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ON FIRST-ORDER PERTURBATIONS OF THE
SCHRODINGER EQUATION WITH CONJUGATION

ATANAS STEFANOV
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(Submitted by: Gustavo Ponce)

Abstract. We show that first-order perturbations of the Schrédinger
equation with conjugation are globally and uniquely solvable for L? ini-
tial data. Global Strichartz estimates are established under minimal
assumptions on the “conjugate magnetic” potential.

1. INTRODUCTION

In this paper, we deal with the question of obtaining (global) Strichartz
estimates for the “conjugate magnetic” Schrodinger equation
du—iAu+V(t,z) Va=F (t,z)e Rt xR"

u(0,2) = f(x).

In a recent paper [10], the author has established similar a priori estimates
for the solutions of the magnetic Schrodinger equation:

(1.1)

ou—iAu+V(t,z) - Vu=F (t,z) e RT x R"
u(0,z) = f(x).

The gradient Schrodinger equation (1.2) was studies also by I. Bejenaru in
his thesis, [1].

Such models appear in geometric equations involving the covariant Lapla-
cian, with the natural interpretation of V as the connection. It turns out
that solutions to (1.2) exist globally under appropriate assumptions on V.
However, (1.1) exhibits far better behavior due to the presence of the com-
plex conjugation.

(1.2)
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Let us also recall the set of the Strichartz exponents for the regular
Schrodinger equation. We say that a pair of indices is Strichartz admis-
sible if 2 < ¢,r < o0, 2/g+n/r =n/2 and (¢,r,n) # (2,00,2). Then

1€ £l parr < ClIFIl 2 (1.3)

H /Ot A F (s, )dsLIL"

< C||F || por- (1.4)

Our goal is to achieve the same estimates under some integrability conditions
on the potential V.

The existence and uniqueness problem for (1.2), (1.1) has been studied
extensively by many authors in the physics as well as in the mathematics
literature. We should first point to the pioneering work of Doi, [4, 5], who
has devised a method to obtain solutions via energy estimates. The approach
is to cleverly exploit the properties of pseudodiferential operators of order 0
to obtain a priori control of |lu(t,-)|/;2 in terms of || f|| ;2 and HFHL1TL2.

We also mention the work of Kenig-Ponce-Vega, [9]. These authors have
been able to derive a priori estimates for the L? norms of the solution as
well as local smoothing effects, which are known to imply (at least local )
Strichartz estimates.

Note that both (1.2) and (1.1) have the important scaling invariance u —
uMt, ) = u(A2t, \x), V — VA(t, ) = A\V(\’t, Ax). That is, whenever (u, V)
satisfy (1.1), (1.2), so does (u®, V) with initial data f%(x) = f(ax).

1.1. Strichartz estimates for the conjugate magnetic Schrodinger
operator in dimension n > 3. To state our results, we need some defini-
tions. For a function u, let u, = Pyu be its k" Littlewood-Paley piece, as
in Section 3. Define the Besov spaces Bj s by the norm

1/q
lellmg, = (302 lueli) ™
k

and let WP® be the homogeneous Sobolev space with s derivatives in L?;
that is [ f[ye.s = [IVI° £l Lo-

Theorem 1. Letn >3 and 0 < h < 1. There exists an € = e(h,n) > 0, so
that whenever

IVl oo prn/caenyien + HVHLOOBJL/QQ + H’VrlatVHLooLnﬂ S €

the equation (1.1) has a global solution u, provided the data f € L?>(R™)
and the forcing term F € LY. In addition, for all admissible pairs (q,r),
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(q,7)
) 1/2
lullparr S (Z IIUkIILqu) S WAz +IF N pa s (1.5)
k

More generally, let s > 0 and p1,p2, q1,q2 satisfy 1/2 =1/p1+1/pe; 1/24
1/n=1/q1 +1/q2 and assume only

1OV oo pnr2 + HVHLooB}l/22 + H|v’_latVHLooLn/2 <eés.

Then the a priori estimate

1/2
(322wl
k

1/2

k 2

5 HfHHs + ||F||L6’W%’,s + <222 SHVkHLfngl) HVUHLf?Li?'
k

holds true.

Remarks. (1) Theorem 1 covers the important case of small time-indepen-
dent potentials V.

(2) The constant e, has the behavior 5 ~ s as s — 0.

(3) The conclusion in Theorem 1 holds under smallness assumptions for

Vligoorn + 19Vlzrp + [1V17 0V 1o
1/2
2k 2
+ HVHLfWQZ””/(mh-O-n),l-!—h + (Zk:? HVkHLme) g

for some p,m > 1 and 2/p + n/m = 2, but we shall omit the proof.

1.2. Two-dimensional case. In dimension two, one needs to slightly
change the assumptions, mainly due to the presence of the false endpoint
Strichartz estimate for (2, 00).

Theorem 2. For every 1 >> 0 > 0, there exists € = £(J), so that whenever
V :R? — C? is a vector-valued potential satisfying

WVl 1/ewrsa—s/2.1ts + H’V‘_latVHLI/(;LI/(I_(;) + HV”LI/‘sB%/(I,(;) , <e,

the two-dimensional Schridinger equation (1.1) has a global solution wu, pro-

vided the data f € L*(R™) and the forcing term F € LY L™ . Moreover, for
all admissible pairs (q,r), (¢,7),

1/2

2

el e S (S lenl3or) S Ul + 1F o (16)
k
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Remark. Note that the case of small time-independent potentials is not
covered by our statement. This actually may fail. More precisely, we con-
jecture that it is possible to construct (small) time-independent decaying
potential V', so that ||| 47, = 0o, with finite L? data and right-hand side.

2. APPLICATIONS

In this section, we give applications to small global solutions of some
quasilinear Schrodinger equations. Our first example is a class of equations
in the form

Ou—iAu+u-0u=0, u(0,z)=f(x). (2.1)
Here, we may allow 0 to be any vector-valued multiplier operator, so that
its symbol satisfies |m(&)| ~ [£].

Proposition 1. Let s > n/2 — 1 and n > 5. Then there exists € > 0, so
that whenever the initial data f € H®, with || f|| gn/2—1 < €, (2.1) has a global
solution, satisfying

2
lall oy S Q_IV w0kl 7)< Cl Sl
k

and ||u||Lf0Hn/2—1 < 2e.

Remark. The scale-invariant space for the problem is clearly H"/2~1, which
means that the results presented here are optimal in the sense of smoothness
of the data.

Our next example is the equation

Ou—itAu+0u-0u=0, u(0,z)=f(x), (2.2)
where again 0 is allowed to be any PDO of order one. We have the following

Proposition 2. Let n > 4 and s > n/2. Then there exists an e > 0, so that
(2.2) has a unique global solution, whenever f € H*(R™) with ||f|| gn2 < €.
Moreover, the solution satisfies
sup  ull ayirs < OISl s
(g,r)—Strichartz

Remark. This equation was considered in two spatial dimensions by S.
Cohn, [2], [3] by using the method of normal forms. In one dimension, small
solutions of this equation were studied by Hayashi-Naumkin, [7], in weighted
Sobolev spaces. Our methods give the optimal results in dimensions n > 4
(note that the scale-invariant space is H"/?). The result in dimension three
holds for data (small) in Besov one spaces, while one can prove global well
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posedness of (2.2) in the two-dimensional case with data in H?, which is
small in H'. We do not pursue these results here.

3. PRELIMINARIES

3.1. Littlewood-Paley projections. We define the Littlewood-Paley pro-
jections, which will be used frequently throughout the paper. Introduce
a positive, smooth, and even function 1, supported in {£ : |£| < 2} with
P(&) =1 for all [£] < 1. Define ¢(§) = ¥ (&) — ¥(2¢), which is supported in
the annulus 1/2 < [¢] < 2. Clearly 3,5 ¢(27%¢) = 1 for all £ # 0.

The k" /L\ittlewood-Paley projection is defined as a multiplier-type op-
erator by P f(€) = p(27%€)f(€). Note that the kernel of P is integrable,
smooth and real valued. In particular, it commutes with differential opera-
tors and the complex conjugation.

Also of interest will be the properties of products under the action of Pj.
We have that for any two (Schwartz) functions f, g

Pu(fg) = Y Pelfigi-a<.<is2) + symmetric term +
I>k—2
+  Pi(f<k—a9k—1<.<k+1) + symmetric term =
= f<k—a9k + [Pk, f<k—a]gk—1<-k+1 + symmetric terms

+ Z Py (figi—2<.<i+2) + symmetric term.
1>k—2

We need the following technical lemma.
Lemma 1. Let {a;}, {b;} are two sequences and € > 0. Then
2\ 1/2
(D22 (> 27am) ) < Celallw e
k 1>k—-2

Proof. Fix the sequence {a;} and consider the linear operator (mapping a
sequence into a sequence)

(Th)y, = 2e(k—1) Z arby.
1>k—2

We will show that T : I' — ! and T : [ — [*°. Indeed,

k—l -
70| < Z‘al||bl| Z 2(5=1) Se 1||a||l°°||b||ll7
l k<l+2
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| T0]];00 < supsup |a;| sup |by] Z 25D < 71| oo || B 1o -
kool I>k—2

It follows that for 1 < p < 00,T : IP — [P has norm no bigger than C¢||a|;e,
hence the statement of the lemma. O

4. PROOF OF THEOREM 1 AND THEOREM 2

Our approach is based on the observation that (1.1) is equivalent (at least
for classical solutions) to a wave equation, which gains a derivative.

Our considerations are for the case n > 3, with some mild changes needed
for the two-dimensional case.

We first perform some technical reductions, which will facilitate our es-
timates in the sequel. Take 0 < § << 1 and define VO(t,x) := V(t,x)(1 —
W(t)6)), Fo(t,z) := F(t,x)(1 —1(t/8)). That is, V? is a function coinciding
with V for all ¢ > 26, VO(t) = 0 = FO(t) for all t < 6.

For the rest of this section, we consider (1.1) with V' and F' replaced by
V9 and F? respectively and V and F Schwartz functions. In the end, (1.5)
will follow from the corresponding estimate for u’ by a limiting argument as
0 — 0, since all of our estimates will be uniform in ¢ and independent of the
smoothness constants of V' and F.

Next, we make some standard frequency localizations of the problem.
Take a Littlewood-Paley projection on (1.1) to obtain

Byup — iAuy + V2, _y - Vg = Ff + By, (4.1)

where E}j, is the error term arising in the process. According to our consid-
erations above

By = [P, V3 Vi i<k + Y PV Viisccya)  (42)
I>k—2
+ Z PV gcciyn - V) + Po(VE 1<y - Viick—a).
1>k—2

Note that in terms of LP behavior and Littlewood-Paley theory one infor-
mally treats these error terms as in the form (9,V?°)u.

Since, for all ¢,7 > 2, [lullperr S (X luklFarr)/?

Ok HFkHiq/Lr/)l/Q, it will suffice to show that

& s fuelB) S 1+ (5
k

L q,r—Strichartz

and |Fllp e 2

’ 2o (4.3)

Lq/ L,F/
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When estimating the terms arising from the left-hand side of (4.3), we will
often get terms in the form Cesup, (3 [luk 134-)"/2. Those are terms that
can be absorbed on the left-hand side.
Apply the operator 9; +iA to (4.1). We get
(0F + AP up + (0 + iA)WV2,_y] - Vg + VEi_y - [0y +iA) Vi)
iy 0VE - 0V, = (O, + iA)(F + E).
J

Note that by the equation (4.1), the term

(8 +iA) V] = V(8 — id)up = V(=VE,_, - Vi — FY — Ep).
We also have initial data ux(0,z) = fx(z) and

Oup(0,2) = iAug(0,z) — ng%((), x)Viug (0, x) + F,f(O, x) + Ex(0, )
= iAfy,
taking into account that V°(0,z) = F°(0,z) = E(0,z) = 0.

One might write the corresponding Duhamel’s formula for the newly ob-
tained equation satisfied by u; as follows

ug(z, t)

. t . _
= cos(tA) fr, + SIHXA)iAfk + /O M[—@s HiIAVE_y - Viig]

tsin((t — s)A
B /0 %Wéskzx V(=V2,_y- Vg, — F, — Ey) — Vs V2]

" /ot M[@S +iA)(Fy, + E)]ds.

We refer to this integral equation as the smoothing version of the conjugate
magnetic Schrédinger operator. Next, we show that (1.5) holds.

4.1. Strichartz estimates with L? data. Clearly, there are various terms
coming from the smoothing version of the conjugate magnetic Schrodinger
operator, which we need to handle. When controlling the forcing terms in
this proof, we employ the dual endpoint ¢ = 2,7 = 2n/(n + 2), which is of
course unavailable for the two dimensional case. For that case, one needs to
slightly readjust the proof and use instead ¢ = 2+ §,7" = n(4 + 25)/(2n +
no + 46 + 4).
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4.1.1. Terms coming from initial data. By Euler’s formula one expresses
cos(tA) and sin(tA) in terms of €2 (i.e., the generator for the Schrodinger
equation). By the standard Strichartz estimates (1.3), one has the same
Strichartz estimates for cos(tA),sin(tA), whence

[cos(tA) fell parr < 1 fll 25 [isin(tA) fill parr S I fll p2-
Summing in k yields

(D lleos(tA) fillzapr + Y Isin(tA) fillzap)"® S 11l Le,
k k

which is part of the right-hand side of (1.5).
4.1.2. Forcing terms.
e By (1.4) and Hélder’s inequality and Sobolev embedding

bsin((t — s)A) A2 z
H/O L 0+ iV, - Vads|
S 2~ 9 (-/8)0:Var-aVar| g2 oo v+

+ 27| AVE,_ Vi + 270 [ (SO Vaka V]| 1

12121/ (n+2)
—k 0

< 27K (110 Vh—all poo g2 + HAVSHHLOOW)le!mm/m—m

+ 2755 |0 (/0| py IVl e il oo 2

SNV OV || oo proye H IV V I oo prs2) 1kl 2 202 + IV (| oo o 1] oo -

Taking squares and summing in k yields an estimate

Zk: ‘ sin((t — s)A) -

. 2
/ S SR (@, +iAVE, - Viglds
0
SeX sw el SEX0 s fuclors
k

A
& (q,r)—Str. q,r)—Str.

e By (1.4), | Vakll - ~ 2*|lgx|l ;- and Hélder’s inequality

Psin((t — s)A _
‘ / sin((f —5)4) A ) )ng_4-vgk_4v2ukds
0

S ATV va Ve

LarLr

L2[2n/(n+2)
—2k 2 2
S 272V oo 1 | VPuk]| 2 ponsin-20 S IV oo po k]| 2 s n -

Squaring and summation in k shows the term is bounded by
2
CE(Zk HUkHLZL2n/(n_2)).
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e Another similar term is treated as above

t—s)A
/0 w{/ﬁkll . Vng,AIVdes

N HA_l[ngﬂ : vakﬂvmc]‘

LarLr

S

2
220/ (nt2) ~ Vlizoo pollunll 2 pon/cn—2) -

Squaring and summation in k gives a manageable term.
[ ]

t .
t—s)A
/ st = 9)8) Gy, V2ands
0 A =
SIVV| oo vz k]l 2 p2n /-2 -
Squaring and summation in & shows a bound by Ce ), HukHiQLG/(n_g)
e For the term involving the right-hand side we have, by (1.4), Holder’s
and Sobolev embedding
t .
t—s)A
/ MV&%VFS(LG
0 A - LaL™
S 27 WVarall e IV Eill par o S IV oo o | Bl -

S AT v _ivia)

LaLr L2[.2n/(n+2)

S HA‘l[Vésk%VF,f]‘

Lq-l L,;J

e Another very easy term is

(4
‘/ sin((¢ S)A)AF,fds
0 A

e The last term involving F}, is

/o il D) o, (s, s = /0 cos((t — s)A)F(s, )ds,

where, in the last identity, we have used integration by parts and the fact
that F9(0,z) = 0. An application of the Strichartz estimates to the last
formula yields

5 ||Fk||L6/LF’-
LaL"

2
Sln

) )8 Fk,ds

2

S Z ||Fk||L§’LF"

k
4.1.3. Error terms. We have two types of error terms. For the first one

t .

sin((t — s)A
’ / Mvﬁk_ﬂEde
0 <

A
S 27 M Vahmall oo | Bkl pzpznsnry S IV | oo po | Brll 2 pansnse) -

LarLr

s [am v vEd)

Lafr L2[2n/(n+2)
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The second error term is identical to the last two cases for F' considered
above (recall Fy(0,2) = 0, because of the time cutoffs introduced in the
definition). We have

/0 t M(a@ +iA)Eds

LaLr
t t
< / sin((t — s)A)Eyds + / cos((t — s)A)Eyds
0 LaLr 0 LaLr
S Bkl g2 pan e -
In both error terms, it clearly suffices to show
2 2
S BT 2 ponsenrny S Mukllrzpon/m-- (4.4)
k k

We estimate on a term-by-term basis in formula (4.2).
For the first term, recall the Calderon commutator result, which states
that for all 1 <p, ¢, < oo such that 1/p =1/g+ 1/r, one has

1B, FIVGle S IV fllLallgll -

Therefore,

Z H[thsak—ﬂvak’ ’
%

2 2
SIVV Lo s Z k72 p2n/m-2)-
k

2[2n/(n+2)

The second and third terms in (4.2) are treated in a similar fashion, so we
concentrate on the second one. For any positive h < 1, we have

Z( > Hpk(vlév’ﬁlfzs-guz)‘

E o I1>k—2

< Z( Z Qhkqu(VfSVﬁzfzggzm)’
ko I>k—2

2
S 22hk< > 2Vl poe psaem Hul”LQL?"/(”*Z))
% I>k—2

2
522”"“( > 2_thV2”L0<>Wn/<2+h)»1+hHul”L?L?"/(n*?)) :
k 1>k—2

2
L2 L2n/(n+2) )

2
L2[2n/(n+2+2h) >

One obtains by Lemma 1

2
> 2 (S 2 Villymsrmaen ] oo )
k 1>k—2
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2 2 2
SV e > Mwllzpomm- S 2> lwullzpzm—2-
; ;

The last fourth term in (4.2) is handled as follows

2

é _

% HP]‘?(V’C*1§'§]€+1VUSI~C—4)‘ L2 ponni2)
5 _ 2 1/212
-| (Zk: |PViccin Vi) o) | g
1/212

2k 2 2

S H(ZQ ||Vk_1§'§k+1||Ln/2||u||L2n/(n*2)) ‘Lz
k

2 2 20,112
SV, Nulaomsin S eullEs onvin
4.2. Strichartz estimates for H*® data. This section shall largely refer
to the previous one. Indeed, for all forcing terms but the error terms, the

dominant frequency is on the u, rather than on the potential V. Denote
these terms by U. Therefore, we have estimates of the form

1/2
(22 2% U pannro )
k
S UV lloernrz + IVIigepe , , + 1IVIT0V ] o )
1/2
2
X (ZQ%SH'L%HL?L?”/(?I—Z)) 1 Ekll L -
k

For the error terms, we proceed as follows. According to (4.4), the relevant
estimate to prove is

1/2
(Z22ks||Ek”%2L2n/(n+2)> 5 52(22%8”“16”%29”/("_2)) . (4.5)
3 k
We have
2
k 4 2 k ;
gzz s [Pk”VSk_zl‘ L2127/ (n+2) S HaVHLooan ;22 SHukHL%?n/(nf?)’

which takes care of the first term.
For the next term, we have by the inclusion I* < (2

Z o2k ( Z Hpk(‘/l‘SVul_QSSH—Z)’

k [>k—-2

2 1/2
L2L2n/(n+2) )
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§22k8 Z H‘/fvulqg-glml

k I>k—2

L2[2n/(n+2)

S 2 wmac.<irall p2 ponsnen Vil poo o2
.

1/2
< Co( 2 ulaponsnn) " WVl
l

/2,2

The last error term is estimated by
Z 22ks
k

1/2 2
S |(Z 2 Wimrernlin)  l0ull
k

L3

2

) _
Pk(vk71§-§k+1vu§k—4)’ [

S <Z 22k5||Vk;Hi§’1Lg1> H@u”isz?,
k
All in all, we get

1/2

2

(ZZ%SHUkHLqLT) < O\ fll s +CHF”L§/L;-/
k

1/2 1/2
k 2 k 2
+ng( Ek 2? SHukHLqu) + ( Ek 2? SHVk”Li’lLil) HauHLf%?’

hence the Strichartz estimates for data f € H*.

5. APPLICATIONS TO QUASILINEAR SCHRODINGER EQUATIONS

Proof of Proposition 1. Start with data f € S. Take u = 0 and solve
the equation

T — iAW 4 - GuitT = 0, u(0,z) = f(x) (5.1)
for 7 > 0. This can be done as long as

HujHLoan/(2+h>,1+h + HujHLooB}L/Z2 + H’v‘_latujHLooLnﬂ Se.

We will show by induction that 4/ is a smooth function, a solution of (5.1),

and
( Z 92k(n/2—1) H%‘ 2
k

1/2
) <20, (5.2)

LarLr
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where C), is the constant in Theorem 1. Take j > 1. By Sobolev embedding

. . 2112
P L P O SE R T

)1/2 < Cpe.

LaL™

Next, use the fact that u/ is a classical solution of dyu? —iAuw? +ui~1dui = 0.
We get

V| 'd = |V (iAW — ! owd).
We get by Sobolev embedding

19174 e < IO g + Ol e 90
< CnH“jHLoown/<2+h>,1+h(1 + CnH“j_lHLoown/<2+h>7l+h) < Dne.

It follows that
97| pooyyrnszmaen + H“jHLooB;/Q,Q +IVI71 00 || o oy S e

Invoking Theorem 1 with s = n/2—1, p1 =2, p» = 00, 1 =2n/(n—2), g2 =
n/2, yields existence of (smooth) u/! as well as the estimates

< zk: 92k(n/2-1) Huizﬂ‘ ;Lr) 1/2

< Co (I jnsss + (30 220270
k

< Cull fll -1 + Del|w/ | e pnjs-

2

12
L%Lin/(n72)> HVUJJFI HL§°L§§/2>

Having e such that D,e < 1/2 allows one to hide the second term on the
right-hand side above, whence we deduce (5.2).

Forming the difference of the j* and the (j + 1) equations and using
the smoothing version of the conjugate magnetic operator (see Section 4),
we obtain the estimates

2 2 1/2
Lqu) ’

1/2
22ks ) < ( 22ks

for any s > n/2 — 1. This shows that u = lim; v/ exists and

(32 20D g, ) < e
k

Jj+1 J J j—1
up = Uy, — Uy, ‘

|
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Moreover, applying the estimates of Theorem 1 once more for s > 0 yields

1/2
(2wl
k
2ks 2 1/2
< CullFll e + (D2 k2 pznso ) IVl e
k

1/2

k 2

< CullFll e + Due( 30 2 ekl ponsin ) -
k

We get

1/2

2

il parirne S (D2 22 NunlFare) " S 1S e
k

Next, we show the global existence and uniqueness result for (2.2).

Proof of Proposition 2. One could pursue the approach of the proof of
Proposition 1. However, it seems more convenient to set up the smoothing
version directly for (2.2) and then argue by a fixed-point argument.

To make matters simpler, place a time cutoff close to t = 0, that is we
consider

Ou — iAu+ (1 — ¢(t/d))0udu = 0. (5.3)

Obviously, (smooth) solutions to (5.3) will coincide with (smooth) solutions
to (2.2) for all ¢ > 26. Thus, if we show existence and uniqueness for (5.3) for
all § > 0, it is clear that will imply existence and uniqueness estimates for
the original equation (2.2). Moreover, our estimates will be uniform in ¢ > 0,
and one would be able to pass to a limit § > 0, to get the corresponding
estimates for (2.2).

Apply 9; + iA to both sides of (2.2). For smooth solutions, we get

(02 4+ A%)u + 2055(1)0(Fpu — 1Au)du
2 1/8)(@0)0m + i (1) (0P0) 0 = 0,

which implies

(0 + A7) — 262 5(1)[0(0u))(00) — 2 (1/5) ()00 + itpss (1) (@%0)0%0 = 0.
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For the initial data, we have from the time cutoff dyu(x,0) = iAf, so we get
the corresponding integral equation

sin tsin((t—s
w(z,t) = cos(tA) f + XA)mH% /0 MSOI(S/(;)@@)(@@)CJS

tsin((t — s

—o [ SIS ool 0m)ds
tsin((t — s

—i [ PSR @ e,

Set a fixed-point problem in the form u = Aw, with an underlying metric
space

X = {u : H|V|”/2u’

<2 I9Pullgage < 4GSl ),

where C), is the constant in the Strichartz inequalities.
We show that A : X — X. For the terms ||cos(tA)f|| ., [[SIn(tA) f|l s,
use the Strichartz estimates to get

lcos(tA) fll s + l[sin(tA) 1 s < 2Cn]| £l g7s-

Next, recall the fractional differentiation estimates of Kato-Ponce,

VUL < CHIVEF Lo lgllzoe + CUINVEG o [[f 1] Loz

whenever 1/p = 1/p1 + 1/pa. We get by the Strichartz estimates and the
fractional differentiation estimates for all s > n/2

51w / Sn(t = 5)8) 1(5/8)(0a)(0a)ds
0

A
< OV 2[(0u) (@w)]|| . 2

S CIVET 0 oo o2 10Ul g o < CIIV ] oo 2

LaL"

W’n/QuHLoom'

Similarly,
o [tsin((t —s)A _
v [ T8 opowPiomas
< IV 2(02u0udm)|| 2 s,

LaL™

S H’WSU”LOOL?H@U”%?L%% + |HV|S_1UHL4L2n/(n—3> H32uHLgoLn/2||3UHL§L2n

2
S MVFPullpoo 2

LA12n/(n—1)
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+ IV IFull papzn /-1

For

'\w / sin((t —9)A) ,_ (o2a)(0%a)ds

ATANAS STEFANOV

o]

V12

[oL2 L4L2n/(n—1).

the last term in the nonlinearity, we obtain

A

LaLr

S IVE20*0)(0*0)]| 2 o)

S |HV|SUHL2L2n/<n—2>HOQUHLgoLn/z S MV IEPull g2 pen/ -2

\|V|”/2UH .
L>[2?

Taking into account that (o0,2), (4,2n/(n — 1)), and (2,2n/(n — 2) are all
Strichartz pairs, we conclude that for small enough ¢, Au € X, whenever

u €

X and moreover

sup - [[Aufx < 4G g
(g,r)—Strichartz

Similarly, one proves (by using the smallness of €) that A : X — X is a
contraction This implies that for a small || f|| ;7.2 and || f]| ;. < oo, one has

a unique global solution for (2.2). O
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