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Abstract. We consider asymptotic behaviors of star-shaped curves ex-
panding by V = 1 − K, where V denotes the outward-normal velocity
and K curvature. In this paper, we show the followings. The difference
of the radial functions between an expanding curve and circle has its
asymptotic shape as t → +∞. For two curves, if the asymptotic shapes
are identical, then the curves are also. The set of all asymptotic shapes
is dense in C(S1).

1. Introduction

We consider the asymptotic behaviors of expanding curves in the plane
governed by the interface equation

V = 1 − K, (1.1)

where V and K are the outward-normal velocity and curvature of a smooth
embedded closed curve in R2, respectively. It expands where the curvature
is smaller than 1, and shrinks where it is larger. The motion of smooth closed
curves (x(θ, t), y(θ, t)) ∈ R2 by (1.1) is the gradient flow for the energy

E := (length) − (area) =
∮

ds − 1
2

∮
x dy − y dx

with respect to the metric 〈u, v〉 :=
∮

u · v ds, where ds denotes the line
element for a smooth curve with respect to the Euclidean metric ds2 =
dx2 + dy2 on the plane.

We take the family {R(t)}t∈(−∞,+∞) of the radii of the circle expanding
by (1.1). That is, R(t) satisfies the ODE

dR

dt
= 1 − 1

R
.
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Further, we require
R(0) = 2

in order to normalize the definition of R(t). Then, we have R(−∞) = 1,
R(+∞) = +∞ and dR

dt (t) > 0. For star-shaped curves, we have the following
from results of Chow, Liou, and Tsai [3, 5]. (For expanding hypersurfaces
and boundaries of level-sets in RN , see e.g. [2]. For convex curves evolving
under more general flows in R2, also see [1].)

Proposition 1. Suppose that γ0 is a smooth curve, star-shaped with respect
to y ∈ R2 and the curvature of γ0 is smaller than 1. Then, there exists
a unique smooth solution {γt}t∈[0,+∞) to the equation (1.1). Further, γt is
star-shaped with respect to y, the curvature of γt is smaller than 1 for all
t ∈ [0,+∞), and the radial function {r(θ, t)}θ∈S1 of γt with y as the origin
satisfies the estimate

sup
t∈[0,+∞)

‖r(θ, t) − R(t)‖C2(S1) < +∞. (1.2)

Proof. Take a positive function F ∈ C∞(R) satisfying

F (K) = 1 − K
(

K ≤ 1 + maxθ∈S1 K(θ, 0)
2

)

and
dF

dK
(K) < 0,

where K(θ, t) denotes the curvature of the star-shaped curve γt. Then, by
the proof of Corollary 2.2 in [3], we see that

max
(θ,t)∈S1×[0,T )

K(θ, t) = max
θ∈S1

K(θ, 0) < 1

for the smooth solution {γt}t∈[0,T ) to the equation V = F (K). Hence,
solving (1.1) is equivalent to V = F (K) for the initial condition γ0. Now,
Theorem 1.1 of [5] and Theorem 4.1 of [3] can work for the solution to (1.1)
as well as V = F (K), and we obtain the conclusion of Proposition 1 (see the
remark after Lemma 3.4 of [3] for the estimate sup(θ,t)∈S1×[0,+∞) |r(θ, t) −
R(t)| < +∞). �

While we see the difference between r(θ, t) and R(t) is bounded uniformly
in t ∈ [0,+∞) from (1.2), the following states that there exists the limiting
function l(θ) of the difference (r − R)(θ, t) as t → +∞.

Theorem 2. Suppose that a smooth solution γt to (1.1) is star-shaped with
respect to y ∈ R2 and the curvature of γt is smaller than 1 for all t ∈
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[0,+∞). Let r(θ, t) be the radial function of γt with y as the origin. Then,
there exists l ∈ C∞(S1) such that

lim
t→+∞ ‖r(θ, t) − (R(t) + l(θ))‖Ck(S1) = 0 (1.3)

for all k ∈ N.

Remark. If we use a different solution R̃(t) to the same ODE dR̃
dt = 1 − 1

R̃

with an initial value R̃(0) = c ∈ (1,+∞) \ {2}, then limt→+∞(R̃ − R)(t)
exists. Hence, as long as the initial value c ∈ (1,+∞), it does not matter
which solution to the ODE we use.

The following indicates that for two expanding curves γ1
t and γ2

t , if the
limits l1(θ) and l2(θ) of the differences between the radius R(t) and the
radial functions r1(θ, t) and r2(θ, t) of γ1

t and γ2
t as t → +∞, respectively,

are identical, then the curves γ1
t and γ2

t are so.

Theorem 3. Suppose that two smooth solutions γ1
t and γ2

t to (1.1) are
star-shaped and their curvatures are smaller than 1 for all t ∈ [0,+∞). Let
r1(θ, t) and r2(θ, t) be the radial functions of γ1

t and γ2
t , respectively. Then,

limt→+∞ ‖r1(θ, t) − r2(θ, t)‖C(S1) = 0 implies γ1
t ≡ γ2

t for all t ∈ [0,+∞).

The following theorem shows the set of limiting functions l ∈ C∞(S1) of
differences as t → +∞ is a dense one in C(S1).

Theorem 4. Let l ∈ C∞(S1) and ε > 0. Then, there exists M ∈ R such
that for any t0 > M , the following holds: Let γt0 be the star-shaped curve
with the radial function R(t0) + l(θ). Then, the curvature of γt0 is smaller
than 1, and the radial function r(θ, t) of the smooth solution {γt}t∈[t0,+∞) to
(1.1) satisfies the inequality

sup
t∈[t0,+∞)

‖r(θ, t) − (R(t) + l(θ))‖C(S1) < ε. (1.4)

In Section 2, we rewrite the equation of the function r in t ∈ [0,+∞) to
a quasi-linear parabolic equation of the function r − R in τ ∈ [− log 2, 0) by
changing the time variable t to τ . Using the quasi-linear parabolic equation,
we prove Theorems 2, 3, and 4 in Sections 3, 4, and 5, respectively.

2. Changing the time variable and an equation of the function

u := r − R

In this section, we introduce a new time variable τ and lead a parabolic
equation satisfied by the function u(θ, τ) := (r − R)(θ, t).
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From (4) of [3], the radial function r ∈ C∞(S1 × [0,+∞)) solves the
equation

rt =
(r2 + r2

θ)
1/2

r

(
1 − r2 − rrθθ + 2r2

θ

(r2 + r2
θ)

3/2

)

=
(
1 +

r2
θ

r2

)1/2 −
(1

r
− rθθ

r2
+

2r2
θ

r3

)(
1 +

r2
θ

r2

)−1
.

Hence, by
(
1 + r2

θ
r2

)1/2 − 1 = r2
θ

r2

((
1 + r2

θ
r2

)1/2 + 1
)−1 and 1

R − 1
r

(
1 + r2

θ
r2

)−1 =
1

Rr

(
r − R + r2

θ
r

)(
1 + r2

θ
r2

)−1, we get the equation

rt − 1 +
1
R

=
r2
θ

r2

((
1 +

r2
θ

r2

)1/2
+ 1

)−1
+

1
Rr

(
r − R +

r2
θ

r

)(
1 +

r2
θ

r2

)−1

+
1
r2

(
rθθ − 2r2

θ

r

)(
1 +

r2
θ

r2

)−1
. (2.1)

We set a new time variable τ(t) by the ODE

dτ

dt
=

1
R2

, τ(0) = − log 2. (2.2)

Then, because of

τ(t) = − log 2 +
∫ t

0

1
R(s)2

ds

= − log 2 +
∫ R(t)

R(0)

1
R(R − 1)

dR = log
(
1 − 1

R(t)
)
,

R(t) =
1

1 − eτ(t)
(2.3)

holds. From R(−∞) = 1 and R(+∞) = +∞, we also see

τ(−∞) = −∞, τ(+∞) = 0. (2.4)

Putting u(θ, τ) = r(θ, t) − R(t), the function u(θ, τ) satisfies

uτ =
dt

dτ

(
rt − dR

dt

)
.

Then, from (2.1) and (2.2), we get

uτ = (
R

r
)2r2

θ

((
1 +

r2
θ

r2

)1/2
+ 1

)−1
+

R

r

(
r − R +

r2
θ

r

)(
1 +

r2
θ

r2

)−1

+
(R

r

)2(
rθθ − 2r2

θ

r

)(
1 +

r2
θ

r2

)−1
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=
(R

r

)2((
1 +

r2
θ

r2

)−1
rθθ +

((
1 +

r2
θ

r2

)1/2
+ 1

)−1
r2
θ

+
( r

R
(r − R) − 1

R

(
2
R

r
− 1

)
r2
θ

)(
1 +

r2
θ

r2

)−1)
.

Therefore, by R > 0, r > 0, (2.3), and (2.4), the function u solves the
quasi-linear parabolic equation

uτ = α(τ, u)(β(τ, u, uθ)uθθ + γ(τ, u, uθ)) (2.5)

in (θ, τ) ∈ S1 × [− log 2, 0), where

α(τ, u) := (1 + (1 − eτ )u)−2,

β(τ, u, p) := (1 + (1 − eτ )2α(τ, u)p2)−1,

γ(τ, u, p) :=
(
β(τ, u, p)−1/2 + 1

)−1
p2

+
(
α(τ, u)−1/2u − (1 − eτ )(2α(τ, u)1/2 − 1)p2

)
β(τ, u, p).

Here, we note that α, β, and γ are smooth functions defined where

1 + (1 − eτ )u 
= 0. (2.6)

3. Proof of Theorem 2

As sup− log 2≤τ<0 ‖u(τ)‖C(S1) < +∞ holds from (1.2), we see limτ→−0

(1 − eτ )‖u(τ)‖C(S1) = 0. From this and 1 + (1 − eτ )u = r
R > 0,

c := inf
(θ,τ)∈S1×[− log 2,0)

(1 + (1 − eτ )u(θ, τ)) > 0

holds. Here, take a positive function ρ ∈ C∞(R) satisfying

ρ(s) = s−2 ( s ≥ c ).

We put smooth functions

ᾱ(τ, u) := ρ(1 + (1 − eτ )u),

β̄(τ, u, p) := (1 + (1 − eτ )2ᾱ(τ, u)p2)−1,

γ̄(τ, u, p) :=
(
β̄(τ, u, p)−1/2 + 1

)−1
p2

+
(
ᾱ(τ, u)−1/2u − (1 − eτ )(2ᾱ(τ, u)1/2 − 1)p2

)
β̄(τ, u, p).

Then, from (2.5), the function u also solves the equation

uτ = ᾱ(τ, u)(β̄(τ, u, uθ)uθθ + γ̄(τ, u, uθ)). (3.1)
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Because
∑2

i=0 ‖∂iu
∂θi ‖C(S1×[− log 2,0)) < +∞ holds from (1.2), the equation

(3.1) is uniformly parabolic. Therefore, by using the standard parabolic
theory, we can obtain

‖u‖Ck(S1×[− log 2,0)) < +∞ (3.2)

for all k ≥ 0. This completes the proof. �

4. Proof of Theorem 3

First, we set the functions

ui(θ, τ) = ri(θ, t) − R(t) (i = 1, 2).

Because of sup− log 2≤τ<0 ‖ui(τ)‖C(S1) < +∞ from (1.2), we see

ci := inf
(θ,τ)∈S1×[− log 2,0)

(1 + (1 − eτ )ui(θ, τ)) > 0.

Take a positive function ρ ∈ C∞(R) satisfying

ρ(s) = s−2 ( s ≥ min
i=1,2

ci ).

Then, by putting functions ᾱ ∈ C∞(R2) and β̄, γ̄ ∈ C∞(R3) as in the
proof of Theorem 2, the functions u1 and u2 ∈ C∞(S1 × [− log 2, 0)) solve
the parabolic equation

uτ = ᾱ(τ, u)(β̄(τ, u, uθ)uθθ + γ̄(τ, u, uθ)).

As we put v := u1 − u2 ∈ C∞(S1 × [− log 2, 0)), the function v satisfies the
linear evolution equation dv

dτ +A(τ)v = 0, where A(τ) is a bounded operator
from H2(S1) to L2(S1) with the form A(τ) = a2(θ, τ) ∂2

∂θ2 + a1(θ, τ) ∂
∂θ +

a0(θ, τ). Here, by ᾱ(τ, u)β̄(τ, u, p) > 0 for all (τ, u, p) ∈ R3 and (3.2), we
see

sup
(θ,τ)∈S1×[− log 2,0)

a2(θ, τ) < 0 (4.1)

and
‖ai‖Ck(S1×[− log 2,0)) < +∞ (4.2)

for all k ≥ 0 and 0 ≤ i ≤ 2. By virtue of (4.1) and (4.2), there exist c > 0
and C1 > 0 such that

〈A(τ)v(τ), v(τ)〉L2 ≥ c‖vθ(τ)‖2
L2 − C1‖v(τ)‖2

L2 (4.3)

for all τ ∈ [− log 2, 0). By

2
∫

S1

a2(a2θ − a1)vθθvθ = −
∫

S1

(a2(a2θ − a1))θv
2
θ
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and (4.2), we also see that there exists C2 > 0 such that

1
2
‖(A∗(τ) + A(τ))v(τ)‖2

L2 +
d

dτ
〈A(τ)v(τ), v(τ)〉L2

=
1
2
〈(A∗(τ) + A(τ))v(τ), (A∗(τ) − A(τ))v(τ)〉L2 + 〈Aτ (τ)v(τ), v(τ)〉L2

≤ C2(‖vθ(τ)‖2
L2 + ‖v(τ)‖2

L2) (4.4)

for all τ ∈ [− log 2, 0). From (4.3) and (4.4), we can confirm the assumptions
of Theorem II.18.1 of [4]. Hence, limτ→−0 ‖v(τ)‖L2(S1) = 0 implies v ≡ 0
by the corollary of Theorem II.18.1 of [4]. This completes the proof. �

5. Proof of Theorem 4

Take a negative constant τ0 satisfying (2.6) for all

(τ, u) ∈ [τ0, 0] × [−‖l‖C(S1) − 1, ‖l‖C(S1) + 1].

Then, there exists C > 0 such that

|α(τ, u)(β(τ, u, p)q + γ(τ, u, p))| ≤ C

for all (τ, u, p, q) ∈ [τ0, 0]×[−‖l‖C(S1)−1, ‖l‖C(S1)+1]×[−‖lθ‖C(S1), ‖lθ‖C(S1)]
×[−‖lθθ‖C(S1), ‖lθθ‖C(S1)]. Here, because of (2.4), we can take M0 ∈ R such
that

τ(M0) = max
{
− ε

2C
,− 1

C
, τ0

}
.

So, for any t0 > M0, the functions u and u ∈ C(S1 × [τ(t0), 0]) defined by

u(θ, τ) := l(θ) − C(τ − τ(t0))

and
u(θ, τ) := l(θ) + C(τ − τ(t0))

are sub- and supersolutions to the equation (2.5), respectively. Because of
u(θ, τ(t0)) = u(θ, τ(t0)) = l(θ) and l(θ) − ε

2 ≤ u(θ, τ) ≤ u(θ, τ) ≤ l(θ) + ε
2 ,

we see that the solution u(θ, τ) to (2.5) with initial data u(θ, τ(t0)) = l(θ)
satisfies

‖u(θ, τ) − l(θ)‖C(S1) ≤
ε

2
for all τ ∈ [τ(t0), 0). By a straightforward calculation, we also see that there
exists M1 ∈ R such that for any t0 > M1, the curvature of γt0 is smaller
than 1. Hence, we get the conclusion by setting M = max{M0, M1}. �
Remark on Theorem 4. We would expect that the same argument could
work to prove a result similar to Theorem 4 on hypersurfaces in RN (N ≥ 3).
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On the other hand, we also have a similar result on fronts of bistable reaction-
diffusion equations in RN , and its proof is rather difficult (see [6]).
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