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Abstract. In this paper we prove the existence of a solution for a
nonhomogeneous bi-layer shallow-water model in depth-mean velocity
formulation. In [7] the homogeneous case was studied. The main dif-
ficulties in the nonhomogeneous case arise from the treatment of the
boundary terms.

1. INTRODUCTION

The problem that motivated our study is the modelling of the dynamics of
water masses in the Alboran Sea and the Strait of Gibraltar (the westernmost
part of the Mediterranean Sea). In this sea, two layers of water can be
distinguished: the surface Atlantic water penetrating into the Mediterranean
through the Strait of Gibraltar, and the deeper, denser Mediterranean water
flowing into the Atlantic. Observation of this simplified picture shows that,
if a bi-dimensional model is used to simulate the flow in this region, it is
necessary to consider, at least, a two-layer model.

Here, we propose a model that considers sea water as being composed
of two immiscible layers with different constant densities. In such a model,
waves appear not only on the surface but also at the interface between the
layers. It is assumed that the phenomena to be modelled have wavelengths
large enough to make an appropriate shallow-water approximation in each
layer. Therefore, the partial differential equations system to be studied is a
coupled system of shallow-water equations.

The analysis developed in this paper is based on the techniques used by
P. Orenga and F.J. Chatelon, in collaboration with P.L. Lions, in the study
of the one-layer model. In [2], these authors presented a theorem for the
existence of a solution for the shallow-water problem with nonhomogeneous
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boundary conditions, based on a previous result corresponding to the ho-
mogeneous problem [10]. In [3], they also presented some smoothness and
uniqueness results for the homogeneous problem. In [7] we applied similar
techniques to prove some results for the existence, smoothness, and unique-
ness of a solution for the homogeneous bi-layer model. The main difficulty
found in that case was the treatment of the terms coupling the equations
of both layers. In this paper we prove the existence of a solution for the
nonhomogeneous bi-layer problem. The main difficulty in this case arises in
the treatment of the boundary terms.

1.1. Positioning the problem. Let 2 be a fixed, bounded, and simply
connected open domain of R? with the boundary I' sufficiently smooth. In
oceanographic applications, €2 is the domain corresponding to the surface of
the sea assumed to be at rest. We denote by x = (1, 22) a point in Q, by n
the exterior unit-normal vector to  on I', and by ¢ € [0, 7] the time during
which the flux is studied.

We consider a system composed of two layers of superposed fluids with
densities p; and p2 (p2 < p1). In what follows, index 1 refers to the deeper
layer, and index 2 to the upper layer of the fluid. Let A; and Ay be the
respective coefficients of viscosity for each layer and ¢ the acceleration of
gravity.

We denote by u; and ug the velocity vector fields and by hi and hg the
thickness of the lower and upper layer, respectively.

For i = 1,2, we can split the boundary I' into three parts: I'¢, corre-
sponding to the coasts; I‘;”, where the flux is going out the i-layer, and
I';, where the flux is coming into the i-layer. Notice that w; -n =0 on I',,
ui-n>00nfj, and u; -n <0on I .

Then, let Q@ = Q x (0,T), S =T x (0,T), f =T x (0,T), and ¥; =
T % (0,T),i=1,2.

If ¢ = (p1,92) is a vector function from  into R? and ¢ is a scalar
function from €2 into R, we define the operators «, Curl, and curl as follows:

dq
P2 oz 8902 6(;01
= lqg = 2 lop=—— —.
ap) < ; ), Curlgq < 5 >, curl o ,

The problem we study, which will be referred to as (P) in the sequel, is
the following [6]:
0 1
% — A1 Aug + §Vu% + curluya(uy) + gVhy + g%th =h in Q,
1

up -n =Gy on X,
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curlu; =0 on X,
ui(t=0)=u1p in Q,
0hy

E—{—div(ulhl) =0 in Q,

hy = H1 on EI)
]’Ll (t = 0) = hl,O in Q,

0 1

% — AsAus + §Vu% + curluga(uz) + gVhe + gVhy = fo in Q,
ug -n = G on X,
curlug =0 on X,

UQ(t = 0) = Uu2,0 in Q,
h
Oha | iy (ughy) =0  in Q,
ot
h2 = K2 on 22_7
ha(t=0)=hyy  inQ,

where u; o and h;o > 0 are the initial conditions for velocities and depths,
respectively, ¢ = 1, 2.

As usual, we are going to make a change of variables in order to obtain a
homogeneous problem.

Set G; and % in L2(0,T; HI/Q(F)), for i = 1,2. Then we solve, for every
t € [0,T7], the scalar problem

—Asit) = fit) € L™(Q),

it = Gl e D),

where f; is chosen in H'(0,T; L°(Q)) and satisfying the condition Jo fi+
Jr Gi = 0. We can choose s; such that [,s; = 0. The function w; = Vs;
satisfies w; € HY(0,T; H(2)?), divw; € H'(0,T; L>(f)), curlw; = 0 in €,
and w; -n=G;on T, fori=1,2.

Setting v; = u; — w;, i = 1,2, we formulate the problem (P) as the
following problem (P)’:

8('01 + wl)
ot
+curl (v1 + wy)a(vy + w1) + gVhy + g%th =f in Q,
1

1
— AlA(Ul + ’U)l) + §V(U1 + ’11)1)2

v1-n=20 on 3,
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curlv; =0 on X,
vi(t=0) =1 in €,
0hy

Bt + div (vihy) + div (wihy) =0 in Q,

hy = H1 on E;a
hl(t == 0) == hl,O in Q,

0 1
W — AQA(UQ + wg) + §V(U2 + w2)2
+curl (Uz + wg)a(vg + wz) 4+ gVho +gVhy = fo in Q,
vog-n=>0 on X,
curlvg =0 on 3,

’Uz(t = O) = 2)270 in Q,
Oha

= + div (vahg) + div (w2h2) = 0 in Q,

h2 = K2 on E;a
ha(t=0) = hao  inQ,
where v; 0 = u;jo —w;(0), i =1,2.
1.2. Weak formulation. We will denote by (-,-) the scalar product of

L?(Q2) and L?(2)? and by ||-||ym.» the usual norm in W™P(Q) and W™P(£2)2.
Let V be the space

V ={ve L*Q)? divv € L*(Q), curlv € L*(Q), v-n =0 on I'}.
As Q is simply connected, we can consider in V' the norm given by
o[} = ldivvl|72 + eurlv]Z.

Recall that V' is algebraically and topologically included in the space {v €
HY(Q)%, v-n=0o0nT}, and that the bilinear form

a(u,v) = (divu, divv) + (curl u, curl v)

is elliptic.

Let us consider the problem (P)" under the following weak formulation:
Find (v1,h1) and (vg, hg) in [L*(0,T; L%(Q)%) N L?(0,T; V)] x [L>(0,T;
LY(Q)) N L*(Q)] such that hy > 0, hy > 0, and the following system, which
will be referred as (V), holds:

o 1 . i
(2 ) + Asafvr, ) — (0} dive) + (curlvia(on), 9) — g, div )
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—g%(hz, divp) — (viwr, divp) + (curlvia(wi), @) = (f1, )

_(8101

TR (wi,divp) Vo eV,

) — Ara(wy, @) +

N —

o 1 . i
(22 ) + toalus, o) — 5 (03 divep) + (curlvra(va). 9) — g(ha, div )

—g(h1,divp) — (vawz, divp) + (curl vaa(wa), p) = (f2, )

ow 1 _
—(8—;,90) — Asa(ws, ¢) + §(w§7dlv<ﬂ) Vo eV,
% + div (v1hy) + div (wihy) =0 in L0, T; W™1P(Q)), p <2,
oh
a_f + div (v2ho) + div (wshe) = 0 in L'(0,T; W™1P(Q)), p <2,

’Ul(t:O):ULQEV, UQ(tZO):UZOEVva
hi = p1 on X7, ha = po on X5,
hl(t = 0) = hl’(] S L2(Q), hQ(t = 0) = h270 € LQ(Q).

The orthogonal decomposition of L2(2)? in a sum of gradient vectors and
curl vectors [4, 8], L*(Q)? = VH(Q) & Curl H} (), will be used to look for
v1 and v in V under the form

vl = Up1 + Vg1 = Vp1 + Curlqr, wv2=vp2+vg2=Vps+ Curlgy,

with p; and g; solutions of the scalar problems

%P?' = divy; in £, —Ag; = curly; in
bi - _ v;-n = 0 onT, ¢ = 0 on I,
on

i = 1,2. The functions p; can be chosen such that fQ p; = 0. We must also
remember that curlv,; = 0 and diveg; =0, 1 =1, 2.

In order to simplify the notation, we consider only the simply connected
case. The additional difficulty appearing in the multiply connected domain
is solved by taking into account a dissipation condition at the bottom [9].
In this case, some new functions must be added to the decomposition: the
functions curlr with r solutions of the following m problems:

—Ar;=0inQ, r=1only, r=0only, j#i,

where ¢ = 1,...,m and 7 = 0,...,m. We have assumed that I has a
finite number of connected components I';, i = 0,...,m, ['g indicating the
boundary of the infinite connected component of the complement of €2 in
R2.
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2. AN EXISTENCE THEOREM

In this section, we present a global existence result with controlled data.

2.1. Theorem. Preliminaries. Let C be the best constant associated with
Gagliardo-Nirenberg’s inequality:

lull?s < Cllullg2llully, YueV,
and C the injection constant of H(€2)2? into L4(€)2:
lwllps < Clwllg,  Vw e H'Y(2)%.
Let C’ be the injection constant of {© € W1(Q) : [, © = 0} into L*(Q):

102 < VO, VO € WH(Q): / 0 =0
Q

Now set, for 4 = 1,2, a; the injection constant of H3/%(T';’) into L>=(T} ),
and b the constant such that

1pill 2 < Ol[div vil[ 2,

with p; the solution of

{Api = divey; in 9,

O
(917); =0 on I

We consider the N-function ®(z) = e”* — 1 and the associated Orlicz space
L (2), which is a Banach space with the Orlicz norm, denoted by || - ||1,-
The Sobolev space H'() is embedded in Lg(£2) [1]. Let k be the injection
constant:

IpllLe < Klpllar, v e HY(RQ).
It is not possible to give an analytical expression for ¥, the complementary
N-function to ®. However, it can be shown that ¥ is equivalent to \i/, with

U(x) = z1/log™ .

Let [| - ||y and || - ||, be the Orlicz norms in the Orlicz spaces Ly ()
and Lg (€2), respectively. The equivalence relation between the N-functions
¥ and ¥ implies the equivalence between the norms | - ||z, and | - || Lg
and allows us to identify the spaces Ly(£2) and Ly (€2). Let k&’ be the best
constant such that

1PllLy < KllhllLg, Vh € Lu(Q) = Lg(9).
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Finally, denote by k” the best constant such that
ol < KI¥plie Vo e HYR): [ p=0.
Now we can define K = kk’k”. On the other hand, H'/?(T') is embedded in
Lg(T) [1]. Let & be the injection constant:
1PllLe) < Ellpll 2@y, VP € HY(D).

The equivalence between the N-functions ¥ and W is still valid: let &’ be
the best constant such that

1Plly(r) < KBy @), YR € Ly(T) = Lg(T).
Finally, we define K = xkr'k"”.

Conditions of the theorem. We define the positive! constants

[haollz — fyo Grm

G1= meas(2) ’ 2.1)

, Ioll = Js, Gim
-

2 :
meas((2) (||w1||L2(Q) + Arfldivan |z )

+9T(||h1,0||L1 - /21_ G1H1> JrQT%(th,oHLl - /22_ G2H2>> (2.2)

and
sl Go
N meas()

: (2.3)

; Hh270”L1 - fz; Gapz
=

2 :
meas(2) (”wQHLQ(Q) + Azfldivaws| Ly )

#oT (Ihsolls = [ Gaps) 47 (Ihaolls = [ Gum)). 20

We also define the quantities

1 ~
1 1—e—2 —-C4 gpl 2p Cllwill e (o,r50402) (2:5)
50/2 9
anlHLw(O,T;LQ(Q)Q)

INotice that Gily- <0,i=1,2.
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and
1 ~
= A2 — & — 25/ — CQ — gﬂ — 20’|w2“L°°(0,T;L4(Q)2) (26)

C/2
AN Hw2HLoo 0,7;L2(Q)2)"

where ¢, €/, \, and u are positive numbers,

2 . _
KF=VC'+M&CA ¢ i=1,2, (2.7)

4C'y ’
where 5(C? 4 407)
+
=~ - 7 2.8
C)\ 16\ ) ( )
and, finally,
2
1 A;
Coon=> b (9+A;) /Q hiplog hio + ;meaS(Q)
i=1

+(g+ Ai)”GiHL? O,T;Hl/Q(F._))H,UJi log MiHLQ(O,T;H*l/?(F._))

1 1
+ 2 (il @+ Alwilliaorm o + 3lwilliig)
K%”
+C£+/pi(0)hi,o+2K2+ S
Q
2b2 5L
0 (0,T;H/2(T'))) H’U’ZHL2(OTH 12(T7)) + ||wlt||L2 (@)

] K2
+ ﬁHfZH%Q(Q) —+ (g”le’LUZ’HLI(QT;Loo(Q)) + F + (g +A1)H log GzHLoo(E:r)>

X (||hz',0||L1 - /2 Giﬂi)}, (2.9)

which depends only on the data. Let us assume that the eddy viscosities are
great enough to make

Bi>0, i=12. (2.10)
Choose A and p such that
g>A+gg (2.11)
and &’ such that
¢/ < min +f' (2.12)
=12 K2

(3

Let us suppose that the data satisfy the smoothness hypotheses
fi e L*(Q), (2.13)
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G; € HY(0,T; HY?(I)), with logG; € L®(Z)), (2.14)

pi € L*(0,T; H-Y3(T))), with g; > 0 and p; log u; € L*(0,T; H-Y(T;)),
(2.15)

vip €V, (2.16)

hio € L*(Q), with h;o > 0 and h;glogh;o € L'(Q), (2.17)

and the compatibility condition
Ui0 - N = Gi(O), (2.18)

for i = 1,2. Finally, we assume the following hypotheses based on small-size
data:

viollre <K;, i=1,2, (2.19)
g .
Hhi,OHLl - /Z Gzluz < W? v = 1727 (220)
and
2
Coon+ > - meas({) < 7 min K. (2.21)

i=1

Theorem 1. Let Q) be a simply connected, bounded, smooth, open domain
of R? with boundary T'. If (2.10)—(2.21) are satisfied, then the weak problem
(V) has a solution {(vi, h1), (va, h2)} that satisfies the following estimate:

o1l Zoe 0722 (002) + W0allioe o,mvz2()2) + 10112200, 20) + I02llZ20 v

+sup/hllogh1+sup/hglogh2+/ G1hylog(G1h)
t Ja t Ja =

+ [ Gahalog(Gaha) + s g + el < C, (222)
Z2

where C > 0 depends on the initial data.

The proof of this theorem consists in obtaining some a priori estimates,
then building a sequence of approximate solutions that satisfy these esti-
mates, and, finally, passing to the limit in the continuity and momentum
equations as in [10]. In this case, the main difficulty is to obtain an a pri-
ori estimate because of the coupled terms, as in the homogeneous case [7],
and because of the boundary terms due to the nonhomogeneous boundary
conditions.
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2.2. A priori estimates.

Lemma 1. If {(v1,h1), (ve,he)} is a classical solution of the problem (V)
and if the relations (2.10)—(2.21) are satisfied, then we have

hi>0, i=1,2, (2.23)

—/Gihi, i=1,2, (2.24)
r

2
g+ (g+A)T 1 1
- ; %me%’(g) < ZHUl”QLOO(O,T;LQ(Q)?) + Z”UQH%OO(O,T;LQ(Q)?)

C
+ (Bl = llvillerz@p2) — CAHWH%OO(O,T;LZ(Q)?)) [o1l172(0.7v)

+ (B2 — _HUQHLOO 0,1:22(2)2) — CallvallZoo (0 722(00)2) >HU2HL2 (0,7;V)

(
+ (9 - 2K (\hl,OHLl(Q) _/EGMH))SEP /th log™ hy — gSlzp/Qm log™ hy
1
(

+ (92K (Hh20HL1 —/ G2u2)>sup/hglog+h2—gsup/hgloghg
55 t Jo t Jo

+ (g + Al) /+ Gi1hy 10g+(G1h1) — (g + Al) /+ Gihy log_(Glhl)
% DO

+ (g + AQ) Gohso log (G2h2> — (g + AQ) Gahso log™ (GQhQ)
=F %4

+(9-2-9%5) Il + (92 =92 5z

< oo [, Giilog" (Gat)
1

+ € llvall7 o (0.7:22(2)2) /2+ Gahglog™ (Gaha) +Cc oy (2.25)
2

C .
Bi = Sl rix@p) = Olvilli oz > 0, =12 (2.26)

Proof. The inequalities (2.23) are easily deduced from the identity

hi(:c,t) = KZ' e fg diVui(Xi(s),s) ds, (2.27)



ON A NONHOMOGENEOUS BI-LAYER SHALLOW-WATER PROBLEM 1185

where X;(s) is the trajectory of the particle of fluid that is at a point = € Q
at instant ¢; i.e., it is the solution of the problem
dX;
dt
for i = 1,2. If the particle was at zg € Q at t = 0, then K; = h;o(xo), and
if the particle comes into €2 at a point zyp on boundary I'; at instant ¢t = 7,
then K; = ui(zo, 7).
The relations (2.24) are obtained by integration over 2 of the respective
continuity equations:

= ’U,Z'(Xi(t), t), XZ(O) =x,

h—l—/Gh—O

We can obtain an estimate for h; in L>(0,T; L(Q)), integrating in time the
previous equalities:

il oo (0,7:01 () + [1Gihill gy < NlPiollpr — / Gipi, i=1,2. (2.28)
The first step to prove the estimate (2.25) is obtaining the energy inequal-
ities, by taking ¢ = vy in (V)1 and ¢ = v9 in (V)a2:

1d

1 : .
5 dtHU1||L2 + Avfur|f — Q(U%adwvl) — g(h1,divor)

—g—2(h2,divv1) = (vywy, diver) — (curl via(wy), v1)

P1

0 1 ,
—i—(fl,Ul) — (%,UO — Ala(wl,vl) + i(w%,dlvvl), (2.29)

1d

1 . .
5 dtHU2”L2 + Ag|lva [} — 2(v§7dlvv2) = g(hs,divuy)

—g(h1,divvy) = (vawe, divuve) — (curl vea(ws), ve)
+(f2,v2) — (%, v2> — Asa(ws,v2) + %(w%,divvg). (2.30)
The terms on the right-hand side of (2.29) and (2.30) are estimated as follows:
|(viwg, divvg)| < [logl pallws | palldiv oill 2 < Cllwil| o ¥,
[(curl via(wi), vi)| < leurlvg]| 2 l[wil| g [[vill L+ < Cllaws| s il
|(fi, vi)| < [ fillvellvilly < EHWH%/ + éHfiH%//,

)

€ 1
vill L2 < leviHQv + gllwi,tlliz,
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€ A?
|Asa(ws, vi)| < Ag|lwil| g [Jvilly < ZHWH%/ + ?leinql»

1 ) 1 ) € 1
5w, diven)| < 2 fwslalldivel e < 5 ol + gl

To estimate the nonlinear terms (v?,div v;) and (v3,div ve), we use Gagliardo-
Nirenberg’s inequality:

(vF, dives) < [JoillZallvilly < Cllvillgzllvil},  i=1,2.
Next, we estimate the terms (h1,divv;) and (he,divve) by formally writing

Vh
hi ’

Using the continuity equations and (2.24) we have

*(hi, div Ui) == (Vhl, ’Ui) = ( Uzhl) = (V log hi, ’Ulhl) == —(log hi, div (Uzhl))

— (hy, dive;) = (log hi, %) + (log hs, div (wihs))

d
= %(hz log h; — h;, 1) — (V(log hi), wihi) + / G;h; log h;
I

d d Vh;
= —(hiloghs, 1) — — | hi = ( ——, wih; Gihilogh;
g alog his 1) dt/Q ( Y >+/F 08

d

= —(hi log h;, 1) + / Gih; — (Vhi, wi) + / Gih;log h;

= i(hl log hi, 1) + / Glhl + (hi, div w,-) - / Glhz + / Gzhl log hi
dt r r r

= i(hi log hi, 1) + (hs, divw;) +/ Gih;logh; +/ Gipilog pus,
dt r} r;

for i = 1,2. The terms [(hj,divw;)| and [p- |Gip;log p;| can be easily
bounded by virtue of (2.14), (2.15), and (2.28):

|(i, divews)| < ([l oo | div i pee,
/F_ |G log pi| < ||GiHH1/2(r;)||Mi 108;/%”}1—1/2(1“;)'

Then, adding (2.29) and (2.30), and integrating in (0,t), we get

1 2 1 2
SlurliZe + 5 lvall3

~ C t
+(41 =& =20l ranar = Fholioran) [ Il
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~ C t
+(42 = = 2Clhwall o) = ooz [ loal?

+g/h110gh1 +g/h210gh2
Q Q

¢ ¢
—I-g/ / G1hyloghy + 9/ / Gaha log ha
0o Jrf o Jry

2
1
< Z [5“”12,0”%2 + Q/th,o log hio

T
g / Il ldiv wil| o + g / 1Gill g2y 13108 1l 12
0

L[ (e
€Jo slve

P2 T T
g ((ha, divoy)| —|—g/ ((hy, div )| (2.31)
P1 Jo 0

1
leili3 + 7wl

The second step consists in obtaining estimates for hy and hy in L?(Q).
To do this, we consider the L? projection of the equations (P)} and (P)§ on
the gradient vectors field:

81)1 811)1 1 2 1 2
/Q<8t + — ot — A1 Avy — A1 Awy + 2V1)1 +V(v1w1) + 2VU)1

+ curlvia(vy) + curlvia(wy) + gVhy + g@VhQ — f1>VP dx =0,

/(%4-(%}2 AgAvg — AgAwsy + V02+v(02w2)+ Vw2
o\t ot

+ curl v (vg) + curl v (wsy) + gVhy + gVhy — f2>VP dx = 0,

where P € H'(Q). Setting v; = Up1 + Vg1 and vy = v, 2 + V42, and con-

sidering that the projections on the space VH'(Q) of % and Curl curl vy
are zero, we have

ot ot
+ curlvg1a(vr) + curlvg 1a(wi) + gVhy + g@th — f1>VP dr =0,

) ) 1 1
/ (& + S A Avy — AjAwy + SVl + V(o) + 5 V?
Q

0 0
/Q ( gI;’Q + ;2 AsAvy o — AsAwy + Vv2 + V(vows) + Vw2
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+ curlvg 2a(ve) + curlvg ac(wz) + gVhe + gVhy — fg)VP dr = 0.

And recalling that divv,; = Ap; and divw; = As;, we arrive at

p1 | 9s1 1,
it Tl _A -
V(at + ot A1Ap1 1A81+27)1 + viwq
1 ~
+§w%+91+@1+gh1+g%h2—ﬂ>ZO,
1
Opz | Osg 1,
—= 4+ —= — A5Apy — AA —
V( N + En 2Apo 2 32—1-2@2 + vows
1 _
+§w%+@2—|—®2+gh2+gh1—Fg>:0,

where VO); are the projections for the L?(Q)? scalar product of curl v, ;o (v;)
on the space VH(Q), VO, are the projections of curlv,;a(w;), and VF;
the projections of f;, i = 1,2. We choose these such that

o= [6= [ -0
Q Q Q

Finally, we have

Op1 | 0s1 1
E + E — AlApl — A1Asy + 51)% —+ viwy
1 5
+ 3wl + 01461 +gh —i—g%hg—Fl - (2.32)
1
Opy | 0sy 1
W -+ E — AQApQ — AQASQ + 5’0% =+ Vw9
1 ~
+ 510% + Oy + 09 + ghQ + gh1 — = CQ, (2.33)

where (; and (o are functions that depend only on time.
Now we define, for ¢ € [0, 7], the function
1, 0 <t < T-
fa(t)—{ Tt T-§ <t < T
Multiplying (2.32) by &shy and (2.33) by &she and integrating over @, we

obtain
2 P2
9/ &shy —A1/ Api&shy —|—g—/ &shiho
Q Q P1JQ

0 0s
=/ C1&sh1 — %55%— —1£5h1+A1/ Asi&shy
Q Q Ot Q Ot Q

0,
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1 1
—5/ vi€sha —/ viwi&shy — 5/ wiéshy
Q Q Q

_ /Q O165hn — /Q B85k + /Q Fiéshy, (2.34)

g/ &shs —Az/ Apa&sha +g/ Eshihs
Q Q Q

0 0
— [ Gtsha— [ Tresha [ T2esha+ Ar [ Asstoh
Q Q Q Q
1

1
—5/ U%&sfm—/ vowashy — 5/ w3Eshs
Q Q Q

- /Q Qs /Q oshy + /Q Ftsho. (2.35)

As in the homogeneous case [7], the L? estimates for k1 and hy are performed
by estimating the terms in these equations and then passing to the limit when
6 — 0. There appear new difficulties due to the boundary terms.

First, notice that fQ &shiho > 0 because hy,ho > 0. Then, the second
terms on the left-hand side are treated by using the equalities

Q Q dt Jo

+/ hidivwi+/ Gihiloghi+/ G log 1,
Q rfF Iy

as follows

T T
d
_Ai/ Api&shi = _Ai/ 55/ hidiv v; :Ai/ 55—/ hilog h;
Q 0 Q o dtJg

T T T
A / & / hadiv s + A; / & / Gy log hi + A, / & / Gty log 1,
0 Q 0 rf 0 Iy

and
T T T
d d dés
Az’/ _/hilo hi—Az’/ —/ hilo hi_Ai/ —/hilo hi
OiadtQ g o Q&s g Tt o g

A, [T
= —AZ‘/ h@o log hi,O + = / / hilogh;.
Q 0 Jr—sJa
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Using the convexity inequality h;log h; > —% we have

—/ /hi log h; > ——meas(Q).
0 Jr—sJo e
Then

A;
- Ai/ Api&sh; > —Ai/ hiologhio — —meas(€)
Q Q e
A / Eshadivuw; + A; / &Gihloghi + A, / &Cipilog i, i=1,2.
Q = 2

We next consider the second terms on the right-hand side. We first integrate
by parts,

op; 0
p §5h = / En (pi&shi) + pia(féhi)

. &, o Ohi
—/sz(o)hzO‘}‘/ dt z+/sz§6 o’

then we use the continuity equation,

Ops . |
P sha / pi(O)hio+ / ijhi— / pésdiv (vihy) — / pésdiv (wihy)
Q Q Q

:/pi(o)hi,0+/pi—hi+/ va‘févihi‘i‘/ Vpiﬁawihz‘—/&spi@hu
Q Q dt Q Q >

and finally the decomposition v; = vp; + v4,,

apz 56 2
shi= | pi(0)h ®op, £5hi
8t§ /QP() 0+/ i +/va,§5
+/ ’Up,wq,z'fahﬂr/ Upﬂ'wigéhi_/ fapiGihi—/ &piGip,  (2.36)
Q Q sF by

for i = 1,2. The terms —3 fQ v2&sh; and — fQ viwi&sh; in (2.34) and (2.35)
are split as follows:

1/ 2 1/ 2 1 2
—5 [ vi&hi=—5 | vy&shi — | vpivgi€shi — = | vg&shi  (2.37)
2 Jg 2J)g " Q 2Jg ?

—/ viwi&sh; = —/ Up i wi&shi —/ vg,iwi€shs, (2.38)
Q Q Q

and
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for i = 1,2. Using the previous results, (2.34) and (2.35) become

p / esh? + Ay / £5G1hy log hy
Q =F

A
< 4 / hiolog b + ~Lmeas(@) - 4, / ¢5Gpur log 1
Q h

d
+/ C1§5h1+/p1(0)h1,0+/p1§h1—/ &SplGlhl—/ &p1Gin
Q Q g dt = D
- [ Tty [ g =5 [ it~ [ vigshi -5 [ witoh
o Ot 2 Jg? 2 /g1 o " 2 Jg

—/Q@155h1 —/Qé155h1+/QF1§5h1 (2.39)

and
9/ §5h%+A2/ §sGahalog hao
Q =5

A
< AQ/ halog ha o + gmeas(Q) — Ay E5Gaps log o
0

Xy
d
+/ C2§5h2+/1?2(0)h2,0+/p2§h2—/ 55102G2h2—/ Esp2Gapir
Q Q Q@ dt bz D
| B2hy 4 - hy — = hy — hy — = h
L ot Esha + 2/@%,255 2 2/@%,255 2 /qu,zuaéa 2 2/@%55 2
- / Oshs — / Otshs + / Fytsho. (2.40)
Q Q Q

To estimate the terms [, 0 (i&sh; on the right-hand side we look for an expres-
sion for ¢; and (s, integrating (2.32) and (2.33) over Q. We use [,p; = 0
and fQ Ap; = fQ divy; = 0, and fQ s; = 0 and fQ As; = fQ divw; = fF G;.
We also have [, 0; = [0; = [, F; =0, i=1,2. We obtain

G = m/g (%v% + viwy + %w% — Adivwy + ghy + g%l’@)
< - (lnll} + lnli3a + Aulldiv el + gllhallco + 622 ol o
~ meas(f2) L p1 ’
CQ = m/ﬁ (5?]2 + VW2 =+ 511}2 — AleV’LUQ =+ ghQ —+ gh1>
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1 .
< fens() (o2l + llwzll3z + Asldiv wsllx + gllbollze + gllpalza )
Then
| ot < Clluliaira + €

with C; and C/ defined in (2.1)—(2.4), i = 1,2.
The main difficulty is the estimate of the terms

T
/ oy / %s / pihi and / espiGili = / & / piGih.
Q tdt 0 0 rf

For this, we must use the theory involving N-functions and Orlicz spaces
[1, 5]. The first term appeared in the homogeneous case [7] and the second
one is due to the nonhomogeneous boundary conditions.

The first term is bounded as follows:

pie < Mool < B0l eilcg < 11900 (15 [ B00)
< K||vi| 2 1+/hm/log+ hi :K||vl-||L2+KHvi||L2/ Vhiv/hilog* h;
1

< gl + 25 + Gl + 283 ( [ Vi mitog )

<l + 2K + 22l o0 oy [ los™

=] = 00

Recalling that % =0 over (0,7 — ¢) and % = —% over (T'—6,T) we can
conclude that

dgs
/ dt —pih; < 4||U1HLoo(0TL2( )2)+2K2+2K2||hi||Loo(07T;L1(Q)) Sl;p/th 10g+ hi.

Regarding the second term, we start by estimating it in the same way, but
we find a new difficulty: before, we used the known estimate for ||h;||71 in
L*>(0,T); now, for HGihiHLl(ﬁ), we only know an estimate in L'(0,7). We
proceed as follows:

/
/F.+ piGihi <||pijp+ | oy |Gitill g oy < K6 Do+ | g oy IGibill o)

< il |Gl o) < KVl 2 (14 B(Gi))

< KJfvil| 2 (1 + /F+ Ghm)
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= Kl|vi|| g2 + KlJvi| 2 /+ vV Gihi\/Gihi log™ (G;hy)

K
<€||U7,”V+4/+€HUZHL2/ Gih;ilog™ (G;hy) /Gh

And then

K2T
2
_/Zi &piGihi < €'vill T2y +

2

K
el [ Glo” (@) + 5l Gitl s

The estimate of — fzf EspiGipg is less difficult:

[ Gt < Wi N NGl ey sl

< aillpijp- a2 |Gill gz oy il 1720y
< ail|pill 2| G ||H1/2 HMZHH 1/2(17)

< aib”UiHV”G'HHIM(ri—)HN%HH—l/?(ri—)
2 2
<¢| b

- / &piGitti
o

/ 2 2b2 2
< il + 2 1G]

HMZHH 1/2 )

[eS) OTHI/Q )HNlHLQ 0,7;H— 1/2( ))

The terms — fQ %géhi are easily bounded:

852
_ / £5h + usztuLg < / &h? + Hsz»,tH%p
)\ 5k by 5k"
/ 5t + 2o \|v5i,t||%2=— [+ ||w¢,t||%z-

To estimate the terms 5 fQ vy &shi we use Gagliardo-Nirenberg’s inequality:

1 2, 5 T A
2 p,z&sh < géh 16A va,iHL‘l
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5C2
<5 [T uwuizuwrr?v-

Regarding —3 fQ viif(ghi, - fQ vg,iwi&shi, and —3 fQ w?&sh; we simply have
to notice that

1 1 1
—5/ Ug,zféhi—/ Vg, iwi§sh; — 5/ wiésh; = _5/(Uq,i+wi)2£§hi
Q Q Q Q

is negative. The estimation of the terms on the right-hand side of (2.34)
and (2.35) concludes with the estimation of —fQ O©;&sh;, —fQ ©;&sh;, and

fQ Fi&shi:

A A 502
—/b@ms—/&#+—/ﬂ@w_—/&@ /Hwnp
5 5 Jo
50/2
/@m A\mwm@m@Q
50/2
/&# A|w;w%,
~ 5 T b\ 0/2
_ coho < 2 2, 2 412, < 2 24
Johi< g [ene gy 16t < 3 [ et = [ Iveis,

50/2
/@M A\wmmmmm%

A C/2 T
Ry AT
and

2 r 2 A 2 5 r 2
F&sh < 5 fah 4)\ HFiHL2 < 5/, &hi + 1y HFz‘HHl

<gé&@+50|wm@_ e+ 3 [ sz
Then, adding (2.39) and (2.40), and making ¢ tend to zero, we have

(g—)\)/ h%+(g—A)/h§+A1/ Glhlloghl—i—Ag/ Goha log hy
Q Q =f D2

2
Aj
< Z [Ai /Q hiologhio + ?meas(ﬂ)
i=1

| /\

| /\

| /\

IN
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+ Ail|Gi ||L2 0,T:H/2(T )||Mz log MzHL2 0,T;H-1/2(T';) y CiHUiH%%O’T;V) + C§

+ / pi(o)hi,o + Z”Uz’HLoo(QT;Lz(Q)z) + 2K2
Q

2
+ 23| il oo (0,711 (00) sup /Q hilog™ i + 2¢|vill 220 1.1y + Iz—g/T

/ 2 + IC2
+ &' l|villF oo 0,122 (02)2) /2 , Gihilog™ (Gihi) + | Gihill 15t

2b2 '

oo OTH1/2 )H:u‘lHLQ 0,T;H— 1/2( ))
5k” 9 9
4)\ [Jwi, tHL2 + C/\HUZ'HLOO(O,T;B(Q)?)||Ui||L2(0,T;V)
12

+ 55;;\ szHLoo(OTm )2)HUZ'H%2(O,T;V) + %”fz‘”%z(cg)]- (2.41)

The next step is adding equation (2.31) to equation (2.41). Before this,
we are going to make some changes in the terms on the left-hand sides of
both equations. Notice that we can split the term ¢ fQ hilog h; into

g/hiloghi:g/hilog+hig/hilog_hi.
Q Q Q

Using the convexity inequality h;logh; > —%, we get a lower bound for the
term —g [, hilog™ h;:

—g/ hz log_ hl = g/ hz log hz
Q {z€: hy(z,t)<1}
> —gmeas({x €0 hi(x,t) <1}) > —gmeas(ﬂ).

We also split the term g fg Jr+ Gihilog h; in the form

t t t
g/ /+ Glhl log hl = g/ /+ Glhl log(Gihi) — g/ /+ G@hz log Gl
—g//Ghlog (Gih;) —g//Ghlog (Gih;) //GhlogGl,

where

t
—g/ / Gihilog™ (Gih;) > —g—tmeas(ﬂ),
o Jrf €
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and the last term is bounded by
9/ |Gihilog G| < g”GihiHLl(zf)H log Gi‘|Loo(2.+)'
E;L 7 K3

Now we can take the supremum in the terms on the left-hand side of (2.31).
And using that

T
P2 P2 P2
A |(h27dlvvl)|<9 Hh2HL +9p— ”U1H%Q(O,T;V)

and

T
1
9/0 (. dive2)| < g5 nlFag) + a5 Ie2lEovy

we finally obtain, from the addition of (2.31) to (2.41), the desired inequality
(2.25).
To obtain estimates for v; and h; we need only? to prove that

C .
Bi - E||UZ'”L00(07T;L2(Q)2) - CAHU'L'||%°°(O,T;L2(Q)2) > 07 7= 1,2

This is done using the small-data hypotheses.

Let us assume that v; and vy are continuous from [0, 7] into L?(2)2. As
llviollz2 < K, there exists t' such that |v;(t)|/ ;2 < K; in [0,t'), for i = 1,2.
Assume that ||v1(¥)]|z2 = K; and |Jva(t')]|z2 < Ka, for instance. Then
(2.25), written for T'= ¢/, implies

]I{Q
Tl + (g + Al) /+ Glhl log+(G1h1) + (g + Ag) /+ G2h2 long(Gth)
¥ ¥

< EIIK% /+ G1h1 log+(G1h1) + EI]K% /+ GQhQ 10g+(G2h2)
2] 25

2
+(g+A)T
+Coor ) + Z %meas(ﬁ),
i=1

and so>,
2

2
K3 g+ (g+A)T
T S([]E:’E/’)\ + i:E - 71116&8(9),

which contradicts (2.21). The same contradiction holds if ||va(t')]| 72 = Ko
and |lv1(t')||2 < K. Therefore, (2.26) is proved.

2Notice that condition (2.11) 1mpl1es g> A+ g”2 £ because p1 > po.
3Recall that &’ < min;—1,2 9+ .
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2.3. Approximate solutions. Set a sequence {w;,} with w;, € H'(0,T;
H*(Q)?), and another sequence {G; ,} with G, ,, = w; ,-n € H'(0, T} H3 (1)),
i=1,2.

Let us introduce a basis for V' denoted by {v1,...,vy,...}, whose elements
belong to H*(Q)2. Let V,, be the set of linear combinations of the n first
elements of the basis. We consider the following problem: o

Find (v1,, k1) and (v, ko) in [L(0, T L2(2)?)NL2(0, T; V,,)] xCHQ)
such that the following system, which will be referred to as (V,), holds:

(81}17”

1
5t 1/) + Ara(vip,v) — —(vin, divr) + (curlvy pa(vip), v)

2
—g(hip,divy) — g&(hgvn, divy) — (v pwi p, divy)
P1
+(curl vy po(wip), v) = (f1,v)
1

,1/) — Ara(wy p,v) + §(w%n, divv) Yv eV,

Owi
(o

(81}27”

1
5t ,1/) + Asa(vap, V) — —(v%vn, divr) + (curlvg pa(vep), V)

2
—g(hon,divy) — g(hy pn,divy) — (v2 pwap, divy)
+(curlvy pa(wey),v) = (f2,v)
_ (8w2,n

1
Y ,l/) — Asa(wap,v) + —(w%n, divv) Vv eV,

2
Ohin
a;’ + div (Ul,nhl,n) + div (w17nh17n) = 0,

Oha

ot
Ul,n(t = 0) =V1,0n € Vi, 'U2,n(t = 0) =V20,n € Vi,

Mg = pin € CHET), hapn = pon € Co(E3),
hin(t=0)=h10s € CHRQ), han(t=0)=hagn, € Ce(Q),

where the data and the constants satisfy the conditions of Theorem 1. Then
we have

"+ div (UQ’nhQ’n) + div (’w2,nh2,n) =0,

Lemma 2. The problem (V) has a solution {(vin,hin),(Van,hon)} in
[[L>°(0, T L2(Q)%) N L2(0,T; V)] x CH@Q)]?, which satisfies

il e 0.7:22(0)2) + Iv2mll7 0 (0,7 22(092) + 101mlT20, 709

+ HUZ”H%Z(O,T;V) + Sup/ th log th + sup/ h27n log h27n
t Q t Q
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+ / Gl 10g(Gnhnn) + / Gonhin 10(Ganhon)
ot ot

+lhinlZaig) + I1h2nll72g) < C- (2.42)

Proof. To prove this lemma we apply the second Schauder fixed-point
theorem [11] as in [2]. We obtain approximate solutions that satisfy the
a priori estimates. In fact, due to the regularity of the basis, we have v; , €
HY(0,T; H*(Q)?). Therefore, v;,, € C°([0,7];C?(Q)?) and, using (2.27) and
the positivity of initial data h; o, we have h;,, € CH(Q) and him >0,1=1,2.

2.4. Passage to the limit. Now, we present a lemma that is used to pass
to the limit in the approximate equations. Its proof is the same as the one
of the lemma used to pass to the limit in the homogeneous problem [7].

Lemma 3. For each n € N, let
{1, hrn), (01, han)} € [[L°°0,T; L2()2) N L2(0,T; V,)] x €H(@Q)]°

be the solution of (Vy,) given by Lemma 2 that satisfies (2.42). Then we have,
fori=1,2,

Vinhin is bounded in L*(0,T; L' (Q)?), (2.43)
ag;’n is bounded in L*3(0,T; H-1(Q)?), (2.44)

and we can extract from v; , and h; , subsequences still denoted v; , and h;
such that

Vi — v; in L*(0,T; V) weakly, (2.45)

Vi — v; in L®(0,T; L*(Q)?) weakly-star, (2.46)
hin — hi in L*(Q) weakly, (2.47)

Vinhin — vihi in L4/3(Q)2 weakly, (2.48)

curlvi po(vin) — curlva(v;) in LY3(Q)? weakly, (2.49)
Vv,%n — V2 in LY3(Q)? weakly. (2.50)

Passing to the limit in the boundary terms is done as in [2] for the one-
layer problem:

Lemma 4. Let {u;, = v, +win} and {h;,} be sequences such that

Uiy, is bounded in L*(0,T; H'(Q)?), (2.51)
hin is bounded in L*(Q), (2.52)

Oh; n, _
— + div(uinhipn) =0, (2.53)

ot
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i=1,2. Let {Gin = uin-n} be a sequence such that
Gim — Gi in HY(0,T; HY?(I)) (2.54)
and {pin = hi,n|2.—} such that

fin — i in L2(0,T; H-Y2(T))), (2.55)

i =1,2. Then
hi=pu; onX;, (2.56)

(2

fori=1,2.

2.5. Proof of the theorem. Let {w; ,} be a sequence with elements w; ,, €
HY0,T; H4(Q)?) such that w;,, — w; in H*(0,T; H'(Q)?); then {G;,},
with G;,, = w;p, - n, satisfies G;,, — G; in HY0,T; Hl/z(I‘)), i=1,2. Let
v;0 and hjo, ¢ = 1,2, be the initial conditions of the problem (P)’.

Let {vion}, {hion}, and {gio0n} be sequences with elements v; o, € Vj,
hi,O,n S CCI(Q), and Hin S Cg(EZ_) such that Vion — Vi0 in Vv, hi,O,n — hi70
in LY(Q), and p;, — p; in L2(0,T; H~Y2(T;)), i = 1,2. For each n € N,
set

{10, B10), (Vams ho,)} € [[L°(0,T; L2(92)) N L2(0,T; V)] x C1(@Q)]

a solution of (V,,) given by Lemma 2, which satisfies the estimate (2.42).
Using Lemma 3, we can extract subsequences to {v;,} and {h;,}, also
denoted by {v;} and {h; .}, such that

Vi — v; in L®(0,T; L*(Q)*) N L*(0,T; V) weakly-star

and h;, — h; in L*(Q). Then, v; nh; n — vih; in L¥3(Q)? weakly, i = 1, 2.
We can deduce from the previous results that div(v;h;) belongs to
LA3(0, T; W=14/3(Q)) and so h;y. We also have h;i(t = 0) = h;g. The
obtaining of the boundary condition h; = p; on X; is done using Lemma 4.
Finally, passing to the limit in all the terms in momentum equations we
obtain v;(t = 0) = v; 9. This concludes the proof that {(vi, k1), (v2, h2)} is a
solution of the weak problem (V).

3. CONCLUDING REMARKS

In this work we have studied a bi-layer shallow-water model in depth-
mean velocity formulation, with nonhomogeneous boundary conditions. We
have proved a theorem for the existence of a solution, under hypotheses
based on small-size data. The main difficulty with its proof is related to the
presence of the coupling and the boundary terms. In a forthcoming paper,
some smoothness and uniqueness results will be studied.
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