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Abstract. We show that first-order perturbations of the Schrödinger
equation with conjugation are globally and uniquely solvable for L2 ini-
tial data. Global Strichartz estimates are established under minimal
assumptions on the “conjugate magnetic” potential.

1. Introduction

In this paper, we deal with the question of obtaining (global) Strichartz
estimates for the “conjugate magnetic” Schrödinger equation

∂tu − iΔu + �V (t, x) · ∇ū = F (t, x) ∈ R+ × Rn

u(0, x) = f(x).
(1.1)

In a recent paper [10], the author has established similar a priori estimates
for the solutions of the magnetic Schrödinger equation:

∂tu − iΔu + �V (t, x) · ∇u = F (t, x) ∈ R+ × Rn

u(0, x) = f(x).
(1.2)

The gradient Schrödinger equation (1.2) was studies also by I. Bejenaru in
his thesis, [1].

Such models appear in geometric equations involving the covariant Lapla-
cian, with the natural interpretation of �V as the connection. It turns out
that solutions to (1.2) exist globally under appropriate assumptions on V .
However, (1.1) exhibits far better behavior due to the presence of the com-
plex conjugation.
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Let us also recall the set of the Strichartz exponents for the regular
Schrödinger equation. We say that a pair of indices is Strichartz admis-
sible if 2 ≤ q, r ≤ ∞, 2/q + n/r = n/2 and (q, r, n) �= (2,∞, 2). Then∥∥eitΔf

∥∥
LqLr ≤ C‖f‖L2 (1.3)∥∥∥∫ t

0
ei(t−s)ΔF (s, ·)dsLqLr

∥∥∥ ≤ C‖F‖Lq̃′Lr̃′ . (1.4)

Our goal is to achieve the same estimates under some integrability conditions
on the potential V .

The existence and uniqueness problem for (1.2), (1.1) has been studied
extensively by many authors in the physics as well as in the mathematics
literature. We should first point to the pioneering work of Doi, [4, 5], who
has devised a method to obtain solutions via energy estimates. The approach
is to cleverly exploit the properties of pseudodiferential operators of order 0
to obtain a priori control of ‖u(t, ·)‖L2 in terms of ‖f‖L2 and ‖F‖L1

T L2 .
We also mention the work of Kenig-Ponce-Vega, [9]. These authors have

been able to derive a priori estimates for the L2 norms of the solution as
well as local smoothing effects, which are known to imply (at least local )
Strichartz estimates.

Note that both (1.2) and (1.1) have the important scaling invariance u →
uλ(t, x) = u(λ2t, λx), V → V λ(t, x) = λV (λ2t, λx). That is, whenever (u, V )
satisfy (1.1), (1.2), so does (uα, V α) with initial data fα(x) = f(αx).

1.1. Strichartz estimates for the conjugate magnetic Schrödinger
operator in dimension n ≥ 3. To state our results, we need some defini-
tions. For a function u, let uk = Pku be its kth Littlewood-Paley piece, as
in Section 3. Define the Besov spaces Bq

p,s by the norm

‖u‖Bq
p,s

=
( ∑

k

2ksq‖uk‖q
Lp

)1/q
,

and let W p,s be the homogeneous Sobolev space with s derivatives in Lp;
that is ‖f‖W p,s = ‖|∇|sf‖Lp .

Theorem 1. Let n ≥ 3 and 0 < h < 1. There exists an ε = ε(h, n) > 0, so
that whenever

‖V ‖L∞W n/(2+h),1+h + ‖V ‖L∞B1
n/2,2

+
∥∥|∇|−1∂tV

∥∥
L∞Ln/2 ≤ ε,

the equation (1.1) has a global solution u, provided the data f ∈ L2(Rn)
and the forcing term F ∈ Lq̃′Lr̃′. In addition, for all admissible pairs (q, r),
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(q̃, r̃)

‖u‖LqLr �
( ∑

k

‖uk‖2
LqLr

)1/2
� ‖f‖L2 + ‖F‖Lq̃′Lr̃′ , (1.5)

More generally, let s > 0 and p1, p2, q1, q2 satisfy 1/2 = 1/p1 +1/p2; 1/2+
1/n = 1/q1 + 1/q2 and assume only

‖∂V ‖L∞Ln/2 + ‖V ‖L∞B1
n/2,2

+
∥∥|∇|−1∂tV

∥∥
L∞Ln/2 ≤ εs.

Then the a priori estimate( ∑
k

22ks‖uk‖2
LqLr

)1/2

� ‖f‖Ḣs + ‖F‖Lq̃′Ẇ r̃′,s +
( ∑

k

22ks‖Vk‖2
L

p1
t L

q1
x

)1/2
‖∇u‖L

p2
t L

q2
x

.

holds true.

Remarks. (1) Theorem 1 covers the important case of small time-indepen-
dent potentials V .

(2) The constant εs has the behavior εs ∼ εs as s → 0.
(3) The conclusion in Theorem 1 holds under smallness assumptions for

‖V ‖L∞Ln + ‖∇V ‖Lp
t Lm

x
+

∥∥|∇|−1∂tV
∥∥

LpLm

+ ‖V ‖
Lp

t W
mn/(mh+n),1+h
x

+
( ∑

k

22k‖Vk‖2
LpLm

)1/2
,

for some p, m ≥ 1 and 2/p + n/m = 2, but we shall omit the proof.

1.2. Two-dimensional case. In dimension two, one needs to slightly
change the assumptions, mainly due to the presence of the false endpoint
Strichartz estimate for (2,∞).

Theorem 2. For every 1 >> δ > 0, there exists ε = ε(δ), so that whenever
V : R2 → C2 is a vector-valued potential satisfying

‖V ‖L1/εW 1/(1−δ/2),1+δ +
∥∥|∇|−1∂tV

∥∥
L1/δL1/(1−δ) + ‖V ‖L1/δB1

1/(1−δ),2
≤ ε,

the two-dimensional Schrödinger equation (1.1) has a global solution u, pro-
vided the data f ∈ L2(Rn) and the forcing term F ∈ Lq̃′Lr̃′. Moreover, for
all admissible pairs (q, r), (q̃, r̃),

‖u‖LqLr �
( ∑

k

‖uk‖2
LqLr

)1/2
� ‖f‖L2 + ‖F‖Lq̃′Lr̃′ . (1.6)
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Remark. Note that the case of small time-independent potentials is not
covered by our statement. This actually may fail. More precisely, we con-
jecture that it is possible to construct (small) time-independent decaying
potential V , so that ‖u‖LqLr = ∞, with finite L2 data and right-hand side.

2. Applications

In this section, we give applications to small global solutions of some
quasilinear Schrödinger equations. Our first example is a class of equations
in the form

∂tu − iΔu + u · ∂ū = 0, u(0, x) = f(x). (2.1)
Here, we may allow ∂ to be any vector-valued multiplier operator, so that
its symbol satisfies |m(ξ)| ∼ |ξ|.
Proposition 1. Let s ≥ n/2 − 1 and n ≥ 5. Then there exists ε > 0, so
that whenever the initial data f ∈ Hs, with ‖f‖Ḣn/2−1 ≤ ε, (2.1) has a global
solution, satisfying

‖u‖LqẆ r,s � (
∑

k

‖∇suk‖2
LqLr)1/2 ≤ C‖f‖Ḣs

and ‖u‖L∞
t Ḣn/2−1 ≤ 2ε.

Remark. The scale-invariant space for the problem is clearly Ḣn/2−1, which
means that the results presented here are optimal in the sense of smoothness
of the data.

Our next example is the equation

∂tu − iΔu + ∂ū · ∂ū = 0, u(0, x) = f(x), (2.2)

where again ∂ is allowed to be any PDO of order one. We have the following

Proposition 2. Let n ≥ 4 and s ≥ n/2. Then there exists an ε > 0, so that
(2.2) has a unique global solution, whenever f ∈ Hs(Rn) with ‖f‖Ḣn/2 ≤ ε.
Moreover, the solution satisfies

sup
(q,r)−Strichartz

‖u‖LqẆ r,s ≤ C‖f‖Ḣs .

Remark. This equation was considered in two spatial dimensions by S.
Cohn, [2], [3] by using the method of normal forms. In one dimension, small
solutions of this equation were studied by Hayashi-Naumkin, [7], in weighted
Sobolev spaces. Our methods give the optimal results in dimensions n ≥ 4
(note that the scale-invariant space is Ḣn/2). The result in dimension three
holds for data (small) in Besov one spaces, while one can prove global well
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posedness of (2.2) in the two-dimensional case with data in H2, which is
small in Ḣ1. We do not pursue these results here.

3. Preliminaries

3.1. Littlewood-Paley projections. We define the Littlewood-Paley pro-
jections, which will be used frequently throughout the paper. Introduce
a positive, smooth, and even function ψ, supported in {ξ : |ξ| ≤ 2} with
ψ(ξ) = 1 for all |ξ| ≤ 1. Define ϕ(ξ) = ψ(ξ) − ψ(2ξ), which is supported in
the annulus 1/2 ≤ |ξ| ≤ 2. Clearly

∑
k∈Z ϕ(2−kξ) = 1 for all ξ �= 0.

The kth Littlewood-Paley projection is defined as a multiplier-type op-
erator by P̂kf(ξ) = ϕ(2−kξ)f̂(ξ). Note that the kernel of Pk is integrable,
smooth and real valued. In particular, it commutes with differential opera-
tors and the complex conjugation.

Also of interest will be the properties of products under the action of Pk.
We have that for any two (Schwartz) functions f, g

Pk(fg) =
∑

l≥k−2

Pk(flgl−2≤·≤l+2) + symmetric term +

+ Pk(f≤k−4gk−1≤·≤k+1) + symmetric term =
= f≤k−4gk + [Pk, f≤k−4]gk−1≤·k+1 + symmetric terms

+
∑

l≥k−2

Pk(flgl−2≤·≤l+2) + symmetric term.

We need the following technical lemma.

Lemma 1. Let {al}, {bl} are two sequences and ε > 0. Then( ∑
k

22εk
( ∑

l≥k−2

2−εlalbl

)2)1/2
≤ Cε‖a‖l∞‖b‖l2 .

Proof. Fix the sequence {al} and consider the linear operator (mapping a
sequence into a sequence)

(Tb)k := 2ε(k−l)
∑

l≥k−2

albl.

We will show that T : l1 → l1 and T : l∞ → l∞. Indeed,

‖Tb‖l1 ≤
∑

l

|al||bl|
∑

k≤l+2

2ε(k−l) � ε−1‖a‖l∞‖b‖l1 ,
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‖Tb‖l∞ ≤ sup
k

sup
l

|al| sup
l

|bl|
∑

l≥k−2

2ε(k−l) � ε−1‖a‖l∞‖b‖l∞ .

It follows that for 1 ≤ p ≤ ∞, T : lp → lp has norm no bigger than Cε‖a‖l∞ ,
hence the statement of the lemma. �

4. Proof of Theorem 1 and Theorem 2

Our approach is based on the observation that (1.1) is equivalent (at least
for classical solutions) to a wave equation, which gains a derivative.

Our considerations are for the case n ≥ 3, with some mild changes needed
for the two-dimensional case.

We first perform some technical reductions, which will facilitate our es-
timates in the sequel. Take 0 < δ << 1 and define V δ(t, x) := V (t, x)(1 −
ψ(t/δ)), F δ(t, x) := F (t, x)(1 − ψ(t/δ)). That is, V δ is a function coinciding
with V for all t ≥ 2δ, V δ(t) = 0 = F δ(t) for all t ≤ δ.

For the rest of this section, we consider (1.1) with V and F replaced by
V δ and F δ respectively and V and F Schwartz functions. In the end, (1.5)
will follow from the corresponding estimate for uδ by a limiting argument as
δ → 0, since all of our estimates will be uniform in δ and independent of the
smoothness constants of V and F .

Next, we make some standard frequency localizations of the problem.
Take a Littlewood-Paley projection on (1.1) to obtain

∂tuk − iΔuk + V δ
≤k−4 · ∇ūk = F δ

k + Ek, (4.1)

where Ek is the error term arising in the process. According to our consid-
erations above

Ek = [Pk, V
δ
≤k−4]∇ūk−1≤·k+1 +

∑
l≥k−2

Pk(V δ
l · ∇ūl−2≤·≤l+2) (4.2)

+
∑

l≥k−2

Pk(V δ
l−2≤·≤l+2 · ∇ūl) + Pk(V δ

k−1≤·≤k+1 · ∇ū≤k−4).

Note that in terms of Lp behavior and Littlewood-Paley theory one infor-
mally treats these error terms as in the form (∂xV δ)u.

Since, for all q, r ≥ 2, ‖u‖LqLr � (
∑

k ‖uk‖2
LqLr)1/2 and ‖F‖Lq′Lr′ �

(
∑

k ‖Fk‖2
Lq′Lr′ )1/2, it will suffice to show that

(
∑

k

sup
q,r−Strichartz

‖uk‖2
LqLr)1/2 � ‖f‖L2 + (

∑
k

∥∥∥F δ
k

∥∥∥2

Lq̃′Lr̃′
)1/2. (4.3)
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When estimating the terms arising from the left-hand side of (4.3), we will
often get terms in the form Cε supq,r(

∑
k ‖uk‖2

LqLr)1/2. Those are terms that
can be absorbed on the left-hand side.

Apply the operator ∂t + iΔ to (4.1). We get

(∂2
t + Δ2)uk + [(∂t + iΔ)V δ

≤k−4] · ∇ūk + V δ
≤k−4 · [(∂t + iΔ)∇ūk]

+i
∑

j

∂jV
δ
≤k−4 · ∂j∇ūk = (∂t + iΔ)(F δ

k + Ek).

Note that by the equation (4.1), the term

[(∂t + iΔ)∇ūk] = ∇(∂t − iΔ)uk = ∇(−V δ
≤k−4 · ∇ūk − F δ

k − Ek).

We also have initial data uk(0, x) = fk(x) and

∂tuk(0, x) = iΔuk(0, x) − V δ
≤k−4(0, x)∇ūk(0, x) + F δ

k (0, x) + Ek(0, x)
= iΔfk,

taking into account that V δ(0, x) = F δ(0, x) = E(0, x) = 0.
One might write the corresponding Duhamel’s formula for the newly ob-

tained equation satisfied by uk as follows

uk(x, t)

= cos(tΔ)fk +
sin(tΔ)

Δ
iΔfk +

∫ t

0

sin((t − s)Δ)
Δ

[−(∂s + iΔ)V δ
≤k−4 · ∇ūk]

−
∫ t

0

sin((t − s)Δ)
Δ

[V δ
≤k−4 · ∇(−V δ

≤k−4 · ∇ūk − Fk − Ek) −∇V δ
≤k−4 · ∇2ūk]

+
∫ t

0

sin((t − s)Δ)
Δ

[(∂s + iΔ)(Fk + Ek)]ds.

We refer to this integral equation as the smoothing version of the conjugate
magnetic Schrödinger operator. Next, we show that (1.5) holds.

4.1. Strichartz estimates with L2 data. Clearly, there are various terms
coming from the smoothing version of the conjugate magnetic Schrödinger
operator, which we need to handle. When controlling the forcing terms in
this proof, we employ the dual endpoint q = 2, r = 2n/(n + 2), which is of
course unavailable for the two dimensional case. For that case, one needs to
slightly readjust the proof and use instead q′ = 2 + δ, r′ = n(4 + 2δ)/(2n +
nδ + 4δ + 4).
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4.1.1. Terms coming from initial data. By Euler’s formula one expresses
cos(tΔ) and sin(tΔ) in terms of eitΔ (i.e., the generator for the Schrödinger
equation). By the standard Strichartz estimates (1.3), one has the same
Strichartz estimates for cos(tΔ), sin(tΔ), whence

‖cos(tΔ)fk‖LqLr � ‖fk‖L2 , ‖i sin(tΔ)fk‖LqLr � ‖fk‖L2 .

Summing in k yields

(
∑

k

‖cos(tΔ)fk‖2
LqLr +

∑
k

‖sin(tΔ)fk‖2
LqLr)1/2 � ‖f‖L2 ,

which is part of the right-hand side of (1.5).
4.1.2. Forcing terms.

• By (1.4) and Hölder’s inequality and Sobolev embedding∥∥∥∫ t

0

sin((t − s)Δ)
Δ

[−(∂s + iΔ)V δ
≤k−4 · ∇ūk]ds

∥∥∥
LqLr

� 2−2k‖[(1 − ψ(·/δ))∂tV≤k−4∇ūk‖L2L2n/(n+2)+

+ 2−2k
∥∥∥ΔV δ

≤k−4∇ūk

∥∥∥
L2L2n/(n+2)

+ 2−2kδ−1
∥∥ψ′(·/δ)V≤k−4∇ūk

∥∥
L1L2

� 2−k(‖∂tV≤k−4‖L∞Ln/2 +
∥∥∥ΔV δ

≤k−4

∥∥∥
L∞Ln/2

)‖uk‖L2L2n/(n−2)

+ 2−kδ−1
∥∥ψ′(·/δ)

∥∥
L1

t
‖V≤k−4‖L∞

tx
‖uk‖L∞L2

� (
∥∥|∇|−1∂tV

∥∥
L∞Ln/2 +‖∇V ‖L∞Ln/2)‖uk‖L2L2n/(n−2) +‖V ‖L∞Ln‖uk‖L∞L2 .

Taking squares and summing in k yields an estimate∑
k

∥∥∥∥
∫ t

0

sin((t − s)Δ)
Δ

[−(∂s + iΔ)V δ
≤k−4 · ∇ūk]ds

∥∥∥∥
2

LqLr

� ε
∑

k

sup
(q,r)−Str.

‖uk‖2
LqLr � ε2

∑
k

sup
(q,r)−Str.

‖uk‖2
LqLr .

• By (1.4), ‖∇gk‖Lr ∼ 2k‖gk‖Lr and Hölder’s inequality∥∥∥∥
∫ t

0

sin((t − s)Δ)
Δ

V δ
≤k−4 · V δ

≤k−4∇2ūkds

∥∥∥∥
LqLr

�
∥∥∥Δ−1[V δ

≤k−4 · V δ
≤k−4∇2ūk]

∥∥∥
L2L2n/(n+2)

� 2−2k‖V ‖2
L∞Ln

∥∥∇2uk

∥∥
L2L2n/(n−2) � ‖V ‖2

L∞Ln‖uk‖L2L2n/(n−2) .

Squaring and summation in k shows the term is bounded by
Cε(

∑
k ‖uk‖2

L2L2n/(n−2)).
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• Another similar term is treated as above∥∥∥∥
∫ t

0

sin((t − s)Δ)
Δ

V δ
≤k−4 · ∇V δ

≤k−4∇ūkds

∥∥∥∥
LqLr

�
∥∥∥Δ−1[V δ

≤k−4 · ∇V δ
≤k−4∇ūk]

∥∥∥
L2L2n/(n+2)

� ‖V ‖2
L∞Ln‖uk‖L2L2n/(n−2) .

Squaring and summation in k gives a manageable term.
•∥∥∥∥
∫ t

0

sin((t − s)Δ)
Δ

∇V δ
≤k−4∇2ūkds

∥∥∥∥
LqLr

�
∥∥∥Δ−1[∇V δ

≤k−4∇2ūk]
∥∥∥

L2L2n/(n+2)

� ‖∇V ‖L∞Ln/2‖uk‖L2L2n/(n−2) .

Squaring and summation in k shows a bound by Cε
∑

k ‖uk‖2
L2L2n/(n−2)

• For the term involving the right-hand side we have, by (1.4), Hölder’s
and Sobolev embedding∥∥∥∥

∫ t

0

sin((t − s)Δ)
Δ

V δ
≤k−4∇F δ

k ds

∥∥∥∥
LqLr

�
∥∥∥Δ−1[V δ

≤k−4∇F δ
k ]

∥∥∥
Lq̃′Lr̃′

� 2−2k‖V≤k−4‖L∞
tx
‖∇Fk‖Lq̃′Lr̃′ � ‖V ‖L∞Ln‖Fk‖Lq̃′Lr̃′ .

• Another very easy term is∥∥∥∥
∫ t

0

sin((t − s)Δ)
Δ

ΔF δ
k ds

∥∥∥∥
LqLr

� ‖Fk‖Lq̃′Lr̃′ .

• The last term involving Fk is∫ t

0

sin((t − s)Δ)
Δ

∂sF
δ
k (s, ·)ds =

∫ t

0
cos((t − s)Δ)F δ

k (s, ·)ds,

where, in the last identity, we have used integration by parts and the fact
that F δ(0, x) = 0. An application of the Strichartz estimates to the last
formula yields

∑
k

∥∥∥∥
∫ t

0

sin((t − s)Δ)
Δ

∂sF
δ
k ds

∥∥∥∥
2

LqLr

�
∑

k

‖Fk‖2
Lq̃′Lr̃′ .

4.1.3. Error terms. We have two types of error terms. For the first one∥∥∥∥
∫ t

0

sin((t − s)Δ)
Δ

V δ
≤k−4∇Ekds

∥∥∥∥
LqLr

�
∥∥∥Δ−1[V δ

≤k−4∇Ek]
∥∥∥

L2L2n/(n+2)

� 2−k‖V≤k−4‖L∞‖Ek‖L2L2n/(n+2) � ‖V ‖L∞Ln‖Ek‖L2L2n/(n+2) .
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The second error term is identical to the last two cases for F considered
above (recall Ek(0, x) = 0, because of the time cutoffs introduced in the
definition). We have∥∥∥∥

∫ t

0

sin((t − s)Δ)
Δ

(∂s + iΔ)Ekds

∥∥∥∥
LqLr

≤
∥∥∥∥
∫ t

0
sin((t − s)Δ)Ekds

∥∥∥∥
LqLr

+
∥∥∥∥
∫ t

0
cos((t − s)Δ)Ekds

∥∥∥∥
LqLr

� ‖Ek‖L2L2n/(n+2) .

In both error terms, it clearly suffices to show∑
k

‖Ek‖2
L2L2n/(n+2) � ε2

∑
k

‖uk‖2
L2L2n/(n−2) . (4.4)

We estimate on a term-by-term basis in formula (4.2).
For the first term, recall the Calderòn commutator result, which states

that for all 1 ≤ p, q, r ≤ ∞ such that 1/p = 1/q + 1/r, one has

‖[Pk, f ]∇g‖Lp � ‖∇f‖Lq‖g‖Lr .

Therefore,∑
k

∥∥∥[Pk, V
δ
≤k−4]∇ūk

∥∥∥2

L2L2n/(n+2)
� ‖∇V ‖2

L∞Ln/2

∑
k

‖uk‖2
L2L2n/(n−2) .

The second and third terms in (4.2) are treated in a similar fashion, so we
concentrate on the second one. For any positive h ≤ 1, we have∑

k

( ∑
l≥k−2

∥∥∥Pk(V δ
l ∇ūl−2≤·≤l+2)

∥∥∥
L2L2n/(n+2)

)2

�
∑

k

( ∑
l≥k−2

2hk
∥∥∥Pk(V δ

l ∇ūl−2≤·≤l+2)
∥∥∥

L2L2n/(n+2+2h)

)2

�
∑

k

22hk
( ∑

l≥k−2

2l‖Vl‖L∞Ln/(2+h)‖ul‖L2L2n/(n−2)

)2

�
∑

k

22hk
( ∑

l≥k−2

2−hl‖Vl‖L∞W n/(2+h),1+h‖ul‖L2L2n/(n−2)

)2
.

One obtains by Lemma 1∑
k

22hk
( ∑

l≥k−2

2−hl‖Vl‖W n/(2+h),1+h‖ul‖L2L2n/(n−2)

)2
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� ‖V ‖2
W n/(2+h),1+h

∑
l

‖ul‖2
L2L2n/(n−2) � ε2

∑
l

‖ul‖2
L2L2n/(n−2) .

The last fourth term in (4.2) is handled as follows∑
k

∥∥∥Pk(V δ
k−1≤·≤k+1∇ū≤k−4)

∥∥∥2

L2L2n/(n+2)

=
∥∥∥( ∑

k

∥∥∥Pk(V δ
k−1≤·≤k+1∇ū≤k−4)

∥∥∥2

L2n/(n+2)

)1/2∥∥∥2

L2
t

�
∥∥∥( ∑

k

22k‖Vk−1≤·≤k+1‖2
Ln/2‖u‖2

L2n/(n−2)

)1/2∥∥∥2

L2

� ‖V ‖2
L∞B1

n/2,2
‖u‖2

L2L2n/(n−2) � ε2‖u‖2
L2L2n/(n−2) .

4.2. Strichartz estimates for Ḣs data. This section shall largely refer
to the previous one. Indeed, for all forcing terms but the error terms, the
dominant frequency is on the u, rather than on the potential V . Denote
these terms by U . Therefore, we have estimates of the form( ∑

k

22ks‖Uk‖2
L2L2n/(n+2)

)1/2

� (‖∂V ‖L∞Ln/2 + ‖V ‖L∞B1
n/2,2

+
∥∥|∇|−1∂tV

∥∥
L∞Ln/2)

×
( ∑

k

22ks‖uk‖2
L2L2n/(n−2)

)1/2
+ ‖Fk‖Lq̃′Lr̃′ .

For the error terms, we proceed as follows. According to (4.4), the relevant
estimate to prove is( ∑

k

22ks‖Ek‖2
L2L2n/(n+2)

)
� ε2

( ∑
k

22ks‖uk‖2
L2L2n/(n−2)

)1/2
. (4.5)

We have∑
k

22ks
∥∥∥[Pk, V

δ
≤k−4

∥∥∥2

L2L2n/(n+2)
� ‖∂V ‖2

L∞Ln/2

∑
k

22ks‖uk‖2
L2L2n/(n−2) ,

which takes care of the first term.
For the next term, we have by the inclusion l1 ↪→ l2∑

k

22ks
( ∑

l≥k−2

∥∥∥Pk(V δ
l ∇ul−2≤·≤l+2)

∥∥∥2

L2L2n/(n+2)

)1/2
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�
∑

k

2ks
∑

l≥k−2

∥∥∥V δ
l ∇ul−2≤·≤l+2

∥∥∥
L2L2n/(n+2)

�
∑

l

2ls‖ul−2≤·≤l+2‖L2L2n/(n−2)‖Vl‖L∞Ln/2

≤ Cs

( ∑
l

22ls‖ul‖2
L2L2n/(n−2)

)1/2
‖V ‖L∞B1

n/2,2
.

The last error term is estimated by∑
k

22ks
∥∥∥Pk(V δ

k−1≤·≤k+1∇ū≤k−4)
∥∥∥2

L2L2n/(n+2)

�
∥∥∥( ∑

k

22ks‖Vk−1≤·≤k+1‖2
Lq1

)1/2
‖∂u‖L

q2
x

∥∥∥2

L2
t

�
( ∑

k

22ks‖Vk‖2
L

p1
t L

q1
x

)
‖∂u‖2

L
p2
t L

q2
x

.

All in all, we get( ∑
k

22ks‖uk‖2
LqLr

)1/2
≤ C‖f‖Ḣs + C‖F‖

Lq̃′Lr̃′

+ Csε
( ∑

k

22ks‖uk‖2
LqLr

)1/2
+

( ∑
k

22ks‖Vk‖2
L

p1
t L

q1
x

)1/2
‖∂u‖L

p2
t L

q2
x

,

hence the Strichartz estimates for data f ∈ Ḣs.

5. Applications to quasilinear Schrödinger equations

Proof of Proposition 1. Start with data f ∈ S. Take u0 = 0 and solve
the equation

uj+1
t − iΔuj+1 + uj · ∂uj+1 = 0, u(0, x) = f(x) (5.1)

for j ≥ 0. This can be done as long as∥∥uj
∥∥

L∞W n/(2+h),1+h +
∥∥uj

∥∥
L∞B1

n/2,2

+
∥∥|∇|−1∂tu

j
∥∥

L∞Ln/2 � ε.

We will show by induction that uj is a smooth function, a solution of (5.1),
and ( ∑

k

22k(n/2−1)
∥∥∥uj

k

∥∥∥2

LqLr

)1/2
≤ 2Cnε, (5.2)
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where Cn is the constant in Theorem 1. Take j ≥ 1. By Sobolev embedding

∥∥uj
∥∥

L∞W n/(2+h),1+h+
∥∥uj

∥∥
L∞B1

n/2,2

≤ Cn

( ∑
k

22k(n/2−1)
∥∥∥uj

k

∥∥∥2

LqLr

)1/2
≤ Cnε.

Next, use the fact that uj is a classical solution of ∂tu
j−iΔuj +uj−1∂uj = 0.

We get

|∇|−1uj
t = |∇|−1(iΔuj − uj−1∂uj).

We get by Sobolev embedding∥∥∥|∇|−1uj
t

∥∥∥
L∞Ln/2

≤ C
∥∥∂uj

∥∥
L∞Ln/2 + Cn

∥∥uj−1
∥∥

L∞Ln

∥∥∂uj
∥∥

Ln/2

≤ Cn

∥∥uj
∥∥

L∞W n/(2+h),1+h(1 + Cn

∥∥uj−1
∥∥

L∞W n/(2+h),1+h) ≤ Dnε.

It follows that∥∥uj
∥∥

L∞W n/(2+h),1+h +
∥∥uj

∥∥
L∞B1

n/2,2

+
∥∥|∇|−1∂tu

j
∥∥

L∞Ln/2 � ε.

Invoking Theorem 1 with s = n/2−1, p1 = 2, p2 = ∞, q1 = 2n/(n−2), q2 =
n/2, yields existence of (smooth) uj+1 as well as the estimates( ∑

k

22k(n/2−1)
∥∥∥uj+1

k

∥∥∥2

LqLr

)1/2

≤ Cn

(
‖f‖Ḣn/2−1 +

( ∑
k

22k(n/2−1)
∥∥∥uj

k

∥∥∥2

L2
t L

2n/(n−2)
x

)1/2∥∥∇uj+1
∥∥

L∞
t L

n/2
x

)
≤ Cn‖f‖Ḣn/2−1 + Dnε

∥∥uj+1
∥∥

L∞Ḣn/2−1 .

Having ε such that Dnε ≤ 1/2 allows one to hide the second term on the
right-hand side above, whence we deduce (5.2).

Forming the difference of the jth and the (j + 1)st equations and using
the smoothing version of the conjugate magnetic operator (see Section 4),
we obtain the estimates( ∑

k

22ks
∥∥∥uj+1

k − uj
k

∥∥∥2

LqLr

)1/2
� ε

( ∑
k

22ks
∥∥∥uj

k − uj−1
k

∥∥∥2

LqLr

)1/2
,

for any s ≥ n/2 − 1. This shows that u = limj uj exists and( ∑
k

22k(n/2−1)‖uk‖2
LqLr

)1/2
� ε.
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Moreover, applying the estimates of Theorem 1 once more for s > 0 yields( ∑
k

22ks‖uk‖2
LqLr

)1/2

≤ Cn‖f‖Ḣs + Cn

( ∑
k

22ks‖uk‖2

L2
t L

2n/(n−2)
x

)1/2
‖∇u‖

L∞
t L

n/2
x

≤ Cn‖f‖Ḣs + Dnε
( ∑

k

22ks‖uk‖2

L2
t L

2n/(n−2)
x

)1/2
.

We get

‖u‖LqẆ r,s �
( ∑

k

22ks‖uk‖2
LqLr

)1/2
� ‖f‖Ḣs .

�

Next, we show the global existence and uniqueness result for (2.2).

Proof of Proposition 2. One could pursue the approach of the proof of
Proposition 1. However, it seems more convenient to set up the smoothing
version directly for (2.2) and then argue by a fixed-point argument.

To make matters simpler, place a time cutoff close to t = 0, that is we
consider

∂tu − iΔu + (1 − ϕ(t/δ))∂ū∂ū = 0. (5.3)

Obviously, (smooth) solutions to (5.3) will coincide with (smooth) solutions
to (2.2) for all t > 2δ. Thus, if we show existence and uniqueness for (5.3) for
all δ > 0, it is clear that will imply existence and uniqueness estimates for
the original equation (2.2). Moreover, our estimates will be uniform in δ > 0,
and one would be able to pass to a limit δ > 0, to get the corresponding
estimates for (2.2).

Apply ∂t + iΔ to both sides of (2.2). For smooth solutions, we get

(∂2
t + Δ2)u + 2ϕ>δ(t)∂(∂tu − iΔu)∂ū

− 2
δ
ϕ′(t/δ)(∂ū)∂ū + iϕ>δ(t)(∂2ū)∂2ū = 0,

which implies

(∂2
t + Δ2)u− 2ϕ2

>δ(t)[∂(∂u)2](∂ū)− 2
δ
ϕ′(t/δ)(∂ū)∂ū + iϕ>δ(t)(∂2ū)∂2ū = 0.
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For the initial data, we have from the time cutoff ∂tu(x, 0) = iΔf , so we get
the corresponding integral equation

u(x, t) = cos(tΔ)f +
sin(tΔ)

Δ
iΔf +

2
δ

∫ t

0

sin((t − s)Δ)
Δ

ϕ′(s/δ)(∂ū)(∂ū)ds

− 2
∫ t

0

sin((t − s)Δ)
Δ

[ϕ2
>δ(s)∂[(∂u)2](∂ū)]ds

− i

∫ t

0

sin((t − s)Δ)
Δ

ϕ>δ(s)(∂2ū)(∂2ū).

Set a fixed-point problem in the form u = Λu, with an underlying metric
space

X =
{

u :
∥∥∥|∇|n/2u

∥∥∥
LqLr

≤ 2ε; ‖|∇|su‖LqLr ≤ 4Cn‖f‖Ḣs

}
,

where Cn is the constant in the Strichartz inequalities.
We show that Λ : X → X. For the terms ‖cos(tΔ)f‖Ḣs , ‖sin(tΔ)f‖Ḣs ,

use the Strichartz estimates to get

‖cos(tΔ)f‖Ḣs + ‖sin(tΔ)f‖Ḣs ≤ 2Cn‖f‖Ḣs .

Next, recall the fractional differentiation estimates of Kato-Ponce,

‖|∇|s(fg)‖Lp ≤ C‖|∇|sf‖Lp1‖g‖Lp2 + C‖|∇|sg‖Lp1‖f‖Lp2 ,

whenever 1/p = 1/p1 + 1/p2. We get by the Strichartz estimates and the
fractional differentiation estimates for all s ≥ n/2

δ−1

∥∥∥∥|∇|s
∫ t

0

sin((t − s)Δ)
Δ

ϕ′(s/δ)(∂ū)(∂ū)ds

∥∥∥∥
LqLr

≤ C
∥∥|∇|s−2[(∂u)(∂u)]

∥∥
L∞L2

� C
∥∥|∇|s−1u

∥∥
L∞L2n/(n−2)‖∂u‖L∞Ln ≤ C‖|∇|su‖L∞L2

∥∥∥|∇|n/2u
∥∥∥

L∞L2
.

Similarly,∥∥∥∥|∇|s
∫ t

0

sin((t − s)Δ)
Δ

[ϕ2
>δ∂[(∂u)2](∂ū)]ds

∥∥∥∥
LqLr

�
∥∥|∇|s−2(∂2u∂u∂ū)

∥∥
L2L2n/(n+2)

� ‖|∇|su‖L∞L2‖∂u‖2
L4

t L2n +
∥∥|∇|s−1u

∥∥
L4L2n/(n−3)

∥∥∂2u
∥∥

L∞
t Ln/2‖∂u‖L4

t L2n

� ‖|∇|su‖L∞L2

∥∥∥|∇|n/2u
∥∥∥2

L4L2n/(n−1)
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+ ‖|∇|su‖L4L2n/(n−1)

∥∥∥|∇|n/2u
∥∥∥

L∞L2

∥∥∥|∇|n/2u
∥∥∥

L4L2n/(n−1)
.

For the last term in the nonlinearity, we obtain∥∥∥∥|∇|s
∫ t

0

sin((t − s)Δ)
Δ

ϕ>δ(∂2ū)(∂2ū)ds

∥∥∥∥
LqLr

�
∥∥|∇|s−2(∂2ū)(∂2ū)

∥∥
L2L2n/(n+2)

� ‖|∇|su‖L2L2n/(n−2)

∥∥∂2u
∥∥

L∞
t Ln/2 � ‖|∇|su‖L2L2n/(n−2)

∥∥∥|∇|n/2u
∥∥∥

L∞L2
.

Taking into account that (∞, 2), (4, 2n/(n − 1)), and (2, 2n/(n − 2) are all
Strichartz pairs, we conclude that for small enough ε, Λu ∈ X, whenever
u ∈ X and moreover

sup
(q,r)−Strichartz

‖Λu‖X ≤ 4Cn‖f‖Ḣs .

Similarly, one proves (by using the smallness of ε) that Λ : X → X is a
contraction This implies that for a small ‖f‖Ḣn/2 and ‖f‖Ḣs < ∞, one has
a unique global solution for (2.2). �
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