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Abstract. In some previous work [1]-[3], the authors have considered
the diffusion of a population in a multilayered habitat, taking into ac-
count both the demographic structure, due to the age distribution of the
individuals, and the spatial distribution related to population spread and
diffusion. The development of the mathematical framework for this kind
of problems leads the attention to a linear problem which incorporates
all the features that make these kinds of problems unusual. This model
is represented by a system of PDEs with discontinuous coefficients and
data and sources at the boundaries between layers with different struc-
ture. In this paper we provide well posedness to such a problem together
with regularity conditions, using m-accretiveness and fixed-points tech-
niques.

1. Introduction

The modelling of age-structured populations, spreading in a geographi-
cal region, leads to the analysis of non-linear P.D.E.s with non-local terms
that are strictly related to hereditary effects such as those represented in
the framework of integral equations of Volterra type. In particular, in some
previous work [1]-[3], the authors have considered the diffusion of a popu-
lation in a multilayered habitat, taking into account both the demographic
structure, due to the age distribution of the individuals, and the spatial
distribution related to population spread and diffusion.

Accepted for publication: May 2008.
AMS Subject Classifications: 35K90, 35M10, 35R05, 92D25.

917



918 Mimmo Iannelli and Gabriela Marinoschi

However, the same problems studied in [1]-[3] lead to the consideration
of several technical problems mainly focused on well posedness of a certain
linear system which incorporates all the features that make these kinds of
problems unusual. Namely, the hyperbolic character with respect to the age
variable (denoted by a ∈ [0, a+]) interacts with the parabolic features due
to the spatial one (denoted by y ∈ [0, L]). The model is represented by
a system of PDEs with discontinuous coefficients and data and sources at
the boundaries between layers with different structure. Thus, in the present
paper we provide a systematic approach to the problem, stating some basic
results in a framework that allows us to treat various problems in population
dynamics such as the control problems approached in [3].

The same results may be of interest for other modelling problems with
hyperbolic-parabolic behaviour and discontinuous coefficients and data.

We consider the domain Ω = (0, a+) × (y0, yn) composed of n parallel
layers

Ωj = (0, a+)× (yj−1, yj), j = 1, 2, ...n,

and denote

Γyj = {(a, yj) : a ∈ (0, a+)}, j = 0, ..., n,

where Γyj with j = 0 and j = n are the exterior boundaries, while Γyj with
j = 1, . . . , n−1 represent the interior ones. The time t runs within the finite
interval (0, T ).

The model we are going to analyze reads

∂qj
∂t

+
∂qj
∂a
− ∂

∂y

(
Kj(a)

∂qj
∂y

)
+ Tj(t)qj = fj (1.1)

in (0, T )× Ωj , j = 1, ..., n

qj(0, a, y) = q0
j (a, y) in Ωj , j = 1, ..., n,

qj(t, 0, y) = Fj(t, y) in (0, T )× (yj−1, yj), j = 1, ..., n,

qj = qj+1 on (0, T )× Γyj , j = 1, ...n− 1,

Kj(a)
∂qj
∂y

= Kj+1(a)
∂qj+1

∂y
+ kj(t, a)

on (0, T )× Γyj , j = 1, ...n− 1,

−K1(a)
∂q1

∂y
= k0(t, a) on (0, T )× Γy0 ,

Kn(a)
∂qn
∂y

= kn(t, a) on (0, T )× Γyn ,
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assuming that

q0
j ∈ L2(Ωj), fj ∈ L2(0, T ;L2(Ωj)), Fj ∈ L2(0, T ;L2(yj−1, yj)),

Tj ∈ C([0, T ];L(L2(Ωj), L2(Ωj)), kj ∈ L2(0, T ;L2(0, a+)), (1.2)

Kj ∈ L∞(0, a+),Kj(a) ≥ K0 > 0 a.e. in (0, a+).

We introduce the generic notation defining the function Φ(t, a, y) in the set
(0, T )× Ω, by

Φ(t, a, y) = Φj(t, a, y), for y ∈ (yj−1, yj) (1.3)

where Φj stands for any function defined on (0, T )×Ωj (see also the notation
(25)-(32) from [1]). Conversely, if Φ is a function defined on (0, T ) × Ω, we
define Φj in (0, T )× Ωj by setting

Φj(t, a, y) = Φ(a, t, y), y ∈ (yj−1, yj). (1.4)

Then, denoting

HΩ = L2(Ω), H = L2(0, L), V = H1(0, L),

with the standard norms, and using assumptions (1.2) we have

q0 ∈ HΩ, f ∈ L2(0, T ;HΩ), F ∈ L2(0, T ;H),
k ∈ L2(0, T ;L2(0, a+)), K ∈ L∞(Ω).

(1.5)

Moreover, we may define the operator T (t) : HΩ → HΩ by setting

(T (t)θ)j = (Tj(t)θj),

where θ ∈ HΩ and we have used both (1.3) and (1.4). Then T (t) is contin-
uous on HΩ, for each t ∈ [0, T ], and we have that

‖T (t)θ‖HΩ
≤M ‖θ‖HΩ

,∀θ ∈ HΩ, M > 0. (1.6)

Concerning the previous problem we are led to adopt the following definition:
Definition 1.1. A weak solution to problem (1.1) is a function

q ∈ C([0, T ];HΩ) ∩ L2(0, T ;L2(0, a+;V )) ∩ C([0, a+];L2(0, T ;H)) (1.7)

satisfying

−
∫ T

0

∫
Ω
q
∂ψ

∂t
dydadt−

∫ T

0

〈∂ψ
∂a

(t), q(t)
〉
dt (1.8)

+
∫

Ω
q(T, a, y)ψ(T, a, y)dady +

∫ T

0

∫ L

0
q(t, a+, y)ψ(t, a+, y)dydt

−
∫

Ω
q0(a, y)ψ(0, a, y)dyda−

∫ T

0

∫ L

0
F (t, y)ψ(t, 0, y)dydt



920 Mimmo Iannelli and Gabriela Marinoschi

+
∫ T

0

∫
Ω

(
K(a, y)

∂q

∂y

∂ψ

∂y
+ (T (t)q(t)) (a, y)ψ(t, a, y)

)
dydadt

=
∫ T

0

∫
Ω
fψ dydadt+

∫ T

0

∫ a+

0

n∑
j=0

kj(t, a)ψ(t, a, yj)dadt,

for any function ψ such that

ψ ∈ L2(0, T ;L2(0, a+;V )) ∩W 1,2(0, T ;HΩ), ψa ∈ L2(0, T ;L2(0, a+;V ′)).
(1.9)

We specify that 〈·, ·〉 denotes the duality between L2(0, a+;V ) and L2(0,
a+;V ′) defined as

〈h, g〉 =
∫ a+

0
〈h(a), g(a)〉V ′,V da, ∀h ∈ L2(0, a+;V ′), g ∈ L2(0, a+;V ),

where 〈·, ·〉V ′,V is the pairing between V ′ and V .
The aim of this paper is to prove existence and uniqueness for (1.1). To

this end we will proceed by steps, considering different particular cases of
the full problem.

2. The basic problem

To approach our problem we first introduce the linear operator

B0 : D(B0) ⊂ L2(0, a+;V )→ L2(0, a+;V ′)

on the domain

D(B0) = {v ∈ L2(0, a+;V ) : va ∈ L2(0, a+;V ′), v(0, y) = 0}, (2.1)

where we note that the condition v(0, y) = 0 is meaningful because v ∈
D(B0) implies that v ∈ C([0, a+];H).

We define B0 by setting, for v ∈ D(B0),

〈(B0v)(a), ψ〉V ′,V = 〈va(a, ·), ψ〉V ′,V +
∫ L

0
K(a, y)vy(a, y)ψy(y)dy, (2.2)

for almost every a ∈ [0, a+] and any ψ ∈ V .
Then we define the operator B : D(B) ⊂ HΩ → HΩ, by

Bv = B0v,

on the domain D(B) = {v ∈ D(B0) : Bv ∈ HΩ}. We note that B is a
quasi m-accretive operator because it is the linear case of the operator A
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discussed in [1] and we specify that by the results in [2] (see Proposition 1
at page 894),

D(B) = HΩ. (2.3)

Then we may consider the Cauchy problem

q′(t) +Bq(t) = h(t), a.e. t ∈ (0, T ), q(0) = q0, (2.4)

which corresponds to the main problem (1.1) with

Tj(t) = 0, Fj = 0, kj = 0, for all j, f = h.

Actually this is a first step for which we have the following result
Theorem 2.1. Let q0 ∈ D(B), h ∈W 1,1(0, T ;HΩ). Then problem (2.4) has
a strong solution

q ∈ L∞(0, T ;D(B)) ∩W 1,∞(0, T ;HΩ) (2.5)

satisfying the estimate

‖q(t)‖2HΩ
+
∫ t

0

∥∥q(s, a+, ·)
∥∥2

H
ds+K0

∫ t

0
‖q(s)‖2L2(0,a+;V ) ds (2.6)

≤ e2K0T
(∥∥q0

∥∥2

HΩ
+

1
K0

∫ T

0
‖h(s)‖2L2(0,a+;V ′) ds

)
.

Proof. The existence of the solution satisfying (2.5) follows from the quasi
m-accretiveness of B. We note that, since q satisfies (2.5), then

q ∈ L2(0, T ;C([0, a+] : H)) ⊂ C([0, a+];L2(0, T ;H)). (2.7)

We note that (2.4) may be specified as

q′(t)(a) + (B0q(t))(a) = h(t)(a), q(0)(a) = q0(a),

for almost every a ∈ (0, a+) and t ∈ (0, T ). Since the solution q(t) ∈ V for
almost every t ∈ (0, T ) we can write the previous equation in the equivalent
form∫ a

0

∫ L

0
qt(t, σ, y)q(t, σ, y)dydσ +

∫ a

0
〈qσ(t, σ, ·), q(t, σ, ·)〉V ′,V dσ

+
∫ a

0

∫ L

0
K(σ, y)q2

y(t, σ, y)dydσ =
∫ a

0

∫ L

0
h(t, σ, y)q(t, σ, y)dydσ.

Then, recalling that∫ a

0
〈qσ(t, σ, ·), q(t, σ, ·)〉V ′,V dσ =

1
2

∫ a

0

d

dσ
‖q(t, σ, ·)‖2H dσ =

1
2
‖q(t, a, ·)‖2H ,
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we have the estimate

d

dt

∫ a

0
‖q(t, σ, ·)‖2H dσ + ‖q(t, a, ·)‖2H + 2K0

∫ a

0
‖q(t, σ, ·)‖2V dσ

≤ 2
∫ a

0
‖h(t, σ, ·)‖V ′ ‖q(t, σ, ·)‖V dσ + 2K0

∫ a

0
‖q(t, σ, ·)‖2H dσ

≤ 1
K0

∫ a

0
‖h(t, σ, ·)‖2V ′dσ +K0

∫ a

0
‖q(t, σ, ·)‖2V dσ + 2K0

∫ a

0
‖q(t, σ, ·)‖2Hdσ,

so that∫ a

0
‖q(t, σ, ·)‖2H dσ +

∫ t

0
‖q(s, a, ·)‖2H ds+K0

∫ t

0

∫ a

0
‖q(s, σ, ·)‖2V dσds

≤
∥∥q0
∥∥2

HΩ
+

1
K0

∫ t

0
‖h(s)‖2L2(0,a+;V ′) ds+ 2K0

∫ t

0
‖q(s)‖2HΩ

ds. (2.8)

From this inequality, taking a = a+, we first derive

‖q(t)‖2HΩ
≤
∥∥q0
∥∥2

HΩ
+

1
K0

∫ T

0
‖h(s)‖2L2(0,a+;V ′) ds+ 2K0

∫ t

0
‖q(s)‖2HΩ

ds,

and, by the Gronwall inequality, we have

‖q(t)‖2HΩ
≤ e2K0t

(∥∥q0
∥∥2

HΩ
+

1
K0

∫ T

0
‖h(s)‖2L2(0,a+;V ′) ds

)
.

Then, plugging it into (2.8), we get∫ a

0
‖q(t, σ, ·)‖2H dσ +

∫ t

0
‖q(s, a, ·)‖2H ds+K0

∫ t

0

∫ a

0
‖q(s, σ, ·)‖2V dσds

≤ e2K0T
(∥∥q0

∥∥2

HΩ
+

1
K0

∫ T

0
‖h(s)‖2L2(0,a+;V ′) ds

)
. (2.9)

As a consequence (setting again a = a+) we have (2.6). �

We note that in the previous theorem we have proved the estimate (2.6) in
which we consider the term h(t) as belonging to the space L2(0, a+;V ′) while
in the original problem (1.1) the source term f(t) belongs to HΩ. In fact
problem (2.4) occurs in the intermediate cases (see Proposition 3.2 below)
that we are going to consider with a source term h(t) ∈ L2(0, a+;V ′) though
the final issue concerns only the space HΩ.
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3. Intermediate reduced problems

We first discuss a particular reduced problem; namely we start considering
vanishing boundary conditions both with respect to a and y, by taking

Fj ≡ 0, kj ≡ 0, for all j. (3.1)

We shall denote by C some constants depending on the problem parameters
(K0, T, M). Using the previous result, we have the following.
Proposition 3.1. Let the assumptions (1.2) be satisfied in the particular
case (3.1). Then problem (1.1) has a unique weak solution

q ∈ C([0, T ] : HΩ) ∩ L2(0, T ;L2(0, a+;V )) ∩ C([0, a+];L2(0, T ;H)), (3.2)

satisfying

‖q(t)‖2HΩ
+
∫ t

0

∥∥q(s, a+, ·)
∥∥2

H
ds+K0

∫ t

0
‖q(s)‖2L2(0,a+;V ) ds (3.3)

≤ C1

(∥∥q0
∥∥2

HΩ
+
∫ T

0
‖f(s)‖2L2(0,a+,V ′) ds

)
,

where

C1 = C0e
C0M2T , C0 = 2e2K0T max

{
1,

1
K0

}
. (3.4)

If, in addition, we assume that

q0 ∈ D(B), f ∈ C1([0, T ];HΩ), T ∈ C1([0, T ];L(HΩ, HΩ)), (3.5)

then
q ∈ C1([0, T ];HΩ) ∩ C([0, T ];D(B)) (3.6)

and

‖q(t)‖2HΩ
+
∥∥q′(t)∥∥2

HΩ
+K0

∫ t

0
‖q(s)‖2L2(0,a+;V ) ds+

∫ t

0

∥∥q(s, a+, ·)
∥∥2

H
ds

≤ C
(∥∥q0

∥∥2

HΩ
+
∥∥Bq0 + f(0)

∥∥2

HΩ
(3.7)

+
∫ T

0

[
‖f(s)‖2L2(0,a+;V ′) +

∥∥f ′(s)∥∥2

L2(0,a+;V ′)

]
ds
)
,

where C is another constant which depends on the parameters of the problem.
Proof. We shall use an approximating procedure and a fixed point argu-
ment. We fix η ∈ C([0, T ];HΩ), and consider the problem

q′(t) +Bq(t) = f(t)− T (t)η(t) a.e. t ∈ (0, T ), q(0) = q0. (3.8)
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Then, we take the sequences

{q0
m}m≥1 ⊂ D(B), {hm}m≥1 ⊂W 1,1(0, T ;HΩ),

such that
q0
m → q0 in HΩ, as m→∞ (3.9)

and

hm(t)→ f(t)− T (t)η(t) in L2(0, T ;HΩ) as m→∞. (3.10)

Thus, according to Theorem 2.1, the Cauchy problem

q′m(t) +Bqm(t) = hm(t), a.e. t ∈ (0, T ), qm(0) = q0
m, (3.11)

provides a sequence of solutions

{qm}m≥1 ⊂ L∞(0, T ;D(B)) ∩W 1,∞(0, T ;HΩ)

satisfying the weak form of (2.4)

−
∫ T

0

∫
Ω
qm

∂ψ

∂t
dydadt−

∫ T

0

〈∂ψ
∂a

(t), qm(t)
〉
dt (3.12)

−
∫ a+

0

∫ L

0
q0
m(a, y)ψ(0, a, y)dyda

+
∫

Ω
qm(T, a, y)ψ(T, a, y)dyda+

∫ T

0

∫ L

0
qm(t, a+, y)ψ(t, a+, y)dydt

+
∫ T

0

∫
Ω

(
K(a, y)

∂qm
∂y

∂ψ

∂y

)
dydadt =

∫ T

0

∫
Ω
hmψ dydadt

for any function ψ satisfying (1.9). Moreover, qm satisfies (2.6) and since
the problem is linear we have

‖ql(t)− qm(t)‖2HΩ
+
∫ t

0

∥∥ql(s, a+, ·)− qm(s, a+, ·)
∥∥2

H
ds (3.13)

+K0

∫ t

0
‖ql(s)− qm(s)‖2L2(0,a+;V ) ds

≤ e2K0T
(∥∥q0

l − q0
m

∥∥2

HΩ
+

1
K0

∫ T

0
‖hl(s)− hm(s)‖2L2(0,a+;V ′) ds

)
.

This latter estimate implies that the sequence {qm}m≥1 is a Cauchy sequence
in the spaces C([0, T ] : HΩ)∩L2(0, T ;L2(0, a+, V ))∩C([0, a+] : L2(0, T ;H))
and we can conclude that qm → q in these spaces. Then, passing to the limit
in (3.12), we get (1.8) which shows that q(t) is a solution to (3.8).
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Moreover, thanks to (2.8), written for a = a+, we also get that q(t) satisfies

‖q(t)‖2HΩ
+K0

∫ t

0
‖q(s)‖2L2(0,a+;V ) ds+

∫ t

0

∥∥q(s, a+, ·)
∥∥2

H
ds (3.14)

≤ C0

(∥∥q0
∥∥2

HΩ
+
∫ T

0
‖f(s)‖2L2(0,a+;V ′) ds+

∫ T

0
‖T (s)η(s)‖2HΩ

ds
)

≤ C0

(∥∥q0
∥∥2

HΩ
+
∫ T

0
‖f(s)‖2L2(0,a+;V ′) ds+M2

∫ t

0
‖η(s)‖2HΩ

ds
)
,

where C0 = 2e2K0T max
{

1, 1
K0

}
. Now if q(t) and q(t) are solutions respec-

tively corresponding to η(t) and η(t), but with the same q0 and f(t), we
have also

‖q(t)− q(t)‖2HΩ
≤ C0M

2

∫ t

0
‖η(s)− η(s)‖2HΩ

ds. (3.15)

Then, the mapping Γ : C([0, T ];HΩ)→ C([0, T ];HΩ), defined by setting

Γ(η)(t) = q(t), ∀η ∈ C([0, T ];HΩ)

where q(t) is the solution to (3.8), is a contraction in the norm

‖q‖b = sup
t∈[0,T ]

(
e−δt ‖q(t)‖HΩ

)
,

(which is a norm equivalent to the usual norm on C([0, T ];HΩ)), with δ
suitably chosen. Indeed, from (3.15), multiplying by e−2δt, we get

‖q − q‖2b ≤
C0M

2

2δ
‖η − η‖2b

and, taking 2δ > C0M
2, we see that Γ is a contraction. We conclude that the

fixed point of Γ actually belongs to C([0, T ];HΩ) ∩ L2(0, T ;L2(0, a+;V )) ∩
C([0, a+];L2(0, T ;H)) and it is the unique weak solution to (1.1).

Therefore we can set η = q in (3.14) and applying the Gronwall lemma
we obtain (3.3) as claimed.

If we assume also (3.5) we may use a similar argument to get regularity.
In fact, if we fix η ∈ C1([0, T ];HΩ), we have

h(t) = f(t)− T (t)η(t) ∈ C1([0, T ];HΩ)

and consequently the Cauchy problem

q′(t) +Bq(t) = h(t), q(0) = q0
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has a solution q ∈ C1([0, T ];HΩ)∩C([0, T ];D(B)). Moreover, z(t) = q′(t) is
a mild solution of

z′(t)+Bz(t) = f ′(t)−T ′(t)η(t)−T (t)η′(t), z(0) = −Bq0+f(0)−T (0)η(0),

and satisfies the estimate

‖q(t)‖2HΩ
+
∥∥q′(t)∥∥2

HΩ

≤ C
(
‖q0‖2HΩ

+ ‖z(0)‖2HΩ
+
∫ t

0

[
‖h(s)‖2HΩ

+
∥∥h′(s)∥∥2

HΩ

]
ds
)
,

where C is again a suitable constant depending on K0, T , M and M1. Here,
M1 arises in ∥∥T ′(t)v∥∥

HΩ
≤M1 ‖v‖HΩ

, ∀v ∈ HΩ.

All this allows us to use the previous argument to prove existence of a fixed
point η in C1([0, T ];HΩ). �

The next step is concerned with non-trivial boundary conditions in the
space variable. In fact we consider problem (1.1)-(1.2) when it is assumed
that

F ≡ 0, (3.16)
but with boundary sources kj 6= 0. In this case we have the following.
Proposition 3.2. Let the assumptions (1.2) be satisfied in the particular
case (3.16). Then problem (1.1) has a unique weak solution

q ∈ C([0, T ];HΩ) ∩ L2(0, T ;L2(0, a+;V )) ∩ C([0, a+];L2(0, T ;H)), (3.17)

satisfying

‖q(t)‖2HΩ
+K0

∫ t

0
‖q(s)‖2L2(0,a+;V ) ds+

∫ t

0

∥∥q(s, a+, ·)
∥∥2

H
ds (3.18)

≤ C2

(∥∥q0
∥∥2

HΩ
+
∫ T

0
‖f(t)‖V ′ +

n∑
j=0

∫ T

0
‖kj(s)‖2L2(0,a+) ds

)
,

where C2 is a new constant depending only on K0,M, T, n and the domain Ω.
Proof. We start defining L0 ∈ L2(0, T ;L2(0, a+;V ′)) by setting

〈L0(t), v〉 =
n∑
j=0

∫ a+

0
kj(t, a)v(a, yj)da, (3.19)

for any v ∈ L2(0, a+;V ). We see that L0 is well defined in this way, because

‖L0(t)‖L2(0,a+;V ′) = sup
{
|〈L0(t), v〉| : ‖v‖L2(0,a+;V ) ≤ 1

}
(3.20)
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≤ Ctr

n∑
j=0

‖kj(t)‖L2(0,a+) ,

where Ctr is the constant occurring in the trace theorem. Here we have used
the estimate∣∣∣ ∫ a+

0
kj(s, a)v(a, yj)da

∣∣∣ ≤ ‖kj(s)‖L2(0,a+)

(∫ a+

0
v2(a, yj)da

)1/2
(3.21)

≤ Ctr ‖kj(s)‖L2(0,a+) ‖v‖L2(0,a+;V ) ,

holding for v ∈ L2(0, a+;V ).
Then we consider a sequence {Lm0 }m≥1 ⊂W 1,1(0, T ;HΩ), such that

lim
m→∞

Lm0 = L0, in L2(0, T ;L2(0, a+;V ′)), (3.22)

so that, for any v ∈ L2(0, T ;L2(0, a+;V )), we have

lim
m→∞

∫ T

0

∫
Ω
Lm0 (t)v(t)dydadt = lim

m→∞

∫ T

0
〈Lm0 (t), v(t)〉 dt

=
∫ T

0
〈L0(t), v(t)〉 dt =

n∑
j=0

∫ T

0

∫ a+

0
kj(t, a)v(t, a, yj)dadt.

Let now qm be the solution of the weak problem

−
∫ T

0

∫
Ω
qm

∂ψ

∂t
dydadt−

∫ T

0

〈∂ψ
∂a

(t), qm(t)
〉
dt (3.23)

−
∫ a+

0

∫ L

0
q0(a, y)ψ(0, a, y)dyda

+
∫

Ω
qm(T, a, y)dyda+

∫ a+

0

∫ L

0
qm(t, a+, y)dyda

+
∫ T

0

∫
Ω

(
K(a, y)

∂qm

∂y

∂ψ

∂y
+ T (t)qm(t, a, y)ψ(t, a, y)

)
dydadt

=
∫ T

0

∫
Ω
Lm0 ψ dydadt+

∫ T

0

∫
Ω
fψ dydadt,

for any function ψ satisfying (1.9). We know by the previous Proposition
3.1 that this solution exists and satisfies∥∥∥qm(t)− ql(t)

∥∥∥2

HΩ

+K0

∫ t

0

∥∥∥qm(s)− ql(s)
∥∥∥2

L2(0,a+;V )
ds
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+
∫ t

0

∥∥∥qm(s, a+, ·)− ql(s, a+, ·)
∥∥∥2

H
ds

≤ C1

∫ T

0

∥∥∥Lm0 (s)− Ll0(s)
∥∥∥2

L2(0,a+;V ′)
ds.

Thus, {qm} is a Cauchy sequence in

C([0, T ];HΩ) ∩ L2(0, T ;L2(0, a+;V )) ∩ C([0, a+];L2(0, T ;H))

and converges to a q which, going to the limit in (3.23), turns out to be a
weak solution to (1.1), with F = 0.

Finally, (3.18) is a simple consequence of (3.20), (3.3) with

C2 = 2C1 max(1, nC2
tr). � (3.24)

From the previous proof we also draw the following result:
Corollary 3.3. Under the assumption of Proposition 3.2, suppose in addi-
tion that q0∈D(B), T ∈C1([0, T ];L(HΩ, HΩ)), L0∈C1([0, T ];L2(0, a+;V ′)),
f ∈ C1([0, T ];HΩ). Then the solution to (1.1) satisfies q ∈ C1([0, T ];HΩ) ∩
C([0, T ];D(B)) and

‖q(t)‖2HΩ
+
∥∥q′(t)∥∥2

HΩ
+K0

∫ t

0
‖q(s)‖2L2(0,a+;V ) ds+

∫ t

0

∥∥q(s, a+, ·)
∥∥2

H
ds

≤ C
(∥∥q0

∥∥2

HΩ
+
∥∥Bq0 + f(0)

∥∥2

HΩ
+ ‖L0(0)‖2L2(0,a+;V ′)

+
∫ T

0
‖f(s)‖2HΩ

ds+
∫ T

0
‖L0(s)‖2L2(0,a+;V ′) ds

+
∫ T

0

∥∥f ′(s)∥∥2

HΩ
ds+

∫ T

0

∥∥(L0)′(s)
∥∥2

L2(0,a+;V ′)
ds
)
. (3.25)

Proof. As in the proof of Proposition 3.2 we approximate L0(t) by a se-
quence {Lm0 }m≥1 ⊂ C1([0, T ];HΩ) such that

Lm0 → L0 in C1([0, T ];L2(0, a+;V ′)).

Accordingly, we have the approximating problem

q′m(t) +Bqm(t) + T (t)qm(t) = f(t) + Lm0 (t), qm(0) = q0,

which, by the regularity result in Proposition 3.1, has a unique solution

qm ∈ C1([0, T ];HΩ) ∩ C([0, T ];D(B).

Moreover, this solution satisfies (3.7) with f replaced by f + Lm0 and

‖qm(t)‖2HΩ
+ ‖q′m(t)‖2HΩ

+K0

∫ t

0
‖qm(s)‖2L2(0,a+;V )ds+

∫ t

0
‖qm(s, a+, ·)‖2Hds
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≤ C
(∥∥q0

∥∥2

HΩ
+
∥∥Bq0 + f(0)

∥∥2

HΩ
+ ‖Lm0 (0)‖2L2(0,a+;V ′)

+
∫ T

0
‖f(s)‖2HΩ

ds+
∫ T

0
‖Lm0 (s)‖2L2(0,a+;V ′) ds

+
∫ T

0

∥∥f ′(s)∥∥2

HΩ
ds+

∫ T

0

∥∥(Lm0 )′(s)
∥∥2

L2(0,a+;V ′)
ds
)
. (3.26)

Considering two solutions qm and ql, with the same data, we have

‖qm(t)− ql(t)‖2HΩ
+ ‖q′m(t)− q′l(t)‖2HΩ

+K0

∫ t

0
‖qm(s)− ql(t)‖2L2(0,a+;V )ds

+
∫ t

0

∥∥qm(s, a+, ·)− ql(s, a+, ·)
∥∥2

H
ds

≤ C
(∥∥∥Lm0 (0)− Ll0(0)

∥∥∥2

L2(0,a+;V ′)
+
∫ T

0

∥∥∥Lm0 (t)− Ll0(t)
∥∥∥2

L2(0,a+;V ′)
ds

+
∫ T

0

∥∥∥(Lm0 )′(s)− (Ll0)′(s)
∥∥∥2

L2(0,a+;V ′)
ds
)
. (3.27)

Hence, using (3.22) we deduce that qm is a Cauchy sequence in

C1([0, T ];HΩ) ∩ L2(0, T ;L2(0, a+;V )) ∩ C([0, a+];L2(0, T ;H))

and converges to q in these spaces. Finally, passing to the limit in (3.26),
we obtain (3.25). �

4. The complete problem

Next we are concerned with the last step which covers the general case.
We have the following.
Theorem 4.1. Let the assumptions (1.2) be satisfied. Then problem (1.1)
has a unique weak solution

q ∈ C([0, T ];HΩ) ∩ C([0, a+];L2(0, T ;H)) ∩ L2(0, T ;L2(0, a+;V )) (4.1)

such that

‖q(t)‖2HΩ
+
∫ t

0

∥∥q(s, a+, ·)
∥∥2

H
ds+K0

∫ t

0
‖q(s)‖2L2(0,a+;V ) ds (4.2)

≤ C2

(∥∥q0
∥∥2

HΩ
+
∫ T

0
‖f(s)‖2HΩ

ds

+ ‖F‖2L2(0,T ;H) +
n∑
j=0

∫ T

0
‖k(s)‖2L2(0,a+) ds

)
,
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for any t ∈ [0, T ].
Proof. We consider an approximation of this problem by approximating q0,
f, k, F and T (t) by the sequences

q0m ∈ D(B), fm ∈ C1([0, T ];HΩ), km ∈ C1([0, T ];L2(0, a+)), (4.3)

Fm ∈ C2([0, T ]× [0, L]) such that Fm(0, y) = 0 for y ∈ [0, L],

T m(t) ∈ C1([0, T ];L(L2(Ω), L2(Ω)),

such that

q0m → q0 in HΩ, fm → f in L2(0, T ;L2(Ω)), (4.4)

km → k in L2(0, T ;L2(0, a+)), Fm → F in L2(0, T ;L2(0, L)),

T m(t)→ T (t) in C([0, T ];L(L2(Ω), L2(Ω)).

Then, we focus on the approximated problem
∂qmj
∂t

+
∂qmj
∂a
− ∂

∂y

(
Kj(a)

∂qmj
∂y

)
+ Tmj (t)qmj = fmj (4.5)

in (0, T )× Ωj , j = 1, . . . , n,

qmj (0, a, y) = q0m
j in Ωj , j = 1, . . . , n,

qmj (t, 0, y) = Fmj (t, y) in (0, T )× (yj−1, yj), j = 1, . . . , n,

qmj = qmj+1 on (0, T )× Γyj , j = 1, . . . , n− 1,

Kj(a)
∂qmj
∂y

= Kj+1(a)
∂qmj+1

∂y
+ kmj on (0, T )× Γyj , j = 1, . . . , n− 1,

−K1(a)
∂qm1
∂y

= km0 on (0, T )× Γy0 ,

Kn(a)
∂qmn
∂y

= kmn on (0, T )× Γyn .

We note that we can transform this problem by performing the change

wm = qm − Fm,
getting the following system for wm :

∂wmj
∂t

+
∂wmj
∂a
− ∂

∂y

(
Kj(a)

∂wmj
∂y

)
+ Tmj (t)wmj = f̃mj (4.6)

in (0, T )× Ωj , j = 1, . . . , n,

wmj (0, a, y) = w0m
j in Ωj , j = 1, . . . , n,

wmj (t, 0, y) = 0 in (0, T )× (yj−1, yj), j = 1, . . . , n,
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wmj = wmj+1 on (0, T )× Γyj , j = 1, . . . , n− 1,

Kj(a)
∂wmj
∂y

= Kj+1(a)
∂wmj+1

∂y
+ k̃mj (t, a)

on (0, T )× Γyj , j = 1, . . . , n− 1,

−K1(a)
∂wm1
∂y

= k̃m0 (t, a) on (0, T )× Γy0 ,

Kn(a)
∂wmn
∂y

= k̃mn (t, a) on (0, T )× Γyn ,

where

w0m
j (a, y) = q0m

j (a, y)

k̃m0 (t, a) = K1(a)
∂Fm1
∂y

(t, 0) + km0 (t, a)

k̃mn (t, a) = Kn(a)
∂Fmn
∂y

(t, L) + kmn (t, a) (4.7)

k̃mj (t, a) = Kj+1(a)
∂Fmj+1

∂y
(t, yj)−Kj(a)

∂Fmj
∂y

(t, yj) + kmj (t, a)

f̃m(t, a, y) = fm(t, a, y) +
∂

∂y

(
K(a, y)

∂Fm

∂y
(t, y)

)
− (T m(t)Fm(t, ·)) (a, y)− ∂Fm

∂t
(t, y).

Hence, Corollary 3.3 provides the existence of a strong solution to (4.6)

wm ∈ C1([0, T ];HΩ) ∩ C([0, T ];D(B)),

which satisfies

−
∫ T

0

∫
Ω
wm

∂ψ

∂t
dydadt−

∫ T

0

〈∂ψ
∂a

(t), wm(t)
〉
dt (4.8)

+
∫

Ω
wm(T, a, y)ψ(T, a, y)dyda+

∫ T

0

∫ L

0
wm(t, a+y)ψ(t, a+, y)dydt

−
∫

Ω
w0m(a, y)ψ(0, a, y)dyda

+
∫ T

0

∫
Ω

(
K(a, y)

∂wm

∂y

∂ψ

∂y
+ (T (t)wm(t)) (a, y)ψ(t, a, y)

)
dydadt

=
∫ T

0

∫
Ω
f̃mψdydadt+

n∑
j=0

∫ T

0

∫ a+

0
k̃mj (t, a)ψ(t, a, y)dadt,
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for any ψ satisfying (1.9). Consequently, replacing

qm = wm + Fm (4.9)

it follows that qm satisfies the weak form of (4.5)

−
∫ T

0

∫
Ω
qm

∂ψ

∂t
dydadt−

∫ T

0

〈∂ψ
∂a

(t), qm(t)
〉
dt (4.10)

+
∫

Ω
qm(T, a, y)ψ(T, a, y)dyda+

∫ T

0

∫ L

0
qm(t, a+y)ψ(t, a+, y)dydt

−
∫

Ω
q0m(a, y)ψ(0, a, y)dyda−

∫ T

0

∫ L

0
Fm(t, y)ψ(t, 0, y)dydt

+
∫ T

0

∫
Ω

(
K(a, y)

∂qm

∂y

∂ψ

∂y
+ (T (t)qm(t)) (a, y)ψ(t, a, y)

)
dydadt

=
∫ T

0

∫
Ω
fmψdydadt+

n∑
j=0

∫ T

0

∫ a+

0
kmj (t, a)ψ(t, a, y)dadt,

for any ψ satisfying (1.9). Moreover, we have that

qm ∈ C1([0, T ];HΩ) ∩ L2(0, T ;L2(0, a+;V )) ∩ C([0, a+];L2(0, T ;H)),

qma ∈ L2(0, T ;L2(0, a+;V ′)). (4.11)

Thus, qm is regular enough so that we can replace ψ = qm in (4.10) to obtain

‖qm(t)‖2HΩ
+
∫ t

0

∥∥qm(s, a+, ·)
∥∥2

H
ds+K0

∫ t

0
‖qm(s)‖2L2(0,a+;V ) ds (4.12)

≤ C2

(∥∥q0
∥∥2

HΩ
+
∫ T

0
‖fm(s)‖2HΩ

ds

+ ‖Fm‖2L2(0,T ;H) +
n∑
j=0

∫ T

0
‖km(s)‖2L2(0,a+) ds

)
,

for any t ∈ [0, T ].
Now, since the system is linear, the estimate (4.12) can be written for the

difference of two solutions as∥∥∥qm(t)− qm′
(t)
∥∥∥2

HΩ

+
∫ t

0

∥∥∥qm(s, a+, ·)− qm′
(s, a+, ·)

∥∥∥2

H
ds (4.13)

+
∫ t

0

∥∥∥qm(s)− qm′
(s)
∥∥∥2

L2(0,a+;V )
ds
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≤ C2

(∫ T

0

∥∥∥fm(s)− fm′
(s)
∥∥∥2

HΩ

ds+
∥∥∥Fm − Fm′

∥∥∥2

L2(0,T ;H)

+
n∑
j=0

∫ T

0

∥∥∥km(s)− km′
(s)
∥∥∥2

L2(0,a+)
ds
)
,

for any t ∈ [0, T ].
Since we have (4.4), the sequence (qm)m≥1 is Cauchy in

C([0, T ];HΩ) ∩ C([0, a+];L2(0, T ;H)) ∩ L2(0, T ;L2(0, a+;V ))

and its limit q exists in these spaces and satisfies (1.8), obtained from (4.10)
by passing to the limit as m→∞.

Finally (4.2) follows from (4.12) by passing to the limit as m→∞.
Concerning the uniqueness of the solution we obtain it writing for example

(4.2) for the difference of two solutions q(t) and q̄(t) corresponding to the
same data. �

Corollary 4.2. In Theorem 4.1, if, in addition,

q0 ∈ D(B), f ∈ C1([0, T ];HΩ), F ∈ C1([0, T ];L2(0, L)),
k ∈ C1([0, T ];L2(0, a+)), T ∈ C1([0, T ];L(L2(Ω), L2(Ω)))

(4.14)

then
q ∈ C1([0, T ];HΩ) ∩ L2(0, T ;L2(0, a+;V )) ∩ C([0, a+];L2(0, T ;H)),
qa ∈ L2(0, T ;L2(0, a+;V ′)).

and

‖q(t)‖2HΩ
+
∥∥q′(t)∥∥2

HΩ
+
∫ t

0

∥∥q(s, a+, ·)
∥∥2

H
ds+K0

∫ t

0
‖q(s)‖2L2(0,a+;V ) ds

≤ C
(∥∥q0

∥∥2

HΩ
+
∥∥Bq0 + f(0)

∥∥2

HΩ
+ ‖L0(0)‖2L2(0,a+;V ′)

+
∫ T

0
‖f(s)‖2HΩ

ds+
∫ T

0

∥∥f ′(s)∥∥2

HΩ
ds+

∫ T

0
‖F (s)‖2H ds+

∫ T

0

∥∥F ′(s)∥∥2

H
ds

+
n∑
j=0

∫ T

0
‖k(s)‖2L2(0,a+) ds+

n∑
j=0

∫ T

0

∥∥k′(s)∥∥2

L2(0,a+)
ds
)
, (4.15)

with C a constant depending on the problem parameters.
Proof. We resume the proof of Theorem 4.1 and due to the hypotheses we
proceed as in Corollary 3.3. �

Corollary 4.3. In (1.1) let us assume (1.5) with

f(t, a, y) ≥ 0 a.e. (t, a, y) ∈ (0, T )× Ω, (4.16)
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q0(a, y) ≥ 0 a.e. (a, y) ∈ Ω,
F (t, y) ≥ 0 a.e. (t, y) ∈ (0, T )× (0, L)

and let us consider that T (t) ≡ 0 for any t ∈ [0, T ] and k(t, a) ≡ 0 a.e.
(t, a) ∈ (0, T )× (0, a+).

Then the weak solution to (1.1) is non-negative; i.e.,

q(t, a, y) ≥ 0 for any t ∈ [0, T ], a.e. (a, y) ∈ Ω. (4.17)

Proof. Under (1.5) problem (1.1) has a unique weak solution satisfying
(1.8). We shall resume the proof of Theorem 4.1, with non-negative q0m,
fm, Fm, in view of (4.16). We recall in fact that the system (4.5), where
T (t) = 0, k(t, a) = 0, has a strong solution qm regular enough (see (4.11).

Therefore, we can multiply (4.5) by (qm)− and integrate with respect to
a ∈ (0, a+), y ∈ (0, L) and t. We get∥∥(qm)−(t)

∥∥2

HΩ
+
∫ t

0

∥∥(qm)−(s, a+, ·)
∥∥2

H
ds+ 2K0

∫ t

0

∥∥(qm)−y (s)
∥∥2

L2(0,a+;H)
ds

≤
∥∥(q0m)−

∥∥2

HΩ
+
∫ t

0

∥∥(qm)−(s, 0, ·)
∥∥2

H
ds (4.18)

− 2
∫ t

0

∫
Ω
fm(s, a, y)(qm)−(s, a, y)dydads.

Using (4.16), we obtain ‖(qm)−(t)‖2HΩ
= 0 for any t ∈ [0, T ], whence we

deduce that qm(t, a, y) ≥ 0 for any t ∈ [0, T ], for almost every (a, y) ∈ Ω.
Finally, we recall that qm is strongly convergent to q in C([0, T ];HΩ) and

the limit preserves non-negativeness. �
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second author was supported in part by projects CEEX-05-D11-36/2005,
PNII IDEI ID 404, financed by the Romanian Ministry of Education and
Research, and by the INDAM (Istituto Nazionale di Alta Matematica, Italy)

References

[1] C. Cusulin, M. Iannelli, and G. Marinoschi, Age-structured diffusion in a multi-layer
environment, Nonlinear Analysis Real World Applications, 6 (2005), 207–233.

[2] C. Cusulin, M. Iannelli, and G. Marinoschi, Convergence in a multi-layer population
model with age-structure, Nonlinear Analysis Real World Applications, 8 (2007), 887–
902.

[3] M. Iannelli and G. Marinoschi, Harvesting control for an age-structured population in
a multi-layered habitat, submitted.


