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Abstract. We prove global existence for the Dirac-Klein-Gordon equa-
tions in one space dimension with ψ ∈ L2 (charge class) and φ ∈ H1/4.
This improves the global existence result of Fang [7] by 1/4 + ε deriva-
tives in φ. The proof relies on bilinear estimates for solutions of the
Dirac equation and a decomposition of the spinor field into ‘left’ and
‘right’ spinors.

1. Introduction

We study global low regularity solutions of the Dirac-Klein-Gordon equa-
tions in one space dimension with Yukawa interaction:

iDψ = (M − gφ)ψ (1.1a)

�φ = gψψ − m2φ. (1.1b)

We prescribe initial data at t = 0:

ψ(0, ·) = g , φ(0, ·) = f , φt(0, ·) = h. (1.2)

Here ψ(t, x) is a 2-spinor1 field and φ(t, x) is a scalar field defined on [0,∞)×
R. The Dirac operator is defined by Dψ = γ0∂tψ + γ1∂xψ where γ0 = ( 0 1

1 0 )
and γ1 =

(
i 0
0 −i

)
. We define ψ = ψ†γ0, where ψ† is the complex conjugate

transpose of ψ. The wave operator is defined by � = ∂2
t − ∂2

x. Finally,
M ≥ 0, m ≥ 0 and g, are constants.
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1The spinor dimension is s = 2[

n+1
2 ] where n + 1 is the dimension of spacetime. Thus,

in 1+1 and 2+1 dimensions we have 2-spinors and in 3+1 dimensions we have 4-spinors.
See [14] for more.
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This system was first studied by Chadam and Glassey in [4] and [5] where
the global existence was proved and the asymptotic behavior was studied
of classical solutions with ψ(t) ∈ H1, φ(t) ∈ H1 using energy estimates
and certain invariants of the system (see also the more recent work [14] on
invariants). This existence result was improved in [2] (see [9] for a different
proof) to global existence with ψ(t) ∈ L2, φ(t) ∈ H1. The proof of local
existence in [2] relies on a null form estimate of Klainerman and Machedon
for solutions of the wave equation which is adapted to the setting of the
Dirac equation. Once local existence has been established, global existence
is derived as a consequence of conservation of charge. This approach has
also been used more recently in [13] to study the nonlinear Dirac equation.

Fang [7] has achieved the following improvement to the results of [2] and
[9]:

Theorem 1. (Fang [7]) Let g ∈ L2(R), f ∈ H1/2+ε(R), and h ∈ H−1/2+ε(R),
where ε > 0. Then there exists a unique global solution (φ, ψ) to the Dirac-
Klein-Gordon equations (1.1) with initial data (1.2) with

ψ ∈ C0
(
[0,∞), L2(R)

)
φ ∈ C0

(
[0,∞), H1/2+ε(R)

)
∩ C1

(
[0,∞), H−1/2+ε(R)

)
.

In this paper we first sketch a simpler proof of Fang’s result and then
improve it to ψ(t) ∈ L2, φ(t) ∈ H1/4.

Theorem 2. (Global Existence) Consider initial data g ∈ L2(R), f ∈
Hr(R), h ∈ Hr−1(R), where 1

4 ≤ r < 1
2 . There exists a unique global

solution (φ, ψ) to the Dirac-Klein-Gordon equations (1.1) with initial data
as in (1.2) with

φ ∈ C0 ([0,∞), Hr(R)) ∩ C1
(
[0,∞), Hr−1(R)

)
ψ ∈ C0

(
[0,∞), L2(R)

)
.

There are three main ingredients in our proof. The first is a new bilinear
estimate for solutions of the Dirac equation with quadratic right-hand sides
which are products of a solution of the wave equation and a solution of the
Dirac equation (Proposition 1). The second ingredient is a decomposition
of the spinor field. It corresponds to the decomposition of a 4-spinor field
in three space dimensions into left and right spinors as in Klainerman [11]
and Bournaveas [1] which reduces the four-dimensional Dirac equation into
two Pauli-type equations. Here, the one-dimensional Dirac equation is de-
composed into two simple-transport equations. This makes it much easier to
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handle the Fourier integral operators that come up in the bilinear estimates
of Proposition 1. In the context of (1.1) this decomposition is as follows: we
write first ψ =

(
ψ1

ψ2

)
and then introduce the two complex-valued scalar fields

u = iψ1 + ψ2 and v = iψ1 − ψ2. We define the simple transport operators
∂± = ∂t ± ∂x. Then the system (1.1) becomes

∂+u = −(M − gφ)v (1.3a)

∂−v = (M − gφ)u (1.3b)

�φ = gIm(uv) − m2φ. (1.3c)

The third ingredient of our proof is the so called ‘two-step’ iteration [12].
To prove an existence theorem one usually defines a sequence (ψ(n), φ(n))
of approximate solutions and shows that it converges to a limit that solves
the equations. An induction argument is involved which shows that certain
estimates for the (n − 1)-th iterate imply the same estimates for the n-th
iterate. In our case this doesn’t work. It can be shown that the informa-
tion contained in the estimates for

∥∥ψ(n−1)(t)
∥∥

L2 and
∥∥φ(n−1)(t)

∥∥
H1/4 is not

enough to prove the same estimates for
∥∥ψ(n)(t)

∥∥
L2 and

∥∥φ(n)(t)
∥∥

H1/4 . A
similar situation arises in the study of wave maps type problems in [12].
To deal with it we use the ‘two-step’ technique of [12]. The n − th iterates
(ψ(n), φ(n)) solve equations with right-hand sides containing (ψ(n−1), φ(n−1))
which themselves solve another system of equations. Taking this into account
we express (ψ(n), φ(n)) in terms of both (ψ(n−1), φ(n−1)) and (ψ(n−2), φ(n−2))
and use the estimates for the (n− 1)-th and (n− 2)-th iterates to derive the
estimates for the n-th iterate.

2. Bilinear Estimates

The proof of Theorem 2 uses the following estimate:

Proposition 1. Fix initial data

ζ0 ∈ L2(R) , ψ0 ∈ H−1/4(R) , φ0 ∈ H1/4(R) , φ1 ∈ H−3/4(R)

and right-hand sides

G ∈ L1([0, T ];H−1/4(R)) , F ∈ L1([0, T ];H−3/4(R)).

Let the 2-spinor field ζ solve

Dζ = iφψ , ζ(0, ·) = ζ0, (2.1)
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where the scalar field φ and the 2-spinor field ψ solve

Dψ = G , ψ(0, ·) = ψ0 (2.2)

�φ = F , φ(0, ·) = φ0 , φt(0, ·) = φ1. (2.3)

Then, for each t ∈ [0, T ], we have

‖ζ(t)‖L2(R) ≤ ‖ζ0‖L2 + C(t)
[
‖ψ0‖H−1/4(R) +

∫ t

0

∥∥G(t′, ·)
∥∥

H−1/4(R)
dt′

]
·

×
[
‖φ0‖H1/4(R) + ‖φ1‖H−3/4(R) +

∫ t

0

∥∥F (t′, ·)
∥∥

H−3/4(R)
dt′

]
. (2.4)

Proof. We consider the special case in which ζ0, F , G and φ0 vanish, as
the result in the general case can easily be derived from the estimate in the
special case. In other words we now have

Dζ = iφψ , ζ(0, ·) = 0, (2.5)

where

Dψ = 0 , ψ(0, ·) = ψ0 (2.6)

�φ = 0 , φ(0, ·) = 0 , φt(0, ·) = φ1. (2.7)

Write ψ =
(

ψ1

ψ2

)
, ζ =

(
ζ1
ζ2

)
and define the complex-valued scalar fields

U = iζ1 + ζ2, V = iζ1 − ζ2 ; u = iψ1 + ψ2, v = iψ1 − ψ2.

The Dirac equations in (2.5) and (2.6) then reduce to simple transport equa-
tions

∂+U = φv , U(0) = 0 (2.8)

∂−V = −φu , V (0) = 0, (2.9)

where u and v solve

∂+u = 0 , u(0) = u0 := iψ1(0) + ψ2(0) (2.10)

∂−v = 0 , v(0) = v0 := iψ1(0) − ψ2(0) (2.11)

and φ solves (2.7). We show

‖U(t)‖L2(R) ≤ C(t) ‖φ1‖H−3/4(R) ‖v0‖H−1/4(R) . (2.12)

The corresponding estimate for V follows similarly and together they imply
the desired estimate for ζ. We have the following representation for U .

Û(t, ξ) =
i

2

∫ ∞

−∞

[
e−itη sin t(ξ − η)

ξ − η
− sin tξ

ξ

] φ̂1(η)
η

v̂0 (ξ − η) dη. (2.13)
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Define

A(η) =
φ̂1(η)

(1 + |η|)3/4
, B(η) =

v̂0 (η)
(1 + |η|)1/4

.

Let H(ξ) be a test function and define the bilinear form

Q[A, B](t) :=
∫∫ [

e−itη sin t(ξ − η)
ξ − η

− sin tξ

ξ

]
· (2.14)

× (1 + |η|)3/4(1 + |ξ − η|)1/4

η
A(η)B(ξ − η)H(ξ) dξdη. (2.15)

By duality, it suffices to show that

| Q[A, B](t) | ≤ c(t) ‖A‖L2(R) ‖B‖L2(R) ‖H‖L2(R) . (2.16)

We may assume that A, B, H ≥ 0. Write Q[A, B](t) = Q1(t) + Q2(t) where

Q1(t) =
∫∫

|η|≥1
· · · dξdη , Q2(t) =

∫∫
|η|<1

· · · dξdη.

Consider first |η| ≥ 1. Using∣∣∣sin(t |ξ − η|)
|ξ − η|

∣∣∣ ≤ c(t)
1 + |ξ − η| ,

∣∣∣sin(t |ξ|)
|ξ|

∣∣∣ ≤ c(t)
1 + |ξ| ,

and |η| � 1 + |η| we have

Q1(t) ≤ c(t) [Q11 + Q12] ,

where

Q11 =
∫∫

A(η)B(ξ − η)H(ξ)
(1 + |ξ − η|)3/4(1 + |η|)1/4

dξdη (2.17)

Q12 =
∫∫

(1 + |ξ − η|)1/4

(1 + |ξ|)(1 + |η|)1/4
A(η)B(ξ − η)H(ξ) dξdη. (2.18)

To estimate Q11 we change variables ξ 	→ ξ + η. We then have

Q11 =
∫∫

A(η)B(ξ)H(ξ + η)
(1 + |ξ|)3/4(1 + |η|)1/4

dξdη

=
∫∫

|ξ|≥|η|
· · · dξdη +

∫∫
|ξ|<|η|

· · · dξdη. (2.19)

For the first integral in (2.19) we have (1 + |ξ|)3/4(1 + |η|)1/4 ≥ (1 + |η|),
therefore,∫∫

|ξ|≥|η|
≤

∫∫
A(η)B(ξ)H(ξ + η)

1 + |η| dξdη
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=
∫

A(η)
1 + |η|

∫
B(ξ)H(ξ + η)dξdη

≤
∫

A(η)
1 + |η|

( ∫
|B(ξ)|2dξ

)1/2( ∫
|H(ξ + η)|2dξ

)1/2
dη

= ‖B‖L2(R) ‖H‖L2(R)

∫
A(η)

1 + |η|dη

≤ ‖B‖L2(R) ‖H‖L2(R)

( ∫
|A(η)|2dη

)1/2( ∫
1

(1 + |η|)2 dη
)1/2

≤ C ‖B‖L2(R) ‖H‖L2(R) ‖A‖L2(R) .

The estimate for the second integral in (2.19) is similar. To estimate Q12 in
(2.18) we use (1+|ξ−η|)1/4

(1+|ξ|)(1+|η|)1/4 ≤ 1
(1+|ξ|)3/4(1+|η|)1/4 + 1

1+|ξ| and work as above.
Next we estimate Q2(t). We make use of the fact that the symbol in the

brackets in (2.15) cancels the singularity at η = 0. We have:

m(ξ, η; t) :=
∣∣∣[e−itη sin t(ξ − η)

ξ − η
− sin tξ

ξ

](1 + |η|)3/4(1 + |ξ − η|)1/4

η

∣∣∣
≤ c(t). (2.20)

Indeed, writing e−itη = 1−2 sin2 tη
2 −i sin tη and using the fact that (1+|η|)3/4

is now bounded, we have

m(ξ, η; t) ≤ C

3∑
k=1

mk(ξ, η; t), (2.21)

where

m1(ξ, η; t) =
∣∣∣∣sin t(ξ − η)

ξ − η
− sin tξ

ξ

∣∣∣∣ (1 + |ξ − η|)1/4

|η| (2.22)

m2(ξ, η; t) =
∣∣∣∣ sin

tη

2

∣∣∣∣
2 |sin t(ξ − η)|

|ξ − η|
(1 + |ξ − η|)1/4

|η| (2.23)

m3(ξ, η; t) = |sin tη| |sin t(ξ − η)|
|ξ − η|

(1 + |ξ − η|)1/4

|η| . (2.24)

For m1 we use the fact that g(x) = sin(tx)
x satisfies |g′(x)| ≤ c(t)

(1+|x|) and the
mean value theorem to get that, for some θ ∈ [0, 1], we have

|m1| =
|g(ξ − η) − g(ξ)|

|η| (1 + |ξ − η|)1/4

≤
∣∣g′(θξ + (1 − θ)(ξ − η))

∣∣ (1 + |ξ − η|)1/4
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≤ c(t)
1 + |ξ − (1 − θ)η|(1 + |ξ − η|)1/4.

Recall that |η| ≤ 1, therefore 1 + |ξ − (1 − θ)η| ≈ (1 + |ξ|) and also (1 + |ξ −
η|)1/4 ≈ (1 + |ξ|)1/4. Therefore,

m1(ξ, η; t) ≤ c(t)
(1 + |ξ|)3/4

≤ c(t).

The terms m2 and m3 are estimated similarly. This completes the proof of
(2.20). Using that estimate we can bound Q2(t) as follows:

|Q2(t)| ≤ c(t)
∫
|η|≤1

A(η)
∫

R

B(ξ − η)H(ξ)dξdη

≤ c(t)
∫
|η|≤1

A(η)
( ∫

R

B(ξ − η)2dξ
)1/2( ∫

R

H(ξ)2dξ
)1/2

dη

≤ ‖B‖L2(R) ‖H‖L2(R)

∫
|η|≤1

A(η)dη

≤ C ‖A‖L2(R) ‖B‖L2(R) ‖H‖L2(R) , (2.25)

where C = | {|η| ≤ 1} |1/2. This completes the proof of the proposition. �

3. Global existence

3.1. Proof of Theorem 1. In this section we give a proof of Theorem 1
which is simpler than the one in [7]. It is based on the observation that the
proof in [2] can be adapted to deal with φ ∈ H1/2+ε.

Proof of Theorem 1. We only present the relevant a priori estimates for
local existence. Global existence is a consequence of conservation of charge,
see [2, 7, 9] for details.

Let (φ, ψ) be a solution of (1.1). For simplicity of exposition we take
M = m = 0 and g = 1. Define

X(T ) = sup
0≤t≤T

[‖ψ(t)‖L2 + ‖φ(t)‖H1/2+ε + ‖∂tφ(t)‖H−1/2+ε ]

and D0 = ‖ψ(0)‖L2 + ‖φ(0)‖H1/2+ε + ‖∂tφ(0)‖H−1/2+ε . The charge estimate
gives

sup
0≤t≤T

‖ψ(t)‖L2 ≤ C
(
D0 +

∫ T

0
‖Dψ(t)‖L2 dt

)

≤ C
(
D0 +

∫ T

0
‖φ(t)ψ(t)‖L2 dt

)
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≤ C
(
D0 +

∫ T

0
‖φ(t)‖L∞ ‖ψ(t)‖L2 dt

)

≤ C
(
D0 +

∫ T

0
‖φ(t)‖H1/2+ε ‖ψ(t)‖L2 dt

)
≤ C

(
D0 + TX(T )2

)
. (3.1)

To estimate ‖φ(t)‖H1/2+ε we write φ = φL + φN where φL is the solution of
the IVP: �φL = 0, φL(0) = f , ∂tφL(0) = h, and φN is the solution of the
IVP:

�φN = ψψ (3.2a)

φN (0) = 0 , ∂tφN (0) = 0. (3.2b)

The generalized energy estimate gives

sup
0≤t≤T

[‖φL(t)‖H1/2+ε + ‖∂tφL(t)‖H−1/2+ε ] ≤ C(T )D0. (3.3)

Combining Lemmata 1 and 3 of [2], we have∥∥ψψ
∥∥

L2([0,T ]×R)
≤ C(T )

(
D0 +

∫ T

0
‖Dψ(t)‖L2 dt

)2
.

By the estimates that lead to (3.1) we have∫ T

0
‖Dψ(t)‖L2 dt ≤ C(T )TX(T )2.

Therefore, ∥∥ψψ
∥∥

L2([0,T ]×R)
≤ C(T )

(
D0 + TX(T )2

)2 (3.4)

hence also∫ T

0
‖ψ(t)ψ(t)L2‖dt ≤ T 1/2

∥∥ψψ
∥∥

L2([0,T ]×R)
≤ C(T )(D0 + TX(T )2)2. (3.5)

This estimate says that the right-hand side of equation (3.2a) is in L1([0, T ];
L2(R)), therefore, by the linear theory, φN (t) ∈ H1 and ∂tφN (t) ∈ L2 (i.e.,
φN is smoother than φL) and moreover (energy estimate)

sup
0≤t≤T

[‖φN (t)‖H1 + ‖∂tφN (t)‖L2 ] ≤ C(T )
∫ T

0
‖�φN (t)‖L2 dt (3.6)

≤ C(T )T 1/2(D0 + TX(T )2)2. (3.7)

Hence, a fortiori,

sup
0≤t≤T

[‖φN (t)‖H1/2+ε + ‖∂tφN (t)‖H−1/2+ε ] ≤ C(T )T 1/2(D0 + TX(T )2)2.

(3.8)
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Estimates (3.1), (3.3) and (3.8) allow us to bootstrap X(T ). �

3.2. Proof of Theorem 2.

Proof. We shall first prove local existence and then derive global existence
as a consequence of conservation of charge. For simplicity of exposition we
set M = m = 0(2) and g = 1. Define an iteration scheme as follows: start
with ψ(−1) ≡ 0, φ(−1) ≡ 0, and define inductively (ψ(n), φ(n)) to be the
solution of the initial-value problems

Dψ(n) = iφ(n−1)ψ(n−1) , ψ(n)(0, ·) = g (3.9)

�φ(n) = ψ(n−1)ψ(n−1) , φ(n)(0, ·) = f , φ
(n)
t (0, ·) = h. (3.10)

Notice that ψ(0) and φ(0) solve the linear homogeneous Cauchy problems

Dψ(0) = 0, ψ(0)(0) = g

and
�φ(0) = 0, φ(0)(0) = f, φ

(0)
t (0) = h.

Fix T > 0, to be determined later, and define

Xn(T ) = sup
0≤t≤T

(∥∥ψ(n)(t)
∥∥

L2 +
∥∥φ(n)(t)

∥∥
Hr +

∥∥φ
(n)
t (t)

∥∥
Hr−1

)
(3.11)

Δn(T ) = sup
0≤t≤T

(∥∥ψ(n)(t) − ψ(n−1)(t)
∥∥

L2 +
∥∥φ(n)(t) − φ(n−1)(t)

∥∥
Hr

+
∥∥φ

(n)
t (t) − φ

(n−1)
t (t)

∥∥
Hr−1

)
. (3.12)

Recall that r ∈ [14 , 1
2). We claim that, if T is sufficiently small, then for all

n we have:

Xn(T ) ≤ M (3.13)

Δn(T ) ≤ 1
2
Δn−1(T ), (3.14)

where M , to be determined later, is a constant independent of n and de-
pending only on the quantity D0 = ‖g‖L2 + ‖f‖Hr + ‖h‖Hr−1 . We shall only
present the proof of (3.13) as the proof of (3.14) is similar. We use induction
on n. The estimate is trivial for n = −1. For n = 0 it follows easily from
charge and generalized energy estimates that

X0(T ) ≤ c · (1 + T )D0 ≤ cD0,

2Mφψ and m2φ can easily be estimated as lower-order terms in the right-hand sides of
the equations.
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where c is an absolute constant and we have assumed, as we may, that T ≤ 1.
We show that the cases n−2 and n−1 of (3.13) imply the case n. Proposition
1 applied to equation (3.9) gives:

sup
0≤t≤T

‖ψ(n)(t)‖L2 ≤ C(T )
[
‖g‖H−1/4 +

∫ T

0
‖Dψ(n−1)(t)‖H−1/4dt

]
(3.15a)

×
[
‖f‖H1/4 + ‖h‖H−3/4 +

∫ T

0

∥∥�φ(n−1)(t)
∥∥H−3/4 dt

]
. (3.15b)

The generalized energy estimate applied to equation (3.10) gives:

sup
0≤t≤T

[∥∥φ(n)(t)
∥∥

Hr +
∥∥φ

(n)
t (t)

∥∥
Hr−1

]

≤ C(T )
[
‖f‖Hr + ‖h‖Hr−1 +

∫ T

0

∥∥∥�φ(n)(t)
∥∥∥

Hr−1
dt

]
. (3.16)

We estimate the integral terms in the right-hand sides of the last two in-
equalities. To estimate the integral term in (3.15a) we use the following
fractional ‘Leibnitz’ rule3:

‖uv‖H−1/4(R) ≤ c ‖u‖H1/4(R) ‖v‖L2(R)

and the inductional hypothesis to see that for each t ∈ [0, T ] we have∥∥∥Dψ(n−1)(t)
∥∥∥

H−1/4
=

∥∥∥φ(n−2)(t)ψ(n−2)(t)
∥∥∥

H−1/4

≤ c
∥∥∥φ(n−2)(t)

∥∥∥
H1/4

∥∥∥ψ(n−2)(t)
∥∥∥

L2

≤ c
∥∥∥φ(n−2)(t)

∥∥∥
Hr

∥∥∥ψ(n−2)(t)
∥∥∥

L2
(since r ≥ 1/4)

≤ c Xn−2(T )2 ≤ c M2,

therefore, ∫ T

0

∥∥∥Dψ(n−1)(t)
∥∥∥

H−1/4
dt ≤ cTM2. (3.17)

3‖uv‖H−1/4 ≤ C ‖uv‖L4/3 ≤ C ‖u‖L4 ‖v‖L2 ≤ C ‖u‖H1/4 ‖v‖L2 . See [6] for more on

fractional Leibnitz rules.
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Using the estimate4 ‖uv‖Hr−1 ≤ C ‖u‖L2 ‖v‖L2 and the inductional hypoth-
esis we see that for each t ∈ [0, T ], we have∥∥∥�φ(n)(t)

∥∥∥
Hr−1

=
∥∥∥ψ(n−1)(t)ψ(n−1)(t)

∥∥∥
Hr−1

≤ C
∥∥∥ψ(n−1)(t)

∥∥∥2

L2

≤ CXn−1(T )2 ≤ CM2,

therefore, ∫ T

0

∥∥∥�φ(n)(t)
∥∥∥

Hr−1
dt ≤ CTM2. (3.18)

Using (3.17) and (3.18) into (3.15) and (3.16) we obtain

Xn(T ) ≤ C(T )
[
D0 + TM2

]2 + C(T )
[
D0 + TM2

]
.

Since we are assuming that T ≤ 1 we can bound all the constants C(T ) by
an absolute constant and obtain

Xn(T ) ≤ c(2D2
0 + 2TM4) + c(D0 + TM2)

≤ c′(D2
0 + D0) + c′′T (M3 + M)M,

where the lower case c’s are absolute constants. Take M = 2c′(D2
0 +D0) and

assume that T is small enough so that c′′T (M3+M) ≤ 1
2 . Then Xn(T ) ≤ M

and (3.13) is proved. The proof of (3.14) is similar and local existence then
follows by standard arguments.

Next we show that the solution exists globally in time. It suffices to show
that if the solution exists in [0, T ∗) where T ∗ < ∞, then

sup
0≤t<T ∗

[‖ψ(t)‖L2 + ‖φ(t)‖Hr + ‖φt(t)‖Hr−1 ] < ∞. (3.19)

Indeed, by conservation of charge, ‖ψ(t)‖L2 remains bounded. On the other
hand, using the energy estimate, and working as above we have

sup
0≤t<T ∗

[‖φ(t)‖Hr + ‖φt(t)‖Hr−1 ] ≤ C(T ∗)
[
D0 +

∫ T ∗

0

∥∥ψψ(t)
∥∥

Hr−1 dt
]

≤ C(T ∗)
[
D0 +

∫ T ∗

0
‖ψ(t)‖2

L2 dt
]
≤ C(T ∗, D0).

4

‖uv‖2
Hr−1 �

∫ ∣∣∫ û(η)v̂(ξ − η)dη
∣∣2

(1 + |ξ|)2(1−r)
dξ ≤

∫ (∫
|û(η)|2dη

) (∫
|v̂(ξ − η)|2dη

)
(1 + |ξ|)2(1−r)

dξ

≤ ‖û‖2
L2 ‖v̂‖2

L2

∫
1

(1 + |ξ|)2(1−r)
dξ ≤ C ‖u‖2

L2 ‖v‖2
L2 (since r < 1/2)
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This completes the proof of global existence. Uniqueness follows from similar
estimates. �
Remarks. 1) We have insisted on taking ψ(t, ·) ∈ L2 so that global existence
can be derived. If one is only interested in the lowest possible exponents r
and s for which the Cauchy problem (1.1) is locally (in time) well posed in
the spaces ψ(t) ∈ Hs and φ(t) ∈ Hr then the critical values are s = −1,
r = −1/2. Fang [7] has shown local well posedness with s = −1/4 + ε ,
r = 1/2 + ε.

2) Theorems 1 and 2 leave open the case ψ(t) ∈ L2, φ(t) ∈ H1/2.
3) The results of this paper consist of part of [10].
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