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PERIODIC HOMOGENIZATION OF THE INVISCID G-EQUATION

FOR INCOMPRESSIBLE FLOWS∗

JACK XIN† AND YIFENG YU‡

Abstract. G-equations are popular front propagation models in combustion literature and
describe the front motion law of normal velocity equal to a constant plus the normal projection of fluid
velocity. G-equations are Hamilton-Jacobi equations with convex but non-coercive Hamiltonians. We
prove homogenization of the inviscid G-equation for space periodic incompressible flows. This extends
a two space dimensional result in [26]. We construct approximate correctors to bypass the lack of
compactness due to the non-coercive Hamiltonian. The existence of approximate correctors rely on
a local reachability property of the controlled flow trajectory as well as incompressibility of the flow.
Homogenization then follows from the comparison principle and the perturbed test function method.
The effective Hamiltonian is convex and homogeneous of degree one. It is also coercive if we further
assume that the flow is mean zero.
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1. Introduction

Front or interface propagation in fluid flows is a robust nonlinear phenomenon
arising in liquid phase chemical reaction, and premixed flame propagation in fluid
turbulence [13, 33, 32] among other applications. Mathematical models range from
reaction-diffusion-advection equations to advective Hamilton-Jacobi equations (HJ),
[10, 14, 17, 28, 39, 40, 41]. A particular HJ equation, the so called G-equation, is quite
popular in the combustion science literature [27, 36, 42, 16]. The inviscid G-equation
is

Gt + V (x) ·DxG = sl|DxG|, (1.1)

where G is a scalar function (the level set function of the interface), x ∈ R
n, V (x) :

R
n → R

n is a prescribed flow velocity field, sl is a positive constant (laminar front
speed), and Dx is the spatial gradient operator. For simplicity, we only consider time
independent flows in this paper. The G-equation (1.1) is the level set equation of the
interface motion law: the exterior normal velocity of the interface equals the laminar
speed sl plus the projection of the fluid velocity along the normal; see [30, Chapter
6] and [31].

A fundamental problem in turbulent combustion is to study the large time front
speed, or the asymptotic growth rate limt→+∞ G(x, t)/t, and analyze its dependence
on the advection field V . Such a limit (if it exists) is called the turbulent front speed,
[32, 41]. The large time front speed may be captured by first performing a scaling
transform Gǫ(x, t) = ǫG(x/ǫ, t/ǫ), then taking the limit ǫ → 0. The transformed
equation is:

Gǫ
t + V (x/ǫ) ·DxG

ǫ = sl|DxG
ǫ|, (1.2)

∗Received: December 15, 2009; accepted: March 14, 2010. Communicated by Weinan E.
†Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA

(jack.xin@uci.edu).
‡Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA

(yifengy@uci.edu).

1067



1068 PERIODIC HOMOGENIZATION OF INVISCID G-EQUATION

which is the homogenization problem of Hamilton-Jacobi equation. Here ǫ → 0 plays
the role of t → +∞. Homogenization of Hamilton-Jacobi (HJ) equation

uǫt +H
(x

ǫ
,Dxu

ǫ
)

= 0, (1.3)

when the Hamiltonian H = H(x, p) is a 1-periodic function in x (so called periodic
homogenization) was originated in [24] in the 1980’s, and further developed [18, 19]
to include viscous HJs and fully nonlinear equations. Besides periodicity of H in x,
the Hamiltonian is required to be coercive [24, 18, 19]:

|H(x, p)| → +∞, as |p| → +∞, uniformly in x. (1.4)

Recently, much progress has been made in extending homogenization to stationary
ergodic media for convex and coercive inviscid and viscous HJs [37, 34, 35, 25, 22, 23,
38].

The Hamiltonian of the G-equation is H(x, p) = −sl|P |+ V (x) · P , which is not
coercive if V has large enough amplitude as in a strong advection regime. In this paper,
we are concerned with homogenization of the inviscid G-equation (1.2) for periodic
incompressible flow V (i.e., div(V )=∇ · V = 0). The key step is to find approximate
correctors since exact correctors may not exist in case of the non-coercive Hamiltonian.
We first use the incompressibility to derive the existence of one-sided approximate
correctors. Then the other side follows from suitable reachability properties of the
flow under control. When n = 2, a simple argument shows that any point can reach
the region where |V | is small through a controlled flow within finite time [26]. This
however is no longer true in higher dimensions. Instead, we discover that a local
reachability is sufficient. We establish it first, then apply it to the existence of an
effective Hamiltonian by a covering argument. The convergence of time dependent
solutions follows by the comparison principle [9, 21] and the perturbed test function
method [19]. We further show that the effective Hamiltonian in incompressible flow
is convex, homogeneous of degree one and coercive (if the mean of V is also zero).
Though homogenization of non-coercive HJs have been studied before [5, 7, 11], the
results do not apply to the G-equation (1.1). Likewise, a property called “uniform
exact controllability” (any two points in space can be connected by a controlled flow
trajectory within finite time) and its implication for homogenization are investigated
before [2, 4, 6]. However such a controllability is difficult to verify for the G-equation
(1.1). The local reachability defined in this paper is much weaker and holds for any
continuous flow.

The homogenization of the viscous G-equation (including κ∆G on the right hand
side of (1.1), κ > 0) was studied recently [26]. In this case, the cell (corrector) problem
has exact classical solutions. Qualitatively, the viscous Hamiltonian is the same as
the inviscid effective Hamiltonian. However, they are very different quantitatively.
An interesting question is how the effective Hamiltonian depends on viscosity κ and
the flow patterns in various asymptotic regimes. A comparison study was carried out
recently [29] in terms of bounds and scaling behavior of the effective Hamiltonians for
shear flow, gradient flow, and cellular flow.

The paper is organized as follows. In section 2, we define and establish the local
reachability property of the controlled flow trajectories, then use this to prove the
existence of approximate correctors as well as qualitative properties of the effective
Hamiltonians. In section 3, we prove the convergence of homogenization limit for time
dependent solutions of the inviscid G-equation (1.1). In section 4, we conclude with
remarks on future work.
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After this work was completed, we learned that, by a different approach, Nolen,
Cardaliaguet, and Souganidis [12] proved periodic homogenization of (1.2) when
∫

Tn |∇ · V |n dx is small (Tn the n-dimensional unit torus). Our main result extends
to V = V1 + V2, where div(V1) = 0, maxTn |V2| < sl.

2. Existence of approximate correctors

Let us set sl = 1 with no loss of generality, and consider a 1-periodic divergence
free Lipschitz continuous vector field V = V (x), u = −G. Then (1.2) becomes

uǫ,t + V
(x

ǫ

)

·Duǫ + |Duǫ| = 0. (2.1)

The formal two-scale homogenization ansatz,

uǫ(x, t) = u0(x, t) + ǫ u1

(

x, t,
x

ǫ

)

+ . . . , (2.2)

gives to leading order,

u0,t + V (y) · (Dxu0 +Dy u1) + |Dxu0 +Dy u1| = 0. (2.3)

The standard cell (corrector) problem is: given any vector P ∈ R
n, find a unique

number H̄(P ) such that the equation

|P +Dy u|+ (P +Dy u) · V (y) = H̄(P ), y ∈ T
n (2.4)

has a periodic solution u = u(y) on T
n. If the cell problem is solvable, u0 then

formally satisfies the homogenized Hamilton-Jacobi equation:

u0,t + H̄(Dxu0) = 0. (2.5)

However, exact solutions of cell problem may not exist due to the lack of coercivity
of the inviscid G-equation. This is manifested as lack of gradient estimate in (2.4)
where |Dyu| is not bounded a-priori if the amplitude of the flow V exceeds one, in
contrast to the case of coercive Hamilton-Jacobi equation (if |P + Dyu|1+η replaces
|P +Dyu|, η > 0).

We shall prove in this section that the cell problem has an approximate solution
by combined use of the local reachability property of the controlled flow trajectory
and the incompressibility. Let us begin with

Definition 2.1 (Controlled Flow Trajectory). A controlled flow trajectory as-
sociated to V is ξ ∈ W 1,∞([0, T ];Rn) such that for a.e. t ∈ (0, T ),

ξ̇(t) = α(t) + V (ξ(t)), (2.6)

where the control α(t) ∈ L∞([0, T ];B1(0)).

Definition 2.2 (Reachability). Suppose that E and F are two subsets of Rn.
We say that F can be fully reached by E within time T if for any x ∈ E and y ∈ F there
exists a controlled flow trajectory ξx,y : [0, T̂ ] → R

n such that ξx,y(0) = x, ξx,y(T̂ ) = y

and T̂ ≤ T .

Lemma 2.1 (Local Reachability). For any x ∈ R
n, there exists x′ ∈ R

n, a
positive number rx > 0 such that Brx(x

′) can be fully reached by Brx(x) within time
less than or equal to 1.
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Proof. Fix x ∈ R
n. Since V is continuous, choose r0 > 0 such that |V (y) −

V (x)| < 1
2 for y ∈ Br0(x). For y ∈ Br0(x) and ᾱ ∈ B 1

2
(0), we can design proper

control α(t) such that the corresponding controlled flow trajectory starting from y is
the straight line ξ(t) = y + t(ᾱ + V (x)) within Br0(x). In fact, writing the flow as
solution to the ODE

ξ̇ = ᾱ+ V (x) = ᾱ+ V (x)− V (ξ(t)) + V (ξ(t)),

which is in the form of (2.6) with control α(t) = ᾱ+ V (x)− V (ξ(t)), clearly |α| ≤ 1.
Now choose t0 ∈ (0, 1) such that

x′ = x+ t0V (x) ∈ B r0
2
(x), (2.7)

and rx > 0 satisfying

rx <
t0
4
. (2.8)

Now for y ∈ Brx(x) and y′ ∈ Brx(x
′), there exists ᾱ ∈ B 1

2
(0) such that

y′ = y + t0(ᾱ+ V (x)).

To see this, let

ᾱ =
y′ − y − t0V (x)

t0
.

Then by (2.7) and (2.8),

|ᾱ| ≤ |y − x|+ |y′ − x′|
t0

<
1

2
.

Hence Brx(x̂) can be fully reached by Brx(x) at time t0 < 1. See figure 1 for an
illustration of the controlled flow trajectories inside the ball Br0(x), where V (x) 6= 0.
Note that if x happens to be an equilibrium point of V (V (x) = 0), x′ = x.

Next we establish an inequality for a subsolution of the modified cell problem at
two points connected by a controlled flow trajectory.

Lemma 2.2. Suppose that u ∈ C(Tn) is a viscosity subsolution of

λu+ |P +Du|+ V (x) · (P +Du) = 0 in R
n.

Then for any controlled flow trajectory ξ : [0, T ] → R
n,

u(ξ(T ))− e−λTu(ξ(0)) ≤ −
∫ T

0

P · ξ̇eλ(s−T ) ds.

Proof. For δ > 0, consider the super involution

uδ(x) = sup
y∈Rn

(u(y)− 1

δ
|x− y|2) = sup

z∈Rn

(u(x+ z)− 1

δ
|z|2).
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Fig. 2.1. Sketch of controlled flow trajectories in the ball Br0 (x) where V (x) 6= 0, the outer

circle has radius equal to r0, and the inner circles have radii equal to rx. The controlled flow from

Brx (x) to Brx (x
′) is generic for V .

It is clear that uδ is periodic, semiconvex, and Lipschitz continuous. Since u is
bounded,

uδ(x) = sup
z∈B

C̃
√

δ
(0)

(u(x+ z)− 1

δ
|z|2),

where C̃ =
√

2maxTn |u|. Hence uδ is a viscosity subsolution of

λuδ + (1− Cu

√
δ)|P +Duδ|+ V (x) · (P +Duδ) ≤ o(1)

for some constant Cu which is independent of δ and limδ→0 o(1) = 0. Since the
Hamiltonian is convex in P , by mollifying uδ we may assume that uδ is C1. Suppose
that ξ̇(t) = α(t) + V (ξ(t)). Let ξδ : [0, T ] → R

n be the control satisfying that
{

ξ̇δ = (1− Cu

√
δ)α+ V (ξδ)

ξδ(0) = ξ(0).

Then for a.e. t

d(P ·ξδ+uδ(ξδ))
dt

= (P +Duδ(ξδ)) · ((1− Cu

√
δ)α(t) + V (ξδ(t)))

≤ (1− Cu

√
δ)|P +Duδ(ξδ)|+ V (ξδ)(P +Duδ(ξδ))

≤ −λuδ(ξδ) + o(1).
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So

d

dt
(eλtuδ(ξδ(t))) ≤ −eλtP · ξ̇δ(t) + o(1).

Therefore

uδ(ξδ(T ))− e−λTu(ξδ(0)) ≤ −
∫ T

0

P · ξ̇δeλ(s−T ) ds+ o(1).

Sending δ → 0, the above lemma holds.

The standard Perron’s method implies that for given λ > 0, there exists a unique
periodic viscosity solution uλ ∈ C(Tn) of

λuλ + |P +Duλ|+ V (x) · (P +Duλ) = 0 in R
n.

We refer to [15] for details. By the maximum principle,

|λuλ| ≤ |P |(1 + max
Tn

|V |).

Hereafter we assume that V is an incompressible vector field, i.e., ∇ · V = 0. The
following is the key lemma of this section.

Lemma 2.3. For any sequence λm → 0 as m → +∞, there exists a subsequence
λmk

→ 0 as k → +∞ such that

lim
k→+∞

λmk
uλmk

= c uniformly in R
n

for some constant c ∈ R.

Proof. Since T
n is compact, there exist finite points {xi}(l)i=1 such that

T
n ⊂ ∪(l)

i=1B rxi
2
(xi),

where rxi
is from Lemma 2.1 corresponding to xi.

Step I: Note that vm = λmuλm
is a viscosity solution of

λmvm + |λmP +Dvm|+ V (x) · (λmP +Dvm) = 0.

Let v̄ = lim supm→∞,y→x vm. Then v̄ is bounded, upper-semicontinuous and a vis-
cosity subsolution of

|Dv̄|+ V (x) ·Dv̄ ≤ 0 in R
n.

As in the proof of Lemma 2.2, we consider the super involution v̄δ of v̄. Then when
δ is small enough, v̄δ is a viscosity subsolution of

1

2
|Dv̄δ|+ V (x) ·Dv̄δ ≤ 0 in R

n.

Note that there is no error term o(1) at the right hand side since the above equation
does not involve the zeroth order term. Integrating over T2, we derive that

∫

T2

|Dv̄δ| dx = 0.
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Hence v̄δ(x) ≡ cδ for some constant cδ ∈ R. Upon a subsequence if necessary, we may
assume that limδ→0 cδ = c. Since limδ→0 v̄δ = v̄, we obtain that

v̄(x) ≡ c (2.9)

for some constant c ∈ R.

Step II: We claim that there exists a subsequence {λ(1)
m } of {λm} such that λ

(1)
m → 0

as m → +∞ and

lim
m→+∞

λ(1)
m u

λ
(1)
m

= c uniformly in B rx1
2
(x1).

In fact, let x′
1 be the reachable point from x1 as stated in Lemma 2.1. According to

(2.9), there exists zm → x′
1, λ

(1)
m → 0 as m → +∞ such that

lim
m→+∞

λ(1)
m u

λ
(1)
m
(zm) = c.

Fix y ∈ Brx1
(x1). By Lemma 2.1 for each m there exists a controlled flow trajectory

ξm : [0, Tm] → R
n such that ξm(0) = y, ξm(Tm) = zm, and Tm ≤ 1. Thanks to

Lemma 2.2,

u
λ
(1)
m
(zm)− e−λ(1)

m Tmu
λ
(1)
m
(y) ≤ −

∫ Tm

0
P · ξ̇meλ

(1)
m (s−Tm) ds.

≤ Tm|P |(1 + maxTn |V |)

≤ |P |(1 + maxTn |V |).

Accordingly, for w ∈ Brx1
(x1),

lim inf
m→+∞,y→w

λ(1)
m u

λ
(1)
m
(y) ≥ c = lim sup

m→+∞,y→w
λmuλm

(y) ≥ lim sup
m→+∞,y→w

λ(1)
m u

λ
(1)
m
(y).

Hence our claim holds.

Step III: Similar to the derivation of (2.9), lim supm→+∞,y→x λ
(1)
m u

λ
(1)
m
(y) ≡constant

in R
n. Combining with step II,

lim sup
m→+∞,y→x

λ(1)
m u

λ
(1)
m
(y) = c for all x ∈ R

n.

Then apply step II to the sequence {λ(1)
m }m≥1. We conclude that there exists a

subsequence {λ(2)
m }m≥1 of {λ(1)

m }m≥1 such that λ
(2)
m → 0 as m → +∞ and

lim
m→+∞

λ(2)
m u

λ
(2)
m

= c uniformly in B rx2
2
(x2).

The lemma follows after we repeat this procedure l times.

Lemma 2.4.

lim
λ→0

λuλ = −H̄(P ), uniformly in R
n,

where H̄(P ) is a constant. As a function of P , H̄(P ) is Lipschitz continuous, convex
and homogeneous of degree one. If

∫

Tn V dx = 0, then H̄(P ) is also coercive.
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Proof. By Lemma 2.3, we find a subsequence λm → 0 as m → +∞ such that

lim
m→+∞

λmuλm
= c uniformly in R

n

for some constant c. We show that

lim
λ→0

λuλ = c, uniformly in R
n.

If not, owing to Lemma 2.3, then there exists another subsequence λ
′

m → 0 as m →
+∞ such that

lim
m→+∞

λ
′

muλ
′
m
= c′ 6= c uniformly in R

n.

Without loss of generality, we assume that c′ > c. Choose c′ > t2 > t1 > c. Then
when m is sufficiently large, uλm

is a viscosity subsolution of

|P +Duλm
|+ V (x) · (P +Duλm

) ≥ −t1

and uλ
′
m

is a viscosity supersolution of

|P +Duλ
′
m
|+ V (x) · (P +Duλ

′
m
) ≤ −t2.

This is impossible if we consider the place where uλm
− uλ

′
m

attains minimum via a

double variable method [15]. Let us denote H̄(P ) = −c.
Next we prove that H̄(P ) is Lipschitz continuous. In fact, fix λ, and let uP and uQ

be unique periodic viscosity solutions of the following two equations respectively:

λuP + |P +DuP |+ V (x) · (P +DuP ) = 0

and

λuQ + |Q+DuQ|+ V (x) · (Q+DuQ) = 0.

Then it is clear that ũP = uP + |P−Q|(1+maxTn |V |)
λ

is a viscosity supersolution of

λũP + |Q+DũP |+ V (x) · (Q+DũP ) ≥ 0.

Hence the comparison principle implies that λuQ ≤ λuP + |P − Q|(1 + maxTn |V |).
Sending λ → 0, we obtain that

|H̄(P )− H̄(Q)| ≤ |P −Q|(1 + max
Tn

|V |).

Next we prove that H̄ is convex. Using super involution as in the proof of Lemma
2.2, it is not hard to prove that ũ =

uP+uQ

2 is a viscosity subsolution of

λũ+

∣

∣

∣

∣

P +Q

2
+Dũ

∣

∣

∣

∣

+ V (x) ·
(

P +Q

2
+Dũ

)

≤ 0.

Hence comparison principle implies that

λũ ≤ λuP+Q
2

.

Convexity follows after sending λ → 0.
Finally, it is clear that for s > 0, us = suλ is a viscosity solution of

λus + |sP +Dus|+ V (x) · (sP +Dus) = 0. (2.10)

Thus H̄(P ) is homogeneous of positive degree one.
Letting s = 1 in (2.10), integrating over T

n, applying Jensen’s inequality, and
sending λ → 0, one sees that H̄(P ) ≥ |P | if

∫

Tn V dx = 0 and thus it is coercive.
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3. Convergence and homogenization

Consider the homogenization problem of the inviscid G-equation:

uǫ,t + V
(x

ǫ

)

·Duǫ + |Duǫ| = 0,

uǫ(x, 0) = g(x), (3.1)

where V is periodic and Lipschitz continuous, g(x) is uniformly continuous and grows
at most linearly, and |g(x)| ≤ C1|x| + C2 for two constants C1 and C2. Such initial
data includes the affine function for initiating traveling fronts. For each ǫ > 0, there
exists a unique viscosity solution uǫ ∈ C(Rn × [0,+∞)) which grows at most linearly
in t and x. The existence and uniqueness of uǫ follow from Corollary 2.1 in [8]. The
existence part can also be deduced from the optimal control formulation [20, 29].
Hereafter, C denotes a constant which depends only on advection field V and the
initial data g. After we establish the existence of approximate correctors, the proof
of homogenization is standard. For the reader’s convenience, we present details here.

We first show a growth bound of uǫ uniformly in ǫ.
Lemma 3.1.

|uǫ(x, t)| ≤ C(|x|+ t+ 1). (3.2)

Proof. Let v(x, t) =
√

|x|2 + 1 + Ct. Choose C large enough such that

vt + V
(x

ǫ

)

·Dv + |Dv| > 0,

(−v)t + V
(x

ǫ

)

·D(−v) + |D(−v)| < 0

and

Cv(x, 0) = C
√

|x|2 + 1 ≥ |g(x)|.
Then the comparison principle (see Theorem 2.1 in [8]) implies that

|uǫ| ≤ C v(x, t).

The following is our main result.

Theorem 3.1. (Homogenization) Suppose that V = V (x) is a Lipschitz continuous
incompressible vector field (i.e., ∇ · V = 0). Then as ǫ → 0, uǫ locally uniformly
converges to u which grows at most linearly in (x, t) and is the unique viscosity solution
of

ut + H̄(Du) = 0,

u(x, 0) = g, (3.3)

where H̄ is the convex function on R
n given by Lemma 2.3.

In preparation for proving the above theorem, we first prove several lemmas.
Since g is uniformly continuous, for any τ > 0, there exists a δ > 0 such that

|g(x)− g(y)| ≤ τ if |x− y| ≤ δ.
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For x0 ∈ R
n, let wx0,δ ∈ C∞(Rn) be a nonnegative function satisfying

(i) wx0,δ(x) = 0, for |x− x0| ≤ δ
2 ,

(ii) wx0,δ(x) =
√

|x|2 + 1 for |x− x0| ≥ δ.

Then we have:

Lemma 3.2. For any x0 ∈ R
n, and ǫ ∈ (0, 1),

g(x0)− τ − Ĉwx0,δ(x)− Ĉt ≤ uǫ(x, t) ≤ g(x0) + τ + Ĉwx0,δ(x) + Ĉt,

where Ĉ is a constant depending on C1, C2, V , wx0,δ and x0.

Proof. We just prove the “≤”. The other part is similar. Denote

v(x, t) = g(x0) + τ + Ĉwx0,δ(x) + Ĉt.

It is clear that when Ĉ is sufficiently large

uǫ(x, 0) = g(x) ≤ v(x, 0)

and

vt + V (
x

ǫ
) ·Dv + |Dv| > 1.

Then the above lemma follows from Theorem 2.1 in [8].

The compactness of {uǫ}ǫ>0 is a delicate issue. It is hard to prove directly that
{uǫ}ǫ>0 is equicontinuous. Instead we utilize techniques in [9] and [21] to bypass the
lack of compactness. Let USC(Rn × [0,∞))(LSC(Rn × [0,∞))) denote the set of
upper(lower) semicontinuous functions on R

n × [0,+∞). Let

u∗(x, t) = lim sup
ǫ→0,y→x,s→t

uǫ(y, s)

and

u∗(x, t) = lim inf
ǫ→0,y→x,s→t

uǫ(y, s).

Clearly, u∗ ∈ USC(Rn × [0,+∞)) and u∗ ∈ LSC(Rn × [0,+∞)). According to
Lemma 3.2,

u∗(x, 0) = u∗(x, 0) = g(x).

According to Lemma 2.3, we can find approximate viscosity solution of the cell prob-
lem, i.e., for any τ > 0, there exists a viscosity solution uτ ∈ C(Tn) of

H̄(P )− τ ≤ |P +Duτ |+ V (x) · (P +Duτ ) ≤ H̄(P ) + τ.

Then by perturbed test function methods [19], we have

Lemma 3.3. u∗ (u∗) is a viscosity subsolution (supersolution) of

ut + H̄(Du) = 0, u(x, 0) = g(x).

Proof of Theorem 3.1.

Proof. Clearly, u∗ and u∗ satisfy the same growth estimates in Lemma 3.1.
Since H̄ is uniformly Lipschitz continuous, it follows from Theorem 2.1 (comparison
principle) in [8],

u∗ ≤ u∗.

On the other hand, u∗ ≤ u∗, therefore u∗ = u∗.

Remark 3.1. It is easy to see that Theorem 3.1 still holds if V = V1 + V2 where
∇ · V1 = 0 and maxTn |V2| < 1.
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4. Conclusions

G-equations are Hamilton-Jacobi models of front propagation in fluid flows, es-
pecially in turbulent combustion. We proved the periodic homogenization of the
inviscid incompressible G-equation with convex yet non-coercive Hamiltonians. The
effective Hamiltonian is convex, coercive (if the mean of V is zero), and has degree
one homogeneity. Though the corrector problem may not have an exact solution due
to non-coercivity of the Hamiltonian, homogenization suffices with an approximate
corrector whose existence is proved based on the local reachability property of the
controlled flow trajectories and incompressibility of the flows. In future work, we
shall explore homogenization in more general flows, and compare H̄ in viscous and
inviscid G-equations.
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