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Abstract. This paper is devoted to a study of the unique continuation
property for stochastic parabolic equations. Due to the adapted nature
of solutions in the stochastic situation, classical approaches to treat the
unique continuation problem for deterministic equations do not work.
Our method is based on a suitable partial Holmgren coordinate trans-
form and a stochastic version of Carleman estimate.

1. Introduction and main result

Let T > 0, G ⊂ Rn (n ∈ N) be a given bounded domain with a C2

boundary ∂G, and G0 6= G be a given subdomain of G. Put Q
4
= (0, T ) ×

G and Q0
4
= (0, T ) × G0. Throughout this paper, we assume that aij ∈

C1,2([0, T ]×G) satisfy aij = aji (i, j = 1, 2, · · · , n) and for any open subset
G1 of G, there is a constant s0 = s0(G1) > 0 so that∑

i,j

aijξiξj ≥ s0|ξ|2, (1.1)

for all (t, x, ξ) ≡ (t, x, ξ1, · · · , ξn) ∈ (0, T )×G1×Rn. Here, we denote
∑n

i,j=1

simply by
∑

i,j .
Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space on which a

1 dimensional standard Brownian motion {w(t)}t≥0 is defined. Let H be a
Fréchet space. We denote by L2

F (0, T ;H) the Fréchet space consisting of all
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H-valued {Ft}t≥0-adapted processes X(·) such that E(|X(·)|2L2(0,T ;H)) <∞,
with the canonical quasi-norm; by L∞F (0, T ;H) the Fréchet space consist-
ing of all H-valued {Ft}t≥0-adapted bounded processes, with the canonical
quasi-norm; and by L2

F (Ω;C([0, T ];H)) the Fréchet space consisting of all
H-valued {Ft}t≥0-adapted continuous processes X(·) such that

E(|X(·)|2C([0,T ];H)) <∞,
with the canonical quasi-norm.

Let us consider the following stochastic parabolic equation:

Fz ≡ dz −
∑
i,j

(aijzi)jdt = [〈 a,∇z 〉+bz]dt+ czdw(t) in Q. (1.2)

Here, a, b and c are suitable coefficients. For simplicity, we use the notation
zi ≡ zi(x) = ∂z(x)/∂xi, where xi is the i-th coordinate of a generic point
x = (x1, · · · , xn) in Rn. In a similar manner, in the sequel we use the
notation ui, vi, etc., for the partial derivatives of u and v with respect to xi.
Also, we denote the scalar product in Rn by 〈 ·, · 〉.

We begin with the following notion:

Definition 1.1. We call z ∈ L2
F (Ω;C([0, T ];L2

loc(G))) ∩ L2
F (0, T ;H1

loc(G))
to be a solution of (1.2) if
i) For any nonempty open subset G′ of G,

z ∈ L2
F (Ω;C([0, T ];L2(G′))) ∩ L2

F (0, T ;H1(G′)); (1.3)

ii) For any t ∈ [0, T ] and any η ∈ H1
0 (G′), it holds∫

G′
z(t, x)η(x)dx−

∫
G′
z(0, x)η(x)dx (1.4)

=
∫ t

0

∫
G′

{
−
∑
i,j

aij(s, x)zi(s, x)ηj(x)

+ [〈 a(s, x),∇z(s, x) 〉+b(s, x)z(s, x)]η(x)
}
dxds

+
∫ t

0

∫
G′
c(s, x)z(s, x)η(x)dxdw(s), P − a.s.

The main result of this paper is stated as follows:

Theorem 1.1. Let a ∈ L∞F (0, T ;L∞loc(G; Rn)), b ∈ L∞F (0, T ;L∞loc(G)), and
c ∈ L∞F (0, T ; W 1,∞

loc (G)). Then, any solution z ∈ L2
F (Ω;C([0, T ];L2

loc(G)))
⋂

L2
F (0, T ;H1

loc(G)) of (1.2) vanishes identically in Q×Ω, a.s. dP provided that
z = 0 in Q0 × Ω, a.s. dP .
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The above result is a unique continuation theorem for stochastic para-
bolic equations. There are numerous references on the unique continuation
for deterministic parabolic equations (see, for example, [3, 6, 7, 10] and so
on). However, to the author’s best acknowledge, nothing is known for its
stochastic counterpart.

There are two classical tools in the study of the unique continuation for de-
terministic partial differential equations. One is Holmgren-type uniqueness
theorem, another is Carleman estimate. Note however, that the solution of a
stochastic equation is generally non-analytic in time even if the coefficients of
the equation are constants. Therefore, one cannot expect a Holmgren-type
uniqueness theorem for the unique continuation for stochastic equations ex-
cept some very special cases. On the other hand, the usual approach to
employ Carleman estimate for the unique continuation needs to localize the
problem. The difficulty of our present stochastic problem consists in the fact
that one cannot simply localize the problem as usual because the classical
localization technique may change the adaptedness of solutions, which is a
key feature in the stochastic setting. In our equation (1.2), for the space
variable x, we may proceed as in the classical argument. However, for the
time variable t, due to the adaptedness requirement, we will have to treat
it in a deliberate way. For this purpose, we shall introduce a suitable “par-
tial Holmgren coordinate transform” and deduce a key stochastic version of
Carleman estimate (see Theorem 2.1 in the next section).

It is well-known that, unique continuation is an important problem not
only in partial differential equations itself, but also in some application prob-
lems such as controllability ([11]), inverse problems ([4]), optimal control ([5])
and so on. Numerous studies on unique continuation for deterministic par-
tial differential equations can be found in [2, 12] and the rich references cited
therein. It would be quite interesting to extend the deterministic unique con-
tinuation theorems to the stochastic ones, but there are many things which
remain to be done, and some of which seem to be challenging. In this paper,
in order to present the key idea in the simplest way, we do not pursue the
full technical generality.

The rest of this paper is organized as follows. In Section 2, as a key
preliminary, we show a Carleman estimate for stochastic parabolic operators.
Section 3 is devoted to the proof of Theorem 1.1.

2. Carleman estimate for stochastic parabolic operators

For any nonnegative and nonzero function ψ ∈ C3(G) , any k ≥ 2 , and
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any (large) parameters λ > 1 and µ > 1, put

` = λα, α(t, x) =
eµψ(x) − e2µ|ψ|C(G)

tk(T − t)k
, ϕ(t, x) =

eµψ(x)

tk(T − t)k
. (2.1)

In the sequel, we will use C to denote a generic positive constant depending
only on T , G, G0 and (aij)n×n, which may change from line to line. Also,
for r ∈ N, we denote by O(µr) a function of order µr for large µ (which is
independent of λ); by Oµ(λr) a function of order λr for fixed µ and for large
λ. We recall the following known result.

Lemma 2.1. ([8, 9]) Let bij ∈ C1,2(Q) satisfying bij = bji. Assume that
either (bij)n×n or −(bij)n×n is a uniformly positive definite matrix, and s0(>
0) is its smallest eigenvalue. Let u be a C2(G)-valued semimartingale. Set

θ = e`, v = θu, Ψ = 2
∑
i,j

bij`ij . (2.2)

Then for any x ∈ G and ω ∈ Ω (a.s. dP ),

2
∫ T

0
θ
[
−
∑
i,j

(bijvi)j +Av
][
du−

∑
i,j

(bijui)jdt
]

+ 2
∫ T

0

∑
i,j

(bijvidv)j

(2.3)

+
∫ T

0

(
θ2
∑
i,j

bij`i(du)2
)
j

+ 2
∫ T

0

∑
i,j

[∑
i′,j′

(
2bijbi

′j′`i′vivj′ − bijbi
′j′`ivi′vj′

)
+ Ψbijviv − bij

(
A`i +

Ψi

2

)
v2
]
j
dt

≥ 2
∑
i,j

∫ T

0
cijvivjdt+

∫ T

0
Bv2dt+

∫ T

0

∣∣∣−∑
i,j

(bijvi)j +Av
∣∣∣2dt

−
∫ T

0
θ2
∑
i,j

bijduiduj −
∫ T

0
θ2
[
A−

∑
i,j

(
bij`i`j + (bij`i)j

)]
(du)2,

where

A
4
= −

∑
i,j

[
bij`i`j − (bij`i)j

]
−Ψ,

B
4
= 2
[
AΨ−

∑
i,j

(Abij`i)j
]
−At −

∑
i,j

(bijΨj)i − `2t ,



Unique continuation for stochastic parabolic equations 85

cij
4
=
∑
i′,j′

[
2bij

′
(bi
′j`i′)j′ − (bijbi

′j′`i′)j′
]
− bijt

2
+ Ψbij .

Moreover, for λ and µ large enough, it holds

A = −λ2µ2ϕ2
∑
i,j

bijψiψj + λϕO(µ2), (2.4)

B ≥ 2s20λ
3µ4ϕ3|∇ψ|4 + λ3ϕ3O(µ3) + λ2ϕ2O(µ4) + λϕO(µ4)

+ λ2ϕ2+2k−1
O(e4µ|ψ|C(G)) + λ2ϕ2+k−1

O(µ2) + λϕ1+k−1
O(µ2),∑

i,j

cijvivj ≥ [s20λµ
2ϕ|∇ψ|2 + λϕO(µ)]|∇v|2.

We now show a Carleman estimate for stochastic parabolic operators as
follows:

Theorem 2.1. Let bij ∈ C1,2(Q) satisfying bij = bji. Assume that either
(bij)n×n or −(bij)n×n is a uniformly positive definite matrix. Let ψ ∈ C3(G)
satisfy

min
x∈G
|∇ψ(x)| > 0. (2.5)

Then, there is some µ0 > 0 such that for all µ ≥ µ0, one can find two
constants C = C(µ) > 0 and λ1 = λ1(µ) so that for all

u ∈ L2
F (Ω;C([0, T ];L2(G))) ∩ L2

F (0, T ;H2
0 (G)),

f ∈ L2
F (0, T ;L2(G)) and g ∈ L2

F (0, T ;H1(G)) with

du−
∑
i,j

(bijui)jdt = fdt+ gdw(t), in Q, (2.6)

and all λ ≥ λ1, it holds

λ3µ4E
∫
Q
ϕ3θ2u2dxdt+ λµ2E

∫
Q
ϕθ2|∇u|2dxdt

≤ C
{

E
∫
Q
θ2f2dxdt+ E

∫
Q
θ2
∑
i,j

bijgigjdxdt

+ E
∫
Q
θ2
[
A−

∑
i,j

(
bij`i`j + (bij`i)j

)]
g2dxdt

}
,

(2.7)

where
A
4
= −

∑
i,j

(bij`i`j − bijj `i + bij`ij). (2.8)
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Remark 2.1. Similar to the above Theorem 2.1, there is a Carleman es-
timate in [1, Theorem 3.1] which is however only for the special case that(
aij
)
1≤i,j≤n = I (the identity matrix), a ≡ 0 and b ∈ L∞F (0, T ; W 1,∞

loc (G)).
Note further that the weight function ψ used in this paper (which plays a key
role in the sequel) is quite different from that in [1]. It seems that the Car-
leman estimate in [1] can not be applied to prove our main result, Theorem
2.1. Indeed, the weight function ψ in [1, Theorem 3.1] is supposed to vanish
on the boundary of G, and therefore it does not satisfy the indispensable
monotonicity condition used later in our proof.

Proof of Theorem 2.1. Recalling that k ≥ 2 and (2.1), we get

|λ2ϕ2O(µ4) + λϕO(µ4) + λ2ϕ2+2k−1
O(e4µ|ψ|C(G))

+ λ2ϕ2+k−1
O(µ2) + λϕ1+k−1

O(µ2)| ≤ ϕ3Oµ(λ2).
(2.9)

Integrating (2.3) (in Lemma 2.1) on G, taking mean value in both sides, and
noting (2.4) (in Lemma 2.1) and (2.9), recalling that u, and hence v, belongs
to L2

F (0, T ;H2
0 (G)), we conclude that there is a constant c0 > 0 such that

2E
∫
Q
θ
[
−
∑
i,j

(bijvi)j +Av
][
du−

∑
i,j

(bijui)jdt
]
dx

≥ 2c0E
∫
Q

[λµ2ϕ|∇ψ|2 + λϕO(µ)]|∇v|2dtdx

+ 2c0E
∫
Q

[
λ3µ4ϕ3|∇ψ|4 + λ3ϕ3O(µ3) + ϕ3Oµ(λ2)

]
v2dtdx

+ E
∫
Q

∣∣∣−∑
i,j

(bijvi)j +Av
∣∣∣2dtdx− E

∫
Q
θ2
∑
i,j

bijduidujdx

− E
∫
Q
θ2
[
A−

∑
i,j

(
bij`i`j + (bij`i)j

)]
(du)2dx.

(2.10)

By (2.6), we have

2E
∫
Q
θ
[
−
∑
i,j

(bijvi)j +Av
][
du−

∑
i,j

(bijui)jdt
]
dx

= 2E
∫
Q
θ
[
−
∑
i,j

(bijvi)j +Av
]
[fdt+ gdw(t)]dx
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= 2E
∫
Q
θ
[
−
∑
i,j

(bijvi)j +Av
]
fdtdx

≤ E
∫
Q

∣∣∣−∑
i,j

(bijvi)j +Av
∣∣∣2dtdx+ E

∫
Q
θ2f2dtdx,

(2.11)

and

E
∫
Q
θ2
∑
i,j

bijduidujdx+ E
∫
Q
θ2
[
A−

∑
i,j

(
bij`i`j + (bij`i)j

)]
(du)2dx

= E
∫
Q
θ2
∑
i,j

bijgigjdxdt + E
∫
Q
θ2
[
A−

∑
i,j

(
bij`i`j + (bij`i)j

)]
g2dxdt.

(2.12)
Combining (2.10)–(2.12), we arrive at

2c0E
∫
Q
ϕ[λµ2|∇ψ|2 + λO(µ)]|∇v|2dtdx

+ 2c0E
∫
Q
ϕ3
[
λ3µ4|∇ψ|4 + λ3O(µ3) +Oµ(λ2)

]
v2dtdx

≤ E
∫
Q
θ2f2dxdt+ E

∫
Q
θ2
∑
i,j

bijgigjdxdt

+ E
∫
Q
θ2
[
A−

∑
i,j

(
bij`i`j + (bij`i)j

)]
g2dxdt.

(2.13)

Finally, combining (2.13) and (2.5), and returning v to u, we obtain the
desired estimate (2.7). �

3. Proof of Theorem 1.1

The proof is divided into several steps.
Step 1. First of all, for any given subdomain G0 in G, any neighborhood O
of G0 can be covered by a finite number of the images of the following open
subset of Rn

G′ =
{

(w1, · · · , wn) ∈ Rn : 0 < wn < 1−
n−1∑
i=1

w2
i

}
under diffeomorphisms xj = xj(w1, · · · , wn) (1 ≤ j ≤ n) of class C2(G′) so
that the image of ∂G′∩{wn = 0} is contained in ∂G0. Such diffeomorphisms
change the coefficients of the parabolic operator F in (1.2), but do not change
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its parabolicity and the adaptedness of solutions. Therefore, it suffices to
consider G = G′. Note also that those diffeomorphisms do not change the
time variable. Hence, to simplify the notations and noting that the original z
vanishes in (0, T )×G0×Ω, we may assume the resulting parabolic equation
in (0, T )×G′ × Ω reads

Fz ≡ dz −
∑
i,j

(aijzi)jdt = [〈 a,∇z 〉+bz]dt+ czdw(t),

in (0, T )×G′ × Ω,
supp z ⊂ (0, T )×

{
(x′, xn) : xn ≥ 0

}
× Ω,

where x′ = (x1, · · · , xn−1) and x = (x′, xn).
Next, we introduce a “partial Holmgren coordinate transform” F : G′ →

Rn as follows:
x̃′ = x′, x̃n = |x′|2 + xn. (3.1)

It is easy to see that

F (G′) =
{

(x̃′, x̃n) : |x̃′|2 < x̃n < 1
}
.

Again, the coordinate transform F does not change the parabolicity of F
and the adaptedness of solutions. Hence, to simplify the notations, we may
assume the resulting parabolic equation to be the following:

Fz ≡ dz −
∑
i,j

(aijzi)jdt = [〈 a,∇z 〉+bz]dt+ czdw(t),

in (0, T )× U × Ω,
supp z ⊂ (0, T )×

{
(x′, xn) : xn ≥ |x′|2

}
× Ω,

(3.2)

where U =
{

(x′, xn) : |x′|2 < xn < 1
}

. It suffices to show that

z ≡ 0, in (0, T )× U × Ω. (3.3)

Finally, fix any r0 and r1 such that 0 < r0 < r1 < 1, we choose a function
ρ ∈ C∞[0, 1] so that 0 ≤ ρ(xn) ≤ 1 for xn ∈ [0, 1], ρ(xn) ≡ 1 for 0 ≤ xn ≤ r0
and ρ(xn) ≡ 0 for r1 ≤ xn ≤ 1. Put

u = u(t, x′, xn)
4
= ρ(xn)z(t, x′, xn), (t, x) ∈ (0, T )× U × Ω. (3.4)

Then, by the first equation in (3.2), we have

du−
∑
i,j

(aijui)jdt = d(ρz)−
∑
i,j

(
aij(ρz)i

)
j
dt (3.5)
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= ρFz −
∑
i,j

[
(aijρiz)j + aijρjzi

]
dt

=
{
ρ(〈 a,∇z 〉+bz)−

∑
i,j

[
(aijρiz)j + aijρjzi

]}
dt+ ρczdw(t),

in (0, T )× U × Ω; while, by the second equation in (3.2), one has

u = 0, on (0, T )× ∂U × Ω. (3.6)

Step 2. The above transforms do not change the adaptedness of z, and
hence that of u. We now apply Theorem 2.1 to u given by (3.4), Q replaced
by (0, T )× U , and

ψ = ψ(x) = 1− xn, x ∈ U. (3.7)

Recalling aij ∈ C1,2([0, T ] × G) satisfying aij = aji (i, j = 1, 2, · · · , n) and
the uniformly elliptic condition in (1.1), by (2.7) in Theorem 2.1, and noting
(3.5), we conclude that there is a constant C > 0 such that for any sufficiently
large λ and µ, it holds

λ3µ4E
∫ T

0

∫
U
ϕ3θ2u2dxdt+ λµ2E

∫ T

0

∫
U
ϕθ2|∇u|2dxdt

≤ C
[
E
∫ T

0

∫
U
θ2
{
ρ(〈 a,∇z 〉+bz)−

∑
i,j

[
(aijρiz)j + aijρjzi

]}2
dxdt

+ E
∫ T

0

∫
U
θ2
∑
i,j

aij(ρcz)i(ρcz)jdxdt

+ E
∫ T

0

∫
U
θ2
[
A−

∑
i,j

(
bij`i`j + (bij`i)j

)]
(ρcz)2dxdt

]
,

(3.8)

where A = −
∑

i,j(a
ij`i`j − aijj `i + aij`ij).

By the first estimate in (2.4) and noting our assumptions on a, b and c,
we get

E
∫ T

0

∫
U
θ2
{
ρ(〈 a,∇z 〉+bz)−

∑
i,j

[
(aijρiz)j + aijρjzi

]}2
dxdt (3.9)

+ E
∫ T

0

∫
U
θ2
∑
i,j

aij(ρcz)i(ρcz)jdxdt
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+ E
∫ T

0

∫
U
θ2
[
A−

∑
i,j

(
bij`i`j + (bij`i)j

)]
(ρcz)2dxdt

≤ CE
∫ T

0

∫
U
θ2(λ2µ2ϕ2z2 + |∇z|2)dxdt.

On the other hand, by (3.4), one finds

λµ2E
∫ T

0

∫
U
ϕθ2|∇u|2dxdt+ λ3µ4E

∫ T

0

∫
U
ϕ3θ2u2dxdt

≥ E
∫ T

0

∫
U∩{0<xn<r0}

θ2
[
λµ2ϕ|∇z|2 + λ3µ4ϕ3z2

]
dxdt.

(3.10)

Hence, combining (3.8)–(3.10), and choosing λ and µ large enough, we arrive
at

E
∫ T

0

∫
U∩{0<xn<r0}

θ2
[
λµ2ϕ|∇z|2 + λ3µ4ϕ3z2

]
dxdt

≤ CE
∫ T

0

∫
U∩{r0<xn<1}

θ2(λ2µ2ϕ2z2 + |∇z|2)dxdt.
(3.11)

Step 3. From now on, we fix µ. Also, we fix any κ1 ∈ (0, r0). Noting the
definition of ψ in (3.7) implies that θ = θ(t, xn) is decreasing with respect
to xn, from (3.11), we deduce that

λ3µ4E
∫ T

0

∫
U∩{0<xn<κ1}

|θ(t, κ1)|2ϕ3z2dxdt

≤ E
∫ T

0

∫
U∩{0<xn<κ1}

|θ(t, κ1)|2
[
λµ2ϕ|∇z|2 + λ3µ4ϕ3z2

]
dxdt

≤ E
∫ T

0

∫
U∩{0<xn<κ1}

θ2
[
λµ2ϕ|∇z|2 + λ3µ4ϕ3z2

]
dxdt

≤ E
∫ T

0

∫
U∩{0<xn<r0}

θ2
[
λµ2ϕ|∇z|2 + λ3µ4ϕ3z2

]
dxdt

≤ CE
∫ T

0

∫
U∩{r0<xn<1}

θ2(λ2µ2ϕ2z2 + |∇z|2)dxdt

≤ CE
∫ T

0

∫
U∩{r0<xn<1}

|θ(t, r0)|2(λ2µ2ϕ2z2 + |∇z|2)dxdt,
(3.12)

for a constant C > 0, independent of λ.



Unique continuation for stochastic parabolic equations 91

Further, fix any κ2 ∈ (0, 1). Noting that θ = θ(t, xn) is increasing (resp.
decreasing) with respect to t in [0, T/2] (resp. (T/2, 1]), we deduce that

E
∫ T

0

∫
U∩{0<xn<κ1}

|θ(t, κ1)|2ϕ3z2dxdt

≥ E
∫ (1+κ2)T/2

(1−κ2)T/2

∫
U∩{0<xn<κ1}

|θ(t, κ1)|2ϕ3z2dxdt

≥ |θ((1− κ2)T/2, κ1)|2E
∫ (1+κ2)T/2

(1−κ2)T/2

∫
U∩{0<xn<κ1}

ϕ3z2dxdt,

(3.13)

and

E
∫ T

0

∫
U∩{r0<xn<1}

|θ(t, r0)|2(λ2µ2ϕ2z2 + |∇z|2)dxdt

≤ |θ(T/2, r0)|2E
∫ T

0

∫
U∩{r0<xn<1}

(λ2µ2ϕ2z2 + |∇z|2)dxdt.
(3.14)

Combining (3.12)–(3.14), we end up with

λ3µ4|θ((1− κ2)T/2, κ1)|2E
∫ (1+κ2)T/2

(1−κ2)T/2

∫
U∩{0<xn<κ1}

ϕ3z2dxdt

≤ C|θ(T/2, r0)|2E
∫ T

0

∫
U∩{r0<xn<1}

(λ2µ2ϕ2z2 + |∇z|2)dxdt.

(3.15)

By (2.2), (2.1) and (3.7), we find

|θ((1− κ2)T/2, κ1)|2 = exp
{2λ[e(1−κ1)µ − e2µ]4k

(1− κ2
2)kT 2k

}
,

|θ(T/2, r0)|2 = exp
{2λ[e(1−r0)µ − e2µ]4k

T 2k

}
.

(3.16)

We now choose κ2 to be

κ2 =

√√√√1− k

√
e2µ − e(1−κ1)µ

e2µ − e(1−r0)µ
. (3.17)

Since κ1 ∈ (0, r0), one sees that κ2 ∈ (0, 1). Moreover, by (3.17), we have

e(1−κ1)µ − e2µ

(1− κ2
2)k

= e(1−r0)µ − e2µ. (3.18)
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Combining (3.16) and (3.18), it follows that

|θ((1− κ2)T/2, κ1)|2 = |θ(T/2, r0)|2. (3.19)

Now, by (3.15) and noting (3.19), we conclude that

λ3µ4E
∫ (1+κ2)T/2

(1−κ2)T/2

∫
U∩{0<xn<κ1}

ϕ3z2dxdt

≤ CE
∫ T

0

∫
U∩{r0<xn<1}

(λ2µ2ϕ2z2 + |∇z|2)dxdt.

(3.20)

Letting λ→ +∞ in (3.20), we conclude that

z ≡ 0, in
(
(1− κ2)T/2, (1 + κ2)T/2

)
× (U ∩ {0 < xn < κ1})× Ω.

Hence,
z(T/2, ·) ≡ 0, in (U ∩ {0 < xn < κ1})× Ω.

Since r0 (resp. κ1) can be chosen as close to 1 (resp. r0) as one likes, one
concludes that

z(T/2, ·) ≡ 0, in U × Ω.
Replace T by any given t0 ∈ (0, T ). Then, the above argument yields
z(t0/2, ·) ≡ 0 in U × Ω. Hence,

z ≡ 0, in (0, T/2]× U × Ω.

Applying this argument to z(·+ T/2, ·), it follows that

z ≡ 0, in (T/2, 3T/4]× U × Ω.

Repeating the above procedure, we arrive at the desired inequality (3.3).
This completes the proof of Theorem 1.1. �
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