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ASYMPTOTIC BEHAVIORS OF STAR-SHAPED CURVES
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Abstract. We consider asymptotic behaviors of star-shaped curves ex-
panding by V =1 — K, where V denotes the outward-normal velocity
and K curvature. In this paper, we show the followings. The difference
of the radial functions between an expanding curve and circle has its
asymptotic shape as t — +oo. For two curves, if the asymptotic shapes
are identical, then the curves are also. The set of all asymptotic shapes
is dense in C(S1).

1. INTRODUCTION

We consider the asymptotic behaviors of expanding curves in the plane
governed by the interface equation

V=1-K, (1.1)

where V' and K are the outward-normal velocity and curvature of a smooth
embedded closed curve in R?, respectively. It expands where the curvature
is smaller than 1, and shrinks where it is larger. The motion of smooth closed
curves (z(0,t),y(0,t)) € R? by (1.1) is the gradient flow for the energy

1
E := (length) — (area) = j{ds -3 ?{xdy —ydz

with respect to the metric (u,v) := $u - vds, where ds denotes the line
element for a smooth curve with respect to the Euclidean metric ds?> =
dz? + dy? on the plane.
We take the family {R(f)}ie(—oo,+00) Of the radii of the circle expanding
by (1.1). That is, R(t) satisfies the ODE
dR 1

1.
dt R
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Further, we require

R(0) =2
in order to normalize the definition of R(¢). Then, we have R(—o0) = 1,
R(+00) = 400 and 4 (¢) > 0. For star-shaped curves, we have the following
from results of Chow, Liou, and Tsai [3, 5]. (For expanding hypersurfaces
and boundaries of level-sets in R, see e.g. [2]. For convex curves evolving
under more general flows in R2, also see [1].)

Proposition 1. Suppose that vy is a smooth curve, star-shaped with respect
toy € R? and the curvature of v is smaller than 1. Then, there exists
a unique smooth solution {7t} +o00) to the equation (1.1). Further, v is
star-shaped with respect to y, the curvature of v is smaller than 1 for all
t € [0,+00), and the radial function {r(0,t)}pcq1 of v with y as the origin
satisfies the estimate

sup ||r(0,t) — R(t)HCz(S1) < +o0. (1.2)
t€[0,4-00)

Proof. Take a positive function F' € C*°(R) satisfying

1 + ma}(gesl K(Q,O) )
2

F(K)=1-K (K<
and
ar
dK
where K(0,t) denotes the curvature of the star-shaped curve ;. Then, by
the proof of Corollary 2.2 in [3], we see that

max  K(0,t) =max K(6,0) < 1
(0,t)eS1x[0,T) fest

(K) <0,

for the smooth solution {yt},cjo,r) to the equation V' = F(K). Hence,
solving (1.1) is equivalent to V' = F(K) for the initial condition 7. Now,
Theorem 1.1 of [5] and Theorem 4.1 of [3] can work for the solution to (1.1)
as well as V = F(K), and we obtain the conclusion of Proposition 1 (see the
remark after Lemma 3.4 of [3] for the estimate supgyecs1xjo,400) [7(0,1) —
R(t)] < 400). 0

While we see the difference between r(6,t) and R(t) is bounded uniformly
int € [0,400) from (1.2), the following states that there exists the limiting
function [(0) of the difference (r — R)(0,t) as t — 4oc.

Theorem 2. Suppose that a smooth solution ~y; to (1.1) is star-shaped with
respect to y € R? and the curvature of v is smaller than 1 for all t €
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[0, +00). Let r(0,t) be the radial function of v with y as the origin. Then,
there exists 1 € C°°(S') such that

i [l (6,) ~ (R(2) +10) | oxsny = 0 (13)
for all k € N.

Remark. If we use a different solution R(t) to the same ODE % =1- %
with an initial value R(0) = ¢ € (1,400) \ {2}, then lim; . oo(R — R)(t)
exists. Hence, as long as the initial value ¢ € (1,4+00), it does not matter
which solution to the ODE we use.

The following indicates that for two expanding curves v} and ~7, if the
limits 71(0) and 12(0) of the differences between the radius R(t) and the
radial functions r1(6,t) and r2(6,t) of v} and 77 as t — +o0, respectively,
are identical, then the curves v} and ~? are so.

Theorem 3. Suppose that two smooth solutions ~; and v to (1.1) are
star-shaped and their curvatures are smaller than 1 for all t € [0,+00). Let
r1(0,t) and r%(0,t) be the radial functions of v} and ~Z, respectively. Then,
limy o0 [|71(0,8) — r2(0,1)||o(s1) = O implies v} =~ for all t € [0,+00).

The following theorem shows the set of limiting functions [ € C*°(S1) of
differences as t — +oo is a dense one in C(S?).

Theorem 4. Let | € C*°(SY) and ¢ > 0. Then, there exists M € R such
that for any ty > M, the following holds: Let ~y, be the star-shaped curve
with the radial function R(tg) +1(6). Then, the curvature of vy, is smaller
than 1, and the radial function v(6,t) of the smooth solution {Vt}1ejt,+o0) t0
(1.1) satisfies the inequality
sup  [|r(6,t) — (R(t) +1(0))llosry <e. (1.4)
te(to,+00)
In Section 2, we rewrite the equation of the function 7 in ¢ € [0, 4+00) to
a quasi-linear parabolic equation of the function » — R in 7 € [—1log2,0) by
changing the time variable ¢t to 7. Using the quasi-linear parabolic equation,
we prove Theorems 2, 3, and 4 in Sections 3, 4, and 5, respectively.

2. CHANGING THE TIME VARIABLE AND AN EQUATION OF THE FUNCTION
u:=r—R

In this section, we introduce a new time variable 7 and lead a parabolic
equation satisfied by the function u(6,7) := (r — R)(6,t).
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From (4) of [3], the radial function r € C*(S! x [0,+00)) solves the
equation

Tt

(r? + 7“3)1/2 (1 B r2
(

— Trrg + 27“3)
r

r2 4 12)3/2

2\ 1/2 1 9,2 2.4
— "o 90 g T4
=(+38) -G )
2 2 9 3
Hence, by (1+:_g)1/2_1: :—g((l+:_g)1/2+1) 1

and = 11+ ) =
A= R ) ()

, we get the equation

1 72 r2\1/2 -1 1 r2 ra\—1
ot (B ) e D)

Rr
1 27’3 7’3 -1
We set a new time variable 7(¢) by the ODE
dr 1
Then, because of
!
T7(t) = —1o 2—1—/ —ds
| ML R ieg(1- )
—0g2—|—/ _— =log (1 — —),
ro) R(R-1) R(1)
1
Rt) =1 (2.3)
holds. From R(—o00) =1 and R(+00) = +00, we also see
T(—00) = —00, 7(+00)=0. (2.4)
Putting u(é,7) = r(6,t) — R(t), the function u(#, 7) satisfies

= X, — 4
TTaryt At
Then, from (2.1) and (2.2), we get

() ) By )

() (w2 0
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RA\2 r2y\ -1 r2\1/2 -1
= (—) ((1+ _g) Top + ((1+—§) +1) r
r r r
T 1/ R 9 ra\ 1
Hgr-m-ger -8+ ) )
Therefore, by R > 0, » > 0, (2.3), and (2.4), the function u solves the
quasi-linear parabolic equation
(2.5)

ur = a1, u)(B(7, u, ug)ugy + (7, u, ug))

in (0,7) € S x [~10g2,0), where

afr,u) == (1+(1—eMu)"2,
= (1+ (1 —e)’a(r,u)p®) ",

= (Brup) 2 41)

6(7—7 u’ p)
)
+ (a(T, u)_l/Qu —(1—€")(2a(T, u)1/2 - 1)p2)ﬁ(7,u,p).

(T, u,p

Here, we note that «, 3, and v are smooth functions defined where

1+ (1—€")u#0. (2.6)

3. PROOF OF THEOREM 2

As SUp_og0<r<0 |u(7)|lo(s1y < 400 holds from (1.2), we see lim,— g

(1 —=eT)[Ju(r)]lc(sry = 0. From this and 1+ (1 —e")u= 5 >0,

= inf 14 (1 —e")u(d, >0
¢ (0,7—)6511>I<1[— log2,0)( + ( ¢ )u( T))

holds. Here, take a positive function p € C*°(R) satisfying

pls) =52 (s=c).

We put smooth functions
d(7_7 u) = ,0(1 + (1 - eT)u)a
Br,u,p) = (1+ (1= e")?a(r,u)p®) ",

(7, u,p) = (B(T, u,p) M2+ 1)_11)2

+ (a(rw) ™2~ (1= en)2a(r W' = 1)p?) B(r, u.p).

Then, from (2.5), the function u also solves the equation

ur = a(r,u)(B(T, u, ug)ugg + ¥(7,u, ug)). (3.1)
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Because Z?:o | %“C(Slx[—logZ,O)) < 400 holds from (1.2), the equation
(3.1) is uniformly parabolic. Therefore, by using the standard parabolic

theory, we can obtain

[ull ek (s1x [~ 10g 2,0)) < +00 (3.2)
for all £ > 0. This completes the proof. O

4. PROOF OF THEOREM 3

First, we set the functions
u'(0,7) =7r(0,t) — R(t) (i=1,2).
Becarse of SUp_ 1oy 57 [4(7) o(s1) < +o0 from (1.2), we see
b= inf 1+ (1—eNu'(6,7)) > 0.
¢ (9,7)65113[7 logQ,O)( (1= e)u'(6,7))
Take a positive function p € C*°(R) satisfying

2

p(s) =s"" (s> min ).

i=1,2
Then, by putting functions & € C*°(R?) and 3, ¥ € C*®(R?) as in the
proof of Theorem 2, the functions u' and u? € C°°(S! x [~1og2,0)) solve
the parabolic equation

ur = a(7,u)(B(7, u, ug)ugg + (7, u, ug))-
As we put v :=ul —u? € C°(S! x [~log2,0)), the function v satisfies the
linear evolution equation g—i + A(7)v = 0, where A(7) is a bounded operator
from H2(S') to L%(S') with the form A(r) = ag(Q,T)aa—;Q + al(H,T)% +
ao(, 7). Here, by a(r,u)B(r,u,p) > 0 for all (1,u,p) € R® and (3.2), we
see

sup ax(6,7) <0 (4.1)
(0,7)€eST x[—log 2,0)

and
@il ok (51 x[=10g 2,0)) < +0© (4.2)
for all £ > 0 and 0 < i < 2. By virtue of (4.1) and (4.2), there exist ¢ > 0
and C'1 > 0 such that
(A(r)o(r),0(7)) 12 = cllvg(7)|[72 — Cullo(7)]72 (4.3)
for all 7 € [—-1og2,0). By

2/ as(azg — a1)veeve = —/ (az(azg — a1))gvj
st 51
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and (4.2), we also see that there exists Cy > 0 such that

SIA"(7) + AW + A (AE(), o)) 2

= %Wl*(ﬂ + A(7)v(7), (A*(7) = A(T))o(7)) 2 + (Ar(T)o(7), v(T)) 2

< Cafloa(7)II7> + le(P)172) (4.4)
for all 7 € [—1og2,0). From (4.3) and (4.4), we can confirm the assumptions

of Theorem II.18.1 of [4]. Hence, lim;—, ¢ [|v(7)[[z2(s1) = 0 implies v =0
by the corollary of Theorem I1.18.1 of [4]. This completes the proof. O

5. PROOF OF THEOREM 4
Take a negative constant 7y satisfying (2.6) for all

(7, u) € [10,0] x [=[llllc(sry — L [lllegsry +1]-
Then, there exists C' > 0 such that

loo(7, u) (B(7,u,p)q + ¥(T,u,p))| < C

for all (7, u,p,q) € [0, O] X[ |lll|cs1y =1, lllosr)y + 1 ¥ [= ol sy, Halloesyy]
x[—=llogll (1), lloollc(s1)]- Here, because of (2.4), we can take My € R such
that

€ 1
Mp) = S
7(Mp) max{ 50" C,T()}

So, for any tg > My, the functions u and @ € C(S* x [7(¢9),0]) defined by

u(f,7) :=1(0) — C(r — 7(to))
and

u(0,7):=10)+ C(t — 7(ty))
are sub- and supersolutions to the equation (2.5), respectively. Because of
w(®,7(to)) = u(®,7(to)) = 1(f) and () — § < w(b,7) <u(d,7) <1(6)+ 3,
we see that the solution u(f,7) to (2.5) with initial data u(0,7(to)) = 1(0)
satisfies

9
[u(0,7) = UO)llogsy) < 5

for all 7 € [7(t9),0). By a straightforward calculation, we also see that there
exists M; € R such that for any ¢y > Mj, the curvature of v, is smaller
than 1. Hence, we get the conclusion by setting M = max{My, M, }. O

Remark on Theorem 4. We would expect that the same argument could
work to prove a result similar to Theorem 4 on hypersurfaces in RV (N > 3).
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On the other hand, we also have a similar result on fronts of bistable reaction-
diffusion equations in RV, and its proof is rather difficult (see [6]).
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