrictions. A careful analysis of the above proof
shows that instead of imposing f € L*°(R) we could ask for the derivative
F’ to be bounded on R.

For s > 0, consider the Banach space X; = H*(R) N L*°(R) endowed
with the norm

1Flls = W fllms + 1 fllLe, fe Xs.

The next result is very useful for our approach.
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Lemma 3. Let F € C*(R). If f,g € X5, s >0, then

IE(f) = F(g)lls < K[f = glls, (2.2)

where K depends on || f||s and ||g]|s-

Proof. We will deal only with the case s € (0,1) - the other cases can be
dealt with by using the same approach as in Lemma 2. Throughout this
proof K stands for a constant depending on || f||s and ||g||s. Note that

1
F(f(@) = Flg@)] = £0) ~ g(a)) [ F (o) + 1 (0) — gla))

0

< sup {IF'(I} 1f (@) = g(@)| = K|f(z) = g(z)], z€R.
Ir|<I[fllLoe +lgll oo

This ensures

IE) = Fgllo < KIIf —gllo, fr9 € Xs (2.3)

To show that F is locally Lipschitz on H*(R), all we have to do now is to
evaluate appropriately the integral (2.1) for [F'(f) — F'(g)]. Observe that

F(f(z+y) — F((9(z +y)) — F(f(z)) + F(g(x))

1
~ e+ n) ~gtat o) [ F (ot )+t i+ ) oot ) de

1
@) =gt [ F (o) + 11 (@) - gl at (24)
= ale +9) [z +9) — gl +0)] — () [f(z) — g()
—a(e+9) [flz +9) — gle +9) — F(2) +ge)
o +y) - a@)] [f@) ~ o).  myeR
where

1
o(2) ::/0 Fg(z) +t1/() — g(2)]) dt, z€R
On the other hand, denoting
A(Q},y) :f<$+y)—g($+y)—f($)+g($), x7y€R7
we have for all ¢ € [0,1] that

F(g(e+y) +t[f@+y) - g +)]) = F(g(@) + t[(2) - g(a)])

1
~ lg(e+9) ~ 9(a) + tAGw9)] [ F'(gla) + tf(e) - g(a)

0
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+rlg(z +y) —g(z) +t Az, y)]) dr.

Since f, g € L*°(R), we obtain from the previous relation that for all z,y € R
and t € [0, 1],

[F'(g(x +y) +t[f(z+y) —g(z+y)]) — F(9(z) +t[f(x) — g(x)])]
< KAz, y)| + K |g9(z +y) — g(x)].
This on its turn implies that
la(z +y) — afz)] < K|A(z,y)| + K|g(z +y) —g(z)], zyeR
Using the above relation back in (2.4), we infer
| F(f(z+y) — F((9(z +y)) — F(f(z) + F(g(z)) |

< K|A(z,y)| + K [g(z +y) — g(2)| | f(z) — g()]
< K|A(z,y)| + K |9z +y) — g@)|If — gllL=, =,y€eR.

This last inequality guarantees that the integral (2.1) for [F'(f) — F(g)] can
be estimated from above by

dy
K//’Aﬂf y)|? |1+25d3«“+K\|f gHLoo//\g r+y) gz )\Qde
< K||f —gllEs + K| f = glli=llgllFs < K|If —gl2

Taking into account (2.3) we now obtain the statement. O

Remark. To ensure in Lemma 3 that F(f) € H*(R) for f € H*(R), s > 0,
one needs the additional assumption F'(0) = 0, cf. Lemma 2.

Proposition. Let F' € C*°(R) with F(0) =0. If f € X5, s > 0, then

IEHs < K| fls,
where K depends only on || f|| e

Proof. Immediate after analyzing carefully the steps of the proof of Lemma
3 with ¢ = 0. ([l

3. THE CAUCHY PROBLEM

We consider now the problem of local existence and uniqueness of solutions
o (1.1).
Theorem 1. For up, u1 € H*(R) N L*(R), s > 0, there exists a unique
solution u € C?([0,T); H*(R) N L*®(R)) of (1.1) defined for some mazimal
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T > 0. The solution depends continuously on the initial data. If T < oo,
then

linta&up (et Yazs + llue(t, Vs + lut, oo + [Jue(t, )| o ) = oo.

For the proof we need:
Lemma 4. The operator L := (1 — 02)71 02 is bounded on H*(R) and on

H*(R) N L*(R) for all s > 0.
Proof. For f € H*(R), s > 0, we have
LA = [+ @PIErOF ds = [ 1 +6)°
On the other hand, note that

(1= "'f=pxf, feL’R)
where p(x) = %e_m, z € R. Tt is then easy to see that

4 A
Tl < 11

Zpxfl=pxf—f [feL*R). (3.1)
From the above identities we infer
Lf=pxf—f fe€L*R). (3.2)

From Young’s inequality we obtain now that
ILfllz < 2[|fllz=, feL*R)NLPR). O
Proof of Theorem 1. We can write the equation from (1.1) as
Ut = L[F(U)], t > 0,
and regard the problem as an ODE-system in the Banach space Xg; =
H*(R) N L=(R),
Ut = v,
vi = LIF(u)],
with initial data u(0) = up and v(0) = vo.
By Lemma 2 and Lemma 3 we know that the map f — F(f) is locally

Lipschitz on Xs(R). As L is a bounded linear operator on X; in view of
Lemma 4, we have that

ILIF(u)] = LIF)]lls < [[1L]llecxallu = olls, w0 € X

We deduce that the right-hand side of the above ODE is locally Lipschitz.
The statement is now a consequence of the classical Picard iteration proce-
dure for ODE’s on Banach spaces (see [6]). O

(3.3)
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Since H*(R) is imbedded in L>°(R) for s > 1, we have the following:

Corollary. ([5]) For ug,uy € H*(R), s > %, there exists T > 0 such that
(1.1) has a unique solution u € C%([0,T); H*(R)).

4. EXISTENCE OF GLOBAL SOLUTIONS

In this section we discuss the existence of global solutions to (1.1) for
initial data in the spaces H*(R) with s > %
Theorem 2. Let ug,v9 € H*(R), s > %, and let T > 0 be the maximal
existence time of the corresponding solution u(t) to (1.1). Then T < oo if

and only if
limsup [lu(t, )1~ = oo.

Proof. One implication is obvious in view of Theorem 1. Let us prove that

if
sup lu(t,-)[|r~ = K < oo, (4.1)
te[0,T)
then T' = co. Using (3.3), we obtain for ¢ € (0,7) that

1d

5 g7 (el + olEe) = (w0 + (v, 5 F(u) = F(w) e

< llullzsl[ollazs + vl as (llp * F(u) | s + 1F ()] ae)-
Using the Fourier transform, it is easy to check that
lp* hllers < [[Pllzs,  h e H(R).
It follows that

d
g7 el + ollZ) < (el + lolE) + vl 1F@llms. (42)

Since H*(R) — L*°(R) for s > 3, we deduce from (4.1) and the Proposition
that

1F(u)l[ms < Cllul|as (4.3)
for some constant C' > 0. Substituting (4.3) in (4.2), one obtains
d
77 (s + llollEe) < (04 20) (lullE + ol t € (0,7).

The previous relation shows by Gronwall’s lemma that the H*(R)-norms of
u(t) and v(t) do not blow-up in finite time. Then T" = oo by Theorem 1. O
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Looking for conditions that ensure the global existence of solutions to
(1.1) for initial data in H*(R), s > 1, let us introduce the class
> ds

R ={w:R;y — (0,00), w nondecreasing and /1 e = 00}

Besides bounded functions, we note that functions with a sublogarithmic
growth, i.e., satisfying w(r) < M [In(1 +r) + 1] for r > 0, belong also to the
class .

Theorem 3. Let F € C*(R) be such that F(0) =0 and

|F'(z)]? < w(z?), r €R, (4.4)

for some w € R. Then for all up,v9 € H*(R), s > 1, the corresponding
solution to (1.1) exists globally in time.
Proof. Fix ug,v9 € H*(R), s > 1, and let u € C?([0,T); H*(R)) be the
solution of (1.1) with initial data (ug,vg), defined on the maximal interval
of existence [0,7") with 7' > 0, cf. Theorem 1.

Using (3.3), we have for ¢t € (0,7) that

i/(quLu?ﬂ)d:;::2/uvd:v+2/ugcvgcd:v
dt Jr R R

S/(u2+u§)dx+/(v2+vg)dx,
R R

whereas
4 (02 +02)dx =2 / v L[F(u)]dx + 2 / Uy Op L[F(u)] dx
dt Jr R R

:2/Rv[p*F(u)]daz—2/RvF(u)dx

+2 /vaaz[p*F(u)] dz — 2 /vaaxF(u) dx

if we take into account the formula (3.2). Integration by parts in the third
term on the right-hand side of the above identity leads in view of (3.1) to

d
— | (W +v)de = -2 / vy F'(w)ug dz, t€(0,T).
dt Jr R

Adding up, we see that

d
— (u2+u§+v2+v§)dx§/

- (u? + 2 + 02 +v§)dw+2/|vx||F'(u)uz|dx
R R R

(4.5)
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g/(u2+u§+v2+v§)d:c+/
R R

From (4.4), we infer, for t € (0,T), x € R,
|F'(u(t, 2))* < w(u?(t,2)) < w([ult,)|7=) < w(llult,)[I7n),
so that

U:%daH—/ |F' (w)ug|*dz, te(0,T).
R

[P @l do < w(lute, ) [ o
R R
< Jlutt, iz wllult )3, te ©O.T).  (46)

Combining (4.5) and (4.6), we obtain
d
= (s + ot D) < 2 (It DB + ot )

o (2 + ot ) wlllutt, Y2 + ot )3, ¢ e (0,7).

For w € R, we have that G(c0) = oo, where
" ds
G(r)::/ —— =00, >0,
o 8+ sw(s)
cf. [4]. From the previous differential inequality, we obtain
[t M + o, ) E < G7H2E+ G(luollFn + lvollFn)),  t € (0,T).

The above inequality ensures that the H'!(R)-norm of u(t) does not blow-up
in finite time. This prevents limsupyp [|[u(t, )| L=~ = oo for T' < oo so that
the solution is global, cf. Theorem 2. O

Remark. Besides sublinear functions, we see that F(z) = x /In(1 + z2),
x € R, satisfies also the condition (4.4).

Regarding solutions with a finite life-span, we have:
x
Theorem 4. ([5]) Let P(x) = / F(s)ds, z € R. If there exists o > 0
0
such that
(2+«a)P(z) > zF(z), x€R,
and if / P(ug)dz < 0 for some ug € H5(R), s > 3, then the solution to
R
(1.1) with initial data (ug,0) blows-up in finite time.
Example. In view of Theorem 4, occurrence of blow-up in the spaces H*(R),
s > 3, holds for equation (1.2) as well as for equation (1.1) with

(i) F(z) = c2?, x € R, with c € R* and p € N, p > 1; and
(i) F(r) = ca®t 2 € R, withc<Oand pe N, p > 1.
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The next result shows that the negativity of the coefficient in (ii) of the

above example is essential.
x

Theorem 5. Let P(x) := / F(s)ds, z € R. Assume that there exists a
0
decomposition F' = Fy + Fy + ... + I}, such that
|Fi(x)|" < K P(z), i=1,..,n, z€eR,
1

for some ¢; > 1,1=1,...n and K > 0. Then for all ug,vo € H*(R), s > 3,
the corresponding solution to (1.1) exists globally in time.

Proof. According to Theorem 2, it is enough to ensure that the L*°(R)-
norm of the solution u(t) to (1.1) does not blow-up in finite time. We denote
by T' > 0 the maximal time of existence of this solution. Also, K > 0 stands
here for a generic constant.

Let us note that it is enough to prove the result for initial data ug, vy €
H*(R) such that both ug and vy are derivatives of H**!(R)-functions. In-
deed, passing to Fourier transforms, one can easily see that the latter re-
stricted space is dense in H*(R) (for details, see [8]). We then argue by the
continuous dependence on the initial data of the solutions to (1.1) to obtain
the statement in its full generality.

Since up = w4, Vo = 20, for some wo, zg € H**1(R), note that for all
t € [0,T), the solution u(t) of the problem (1.1) is given by u(t, z) = wy (¢, x),
with (w, z) satisfying the system

we = Z,
2z = Oz [p* F(wy)].

Indeed, if (w, z) is a solution of the above system, using (3.1), one can see
that u defined by u(t, z) = wy(t, z) solves (1.1). Conversely, if u is a solution
o (1.1), then

u(t,x) = uo(x) + /0 v(s,z)ds

where (u,v) solves the system (3.3). The term ug(x) is an z-derivative by
hypothesis and

v(s,z) = vo(x) + /03 021 =02 [F(w)(r,z) dr

is also an z-derivative as vg = 29 . We deduce the existence of a function
w(t, x) with u(t, x) = w,(t,x). Now it is easy to obtain that

Wit :&Ep*F(u)
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and to write this second-order equation as the desired first-order system.
Observe that

E(t) := %/R(z2 + 22) dx +/RP(u) de, tel0,T), (4.7)

is conserved in time. Indeed,

d
— E(t) = /(zzt + 2p2q¢) dv + / F(u)us dx

:/Rz(?x [p* F(u)] dx+/Rz$83 [p* F(u)] dac—i—/zzF(u) dx

R
= / 20y [p*F(u)]dSL‘—I—/ zz [p* F(u)]de, a.e. te(0,T).
R R
From the second to the last line above we applied (3.
shows that an overall cancellation holds and E(t) =
On the other hand, note that u,v € C?([0,T);
(t,z) € (0,T) xR,

1). Integration by parts
E(O) for t € [0, 7).
L?*(R)). Thus, for a.e.

L4024 02 42 )] = bl Flu)
%[u + 02 +2P(u )]—i—v[p*(ZFi(U))]- (4.8)

i=1
By Young’s inequality we have

\v[p*(iﬂ(um\é vt = ZHp*F )17
< 5o+ Sl < ot k3 ( [ P

with 4+ L =1,4=1,...,n. From (4.7) we infer

/ P(u)dz < E(0), te][0,T).
R

Using the above estimates back in (4.8), we obtain that for a.e. (t,x) €
(0,7) x R the following inequality holds

%[u2+v2+2P(u)] <+ 1)+ 02 +2PW)] + K.

By Gronwall’s inequality we conclude from the previous relation that
||u(t,-)|| L~ does not blow-up in finite time and therefore T' = oco. O
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Example. Theorem 5 shows that if F(z) = c2?**!, » € R, with p € N*
and ¢ > 0, then for all ug,vg € H*(R), s € N*, the corresponding solution
to (1.1) exists globally in time. Also, all solutions to (1.3) and (1.4) with
initial data ug,vo € H*(R), s > %, are global in time.
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