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SMALL AMPLITUDE OSCILLATORY SHEAR PERMEATION FLOW
OF CHOLESTERIC LIQUID CRYSTAL POLYMERS*

ZHENLU CUIf

Abstract. We investigate the small amplitude oscillatory shear permeation flow (SAOSPF) of
cholesteric liquid crystal polymers (CLCPs) using a mesoscopic model obtained from the Doi kinetic
theory for flows of CLCPs. We model the system by Stokes hydrodynamic equations coupled with
orientational dynamics and study the frequency-locked solutions of the system by employing a coarse-
grained approach. The leading order solutions exhibit boundary layers of thickness of the order of
the cholesteric pitch in low frequency regimes but in the order of % in high frequency regimes,

where w is the plate driven frequency. The response of CLCPs has been calculated. Viscoelastic
behavior is only observed at intermediate frequencies and the material is essentially viscous at low
and high frequency regimes. At both low and high frequencies, the real component of complex
viscosity controls its magnitude which is of the order of the reciprocal of the cholesteric pitch at low
frequencies while the order of 1 at high frequencies.
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1. Introduction

Cholesteric liquid crystals (CLCs) are mesophases between liquids and solids,
in which the average molecular orientation exhibits a chiral (twisted) orientational
pattern in a direction normal to the local averaged molecular orientation, which is
known as the chiral helix [5l [12]. Cholesterol esters, DNAs, colloidal suspensions of
bacteriophages, and many biological materials are examples that can exhibit chiral
phases under proper conditions. The chiral liquid crystal phase is delicate in that it
can be sustained only under balanced conditions; otherwise, defects and disclinations
can form easily. As a result, there are few quantitative experiments on the dynamics
and rheology. The few available studies on flows of cholesterics are mostly based on
Leslie-Ericksen (LE) continuum theory, which is remarkably successful in describing
the dynamical behavior of low molecular-weight liquid crystals but not quite so for
flows of liquid crystal polymers. Some studies based on perturbation techniques with
the base helical axis in the flow direction [14] [15] 20} [16] [12] [5, B0], in the velocity
gradient direction [19,[17], and in the vorticity direction in simple shear [13], 24} 25 26]
using the LE theory are available. Brief reviews on cholesteric rheology can be found
in the books [12] [1§].

Liquid crystals exhibit a viscoelastic response to an external stress. Coupling
between the director and the velocity fields — known as backflow — leads to strongly
non-Newtonian flow behavior. A particular striking example in flows of cholesterics
is permeation where a cholesteric liquid crystal is subjected to an imposed flow in
the direction of the helix but the helical structure remains nearly intact. The main
feature of the permeation is its ultrahigh viscosity (by a factor of ~ 10° of pure nematic
liquid crystals) in small shear. But, in strong shear, the helical structure is completely
destroyed so that cholesterics behave essentially like pure nematic liquid crystals. An
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explanation of this was first given by Helfrich [T4], he argued that the usual parabolic
profile is replaced by plug-like flow, with a constant velocity across the capillary
(Poiseuille flow). De Gennes and Prost [12] added that this occurs over a length
scale ~ P where P is the pitch of the helix. Experimental evidence of permeation
flows is reported by Scaramuzza et al. in cholesterics subject to steplike strains
in the direction of the helix [3I]. Prost et al. [23] conducted an stability study
on permeation flows in 1 dimensionality order system. Rey carried out a series of
studies on cholesteric liquid crystals based on LE theory to clarify and extend the
previous studies [24] 25 26, 27, 28] 29, B0]. Marenduzzo et al. [21] 22] studied
the sheared cholesterics numerically using a tensor model. They showed that the
boundary anchoring condition as well as the gap width affect the flow and orientation
structure in the shear cell. They also pointed out the importance of the secondary flow
in their simulation [21} 22]. The authors [7] analytically studied permeation flows and
resolved a long standing inconsistency in the study of chiral liquid crystal permeation
flows.

Small amplitude oscillatory flows are a main rheological tool used to characterize
viscoelasticity [I] in terms of the storage modulus G’ and loss modulus G”. Previ-
ous work on small amplitude oscillatory shear of liquid crystals in a parallel plate
geometry using Leslie-Ericksen theory has been presented for rod-like nematic liquid
crystals [2, @, 10, 11] and CLCs [27), 28] 29, [30]. Recently, the author [4] studied
the linear viscoelastic response of nematic liquid crystal polymers to small amplitude
oscillatory shear and pointed out rheological equivalence between shear flows with
imposed oscillatory stress, velocity (or strain), and pressure. More recently, the au-
thor studied the linear viscoelasticity of CLCs using a tensor-based continuum theory
[8]. In this paper, we focus on small amplitude oscillatory permeation shear flow for
CLCPs. The goal is to perform a systematic analysis of CLCPs subjected to small
amplitude oscillatory shear permeation flow focusing on hydrodynamic analysis and
the linear viscoelastic response. The paper is organized as follows. Section 2 presents
the governing equations for flowing CLCPs. Section 3 investigates the hydrodynamics
and the linear viscoelasticity of CLCPs under small amplitude oscillatory permeation
flows. Section 4 gives the conclusions.

2. Model formulation

We begin with a brief review of the kinetic theory for cholesteric liquid crystal
polymers (CLCPs) developed in [3]. We present the dimensionless governing system
of equations along with the dimensionless parameter group only and refer readers to
[3] for the detailed theory, the dimensional parameters, and the derivation.

We nondimensionalize the equations in the model using the characteristic length
scale h and the LCP relaxation time scale tg=t, = D%Q, where D? is the rotary diffu-
sivity, and denote the position vector by x, the Veloci'ty vector by v, the extra stress
tensor by 7, and the pressure by p, respectively. The dimensionless flow and stress
variables are defined by:

t h? h?

to - - .
X, t=—, T=—17, p=—0D, 2.1
Jfo fo @1

V=—V

h )

where fo=ph*/t3 is an inertial force and p is the CLCP density. Let ¢ be the CLCP
number density, £ the Boltzmann constant, T" absolute temperature, N a dimen-
sionless concentration, n the solvent viscosity, (;,7=1,2,3, three friction coefficients
related to CLCP-solvent interaction, and £, L, L, three length scales for the isotropic
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long-range interaction, anisotropic long-range interaction, and cholesteric length scale,
respectively. The following 9 dimensionless parameters in the model arise:

2 P 2 2
__ph _ deTtO _ 8h
Re= ton? o= hZp Er= 4NDQto£2 ) (2 2)
_ 3ckT(it - % 8L,k ’
i = hZp 07 2_172737 9_F79q_N22'

« measures the strength of the elastic energy relative to that of the kinetic energy, Re is
the solvent Reynolds number, Er is the Ericksen number which measures the strength
of the short-range nematic potential relative to that of the isotropic distortional elastic
energy, 6 measures the strength of anisotropic distortional elasticity relative to the
isotropic one whose range is limited to [—1,00), 1/p;,i=1,2,3, are three nematic
Reynolds numbers, and 6, parameterizes the chiral free energy relative to the isotropic
distortional elastic one. We drop the tilde on all variables from now on so that
all equations and figures in the following correspond to normalized (dimensionless)
variables.

The dimensionless governing equations consisting of the continuity, momentum
balance, orientation tensor equation and the constitutive equation for the extra stress
tensor are given below.

Continuity equation

Momentum balance equation

%v:V~(—pI—|—T). (2.4)

Orientation tensor equation

%M—Q-M—&-M-Q—a[D-M—&—M-D]

1
=—2aD:My—6[Q-N(M-M—M:My)|+ - [AM-M+M-AM - 2AM: M,]
r

0 . . . .
55 (VM) My + (VVM):My)T + M VVM + (M4 VVM)T
+MVV:M, +(MVV:M,)T —4Mg:: VVM — 2M, V'V :: M)
0

=5 [(Maiks; + M jksi) M, €4y + (Maikag + M jkai) Moy u€pyk
— (MM +MgiMiy )€y — MaiMary, u€uvy; — MajMany 1€yl (2.5)

where M is My and Mg are the second, the fourth and sixth order moment of the
orientational probability distribution function in the kinetic theory [33], respectively,
M is positive definite symmetric matrix with trace 1, €2 and D are the vorticity
tensor and the rate of strain tensor, N is the dimensionless concentration parameter,
and a= :i—;} parameterizes the aspect ratio r of the spheroidal molecules (0 <a <1
corresponds to a rod-like molecule and —1<a <0 for platelets [33]). The deviatoric
part of M

Q=M-1/3. (2.6)
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is called the orientation tensor, which is the traceless normalization of the second
moment M. Q and M share an orthonormal frame of principal axes, called the

directors in the nematic liquid literature. The symbols -,:,5,:: denote the contraction
operations on one pair, two pairs, three pairs, and four pairs of tensorial indices,
respectively. More delicate index contractions are given explicitly for clarity in the
equations whenever necessary.

Constitutive equation for the extra stress tensor

N 1

I
_ f M— - — (1 A)M-M
7= 2+ ps(@)D+ aafM— L~ (T4 e A)
1 1
M- (I+-———A)M—2(I+ ——A)M:M
+M-( +3NET ) ( +3NEr ) 1))
« [0
~ 2 (AM-M-M-AM)- -~ [VM:VM— (VVM):M
6Er( ) 12E'r[v v (VVM) )
0 . .
+%[4M6 £ VVM+2M,VV :: My, — VVM:M, — (VVMM,)”

~M,;:VVM — (M;:VVM)T — (MVV:M,)T - MVV:M,]

D gr [VVM:M, — (VVMM,)" =My VVM+ (M4 VVM)”
~MVV:M;+ (MVV:My)"]+ 11 (a) (DM +MD) + pi2(a)D : My]

_% [a; 1 (M;sMiy, €178 + MaiMany i€y + My M€,y

+M;q,, Magenip) + a%l(MiﬁMj%MG;wB + Mo Moy i€ p0m
+M;y,uMag€puip +Mja, Magenis) — 2aM4,ijaﬁMa%u€wﬁ)]~ (2.7)

Since the system is not closed, we would have to employ closure approximations on
the higher moments. We use two simplest ones, quadratic and cubic closures, here.
Namely, we approximate the fourth order tensor My using a tensor product of two
second order tensors and the sixth order tensor Mg using a tensor product of three
second order tensors :

M, = MM, Mg = MMM. (2.8)

In this approximation, the Frank elastic constants in the linearized limit are given
by

C C
Ki=Ky=—352(1+0(1—5,)/3), K3=——52(1+0(4s,+1)/6), (2.9)
Er Er
where C' is a parameter proportional to the concentration and s, is the equilibrium
uniaxial order parameter [33]. For simplicity, in this paper we consider §# =0, which
corresponds to the single Frank constant approximation, i.e., K1 = Ko = Kj.

3. CLCPs under SAOSPF

We consider the permeation flow of CLCPs subjected to small amplitude oscil-
latory shear with the helix along the flow direction z, between two parallel plates
at x==1 in Cartesian coordinates (x,y,z) and moving with corresponding velocity
v=(0,0,£ecoswt), where e=De is the Deborah number defined by De:% with
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V =& Ccos wt

vV = - € coswt

Fia. 3.1. The permeation flow geometry in a plane oscillatory cell. The gap width in the cell
is 2. The CLC polymers in the cell is sheared by moving the upper plate with a speed v= Decoswt
and the lower one with v=—Decoswt. The helix of CLCPs is oriented along z—direction. At the
bounding surfaces, the orientation tensor is assumed to equal to its equilibrium value.

the choice of h the half gap width in the shear cell. The chiral nematic solution is
found as [0]

I
Qo =350 (n0n0—3> ,ng = (cosqz,singz,0) (3.1)

where ¢ and sg are determined by

_ 40,1(1780)
9= 5760(s012)°

862 (2504+1)[24+(2—50)0](1—s50)*
U(so) ——* OgEr[6+0(so+02)]2 -

s3=0, (32)
0<sp<1,

where U(s9) =so[1— % (1—s0)(2s0+1)].

Fig. Bl depicts the mechanism for the permeation oscillatory shear flow. When
the small shear is imposed, Q is expected to exhibit biaxiality [32]. We parame-
terize the orientation tensor Q with three angle variables ¢, and x, and two order
parameters s; and [Sp:

Q=3 (nn— :I))) + By (nLnl — 3) , (3.3)

where

n=(cosCcos&, sincosg, sinf),
(3.4)
nt = (sinysin¢ — cosysinécos(,—sinycos¢ — cosxsinésing,cosxcost),

¢ is an in-plane tilt angle, £ and x are out of plane tilt angles [32] [6] [7].
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At the equilibrium, {p=qz, £ =0, and x =)o (undefined). When Q is uniaxial,
X is irrelevant. We seek asymptotic solution in small Deborah number expansions:

0
Sb(l‘,z,t) :50+an(x7t)€n
n=1

w(x,2,t) Zﬂnost

(C 3 X)('T z t): qz"‘ZSﬁn (E t an x t 7X+an($vt)6n)a

n=1 n=1
0o

v(z,z,t)= Z () (g e”,ngn)(I,t)en), (3.5)
n=1

where the secondary flow in y direction is sought as well. The boundary conditions
on the perturbation variables are

Pn(£1) =t (1) =wn (£1) = 5, (£1) = B (£1) =v{™ (£1) =0,
e (3.6)
(£1)=+1.

First, we expand the governing system of equations in powers of € to obtain the
asymptotic equations at each order of O(e™), n=0,1,2,..., in which we focus on the
equations at order O(e), the linearized equations. Secondly, we employ an ad hoc
“coarse-grained” approximation, in which we average the linearized equations over a
pitch of the cholesteric structure in z. We remark that the coarse-grain approximation
is equivalent to the Galerkin projection onto the zeroth order Fourier space in the z-
variable. Here we assume an out-of-plane flow along with an out-of-plane orientation
structure. The coarse-grain linearized equations at order O(e) are given in appendix
A. The majority of the symbolic and numerical calculations presented in this paper
were performed using the software MAPLE 12 by Waterloo Maple Inc. The values
of parameters used in this paper are N =6, Er=>500, a=0.8, a=1, u; =0.007, ps =
0.095, p3=0.052, 8,=100.0 and 1 =0.001.

Equations (A1), (A3), (A4) and (AF) (see Appendix A) along with boundary
conditions give $1(z,t)=p1(z,t)=w(z,t)=0 and x is undetermined at this order.
(AZ6) automatically holds. We drop the subscript on ¢ for brevity and use v, and v,

(1) O

to express vy’ and vy ’. The linearized system reduces to

o) 1 Ov A 8?2

af QU= 3, 1 axf =0,

0%vy ke e — (3.7
Ox2 1 6:63 0 '

8%v, Py _
dx2 k2q 3;20 - Oa
where
_ 2(s0+2)
A= 3Er

2a30
k (4p180+3 p2 €0+12n+6p,3)Er (38)

2

ko — 2asg
2= (6n+3us—p1so)Er-
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3.1. Hydrodynamics. Since the system (B.7) is linear and the plate driving
conditions are sinusoidal in time, the standard analysis for determination of the linear
viscoelastic moduli is to suppress transients and the total director, and the primary
and secondary velocities are given by the sum of the following in-phase and out-of-
phase components:

o(x,t) = v1(z)coswt + pa(x)sinwt,
v (2,t) = uy(x) coswt +ug(z)sinwt, (3.9)
vy(z,t) = v1(x) coswt 4 va () sinwt.

Note here and in the rest of the paper that in-phase means oscillation with the
imposed Deborah number, and hence the in-phase temporal variation is coswt, while
the out of phase is sinwt. Substituting this ansatz into system (B.1), we obtain

¢1(x) = Cy[coshrasinsz — (coshrsins)x] + Ca[sinhra cos sx — (sinhrcos s)x],

k 2
24 {C1[coshrasinsz — (coshrsins)x] + Co[sinhra cos sz — (sinhrcoss)z]}

pa(z) =—
k

+22[Cy (r? coshrasin sz + 2rssinhracos sz — s> coshrasin sz)
w

+Cy(r?sinhracos sz — 2rscoshrasinsz — s?sinhra cos sx)] — g,
u1(z) = kogqC[coshrzsinsz — (coshrsins)z]

+k2gCs[sinhrzcossx — (sinhrcoss)z| + x,
uz(z) =kaqp2,
vy =2(—A1+k1)[(rCy — sCq)sinhrasin sz 4 (rCy + sCy ) coshrz cos sx]

+2A:(Cqcoshrsins + Cysinhrcoss) + Cs,
w

—wz [2(=sC1 4+ 7Cs)coshrazcossz +2(rCy + sCs) sinhrasin sz

Vg =
—(s?+7%)(C} coshrsins + Cysinhrcoss)x?] + qu [(—2kaq*rCy
w(s2+12)
—2k1725Co + 2k1 752 Ch + 2k113CYy — 2ko5g?Coy — les?’Cg) sinhrxsin sz
+(—2k2q27"02 + 2]617’2801 —+ 2]€1T82CQ + 2I€1’1"302 + 2k28q201

+2k1 5301) coshra cossx + (kogCi coshrsins+ kogCosinhrcoss —1) (1"2

A
+5%)qz?] + Ul[(—kquTCl +koq?sCs + k1r3C — 3kqrs*Cy — 3k 512 C4

+k183Co)sinhrasinse + (—koq?sCy — koq?rCy + k173 Cy — 3k 782 Co
+3k1s72C —k183Ch )coshrzcos sz + kag? (Cy coshrsins+ Cysinhrcoss) —g]
+Cy, (310)

where

" k% q4 +w?
2
kl

k2g4 2,
s— af TN (3.11)
1

_ w
Kk =arctan Tag®’

r= cos g,

[SIE
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¥1 P2 U1 U2 U1 U2

odd odd odd odd even even

TABLE 3.1. Symmetry properties of the frequency-locked solutions (Z10)
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FiG. 3.2. The profiles of the director rotation components in phase (left) and out of phase
(right) for rods (a=0.8) at different frequencies w=0.1 (solid line), 1 (dashed line), 13 (dot), 50
(long-dashed line), and 100 (dash-dotted line).

and C;, i=1,2,3,4, are given in the Appendix B.

These frequency-locked solutions show symmetry properties under reflection x —
—x, which are summarized in Table 3.1l

We note that the plate frequency induces a new length scale %, which defines a
boundary layer near the plates for the solution system (BI0). In the high frequency
regime, 7 ~+/w while in the low frequency regime r~¢q. Thus the thickness of the
boundary layer is proportional to ﬁ at high frequencies and % at low frequencies.
At the low frequency limit (w— 0), the steady permeation flow mode [6] is recovered.
At high frequencies, the director is unable to relax sufficiently quickly to remain in
phase with the imposed shear so that the out of phase components in the orientation
tensor and flow velocities become significant. Fig. represents in-phase and out-
of-phase components of the director as a function of the dimensionless gap width at
five selected frequencies. The amplitude of the in-phase component decreases mono-
tonically with the dimensionless frequency while the amplitude of the out-of-phase
component increases and then decreases with the frequency. The maximum ampli-
tude is achieved at wa13 where the amplitudes of the in-phase component and the
out-of-phase component are equal. As w—0 and w— co, the amplitude of the out-
of-phase component will decrease to zero.

Fig. B3l represents the in-phase and out-of-phase components in the primary and
secondary flow velocity at five selected frequencies. For the primary velocity, as w— 0,
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Fi1G. 3.3. The profiles of the primary flow (top) and the second flow (bottom) components in
phase (left) and out of phase (right) for rods (a=0.8) at different frequencies w=0.1 (solid line), 1
(dashed line), 13 (dot), 50 (long-dashed line), and 100 (dash-dotted line).

its in-phase component will go to the steady permeation modes and the out-of-phase
component will go to zero. As w increases, the in-phase component will be linear
spanning the whole gap while the amplitude of the out-of-phase component increases
and then decreases with the frequency, and achieves its maximum value around w =
13. For the secondary velocity, both the in-phase and out of phase components are
essentially constant away from the walls. The magnitude of the in phase component
decreases monotonically with the dimensionless frequency while the amplitude of the
out-of-phase component increases and then decreases with the frequency.

3.2. Linear viscoelasticity. Now we turn to linear viscoelastic analysis. The
shear stress 77, = 1o coswt = 67""?”‘wcoswt. For steady shear flow, the dimension-
less flow rate F and the dimensionless apparent viscosity ns are given by the following

relations [5, [7]:

Ts

Tls = 2F,
1
Fs:f0 v, (x)|dz,

(3.12)

where 75 is the steady shear stress.
Generalizing these expressions for oscillatory shear flow using the dimensionless
flow rate F* and the dimensionless complex viscosity n*, we have

*

* _ Tap
n =35>
F* = Fycoswt + F,sinwt, (3.13)
nt=n —in,

where F; :fol |ug (z)|dz and F, :fol |ua(x)|dx are in phase and out of phase flow rate
respectively, and they are found as
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F=— ﬁ [—2k2qC5 sinh(r)sin(s)s — 2k ¢Cy sinh(r)rsin(s)
+2ky qC} cosh(r)cos(s)s —2ky qCy cosh(r)rcos(s) — s* — 12
+koqCynsinh(r)r? cos(s) + kg qCq sinh(r) cos(s)s? + qko Cy cosh(r)sin(s)r?
+qky Cy cosh(r)sin(s)s? —2ky qCy s+ 2ko qCar],

_ kaq
2w(r2+s?)
—2ko q*rCo — 27k, Cy s?sinh(r)sin(s) —2k; Co > cosh(r) cos(s)
+2ky q*sCy sinh(r)sin(s) +gr? + gs* +25%k; Cy sinh(r)sin(s)
+2ko ¢?rCy sinh(r)sin(s) +2kg ¢*rCy cosh(r) cos(s) — 253k, Oy cosh(r) cos(s)

)
s

253k, C1 42k, Cor® 421k Co s® +2ky ¢?sCy 42k, Cy s

o

+2k1 Cor?ssinh(r)sin(s) — kg ¢*Cy sinh(r) cos(s)r? — 2rk; Cy 5% cosh(r) cos(s)
—2k; C1r3sinh(r)sin(s) — k2 ¢*Cy cosh(r)sin(s)s? — ko ¢*Cy cosh(r)sin(s)r?
—2kyq*sC cosh(r)cos(s) — 2k, Cyr?scosh(r)cos(s)

—k2q?Cy sinh(r) cos(s)s?). (3.14)

Separating real and imaginary components in (3I3]); (the in phase component corre-
sponds to the real part while the out of phase one corresponds to the imaginary part),
we find

WEi+n Fo=7,

" (3.15)
n/Fo -1 Fz =0.
One can solve this system easily to obtain
T F;
n=%5 F2+F2°
(3.16)

n” _ m Fo
2 F24+F2°

k3

In rheology, the fluid response may be characterized by the viscoelastic functions,
7', ", the storage modulus G' =7 w, and the loss modulus G" =n'w [1]. Fig. B4
depicts the typical G and G computed numerically as a function of the dimensionless
frequency. These predictions are consistent with the previous work on CLCs by Rey
[277, 30].
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104 10 102 1000 10° 10! 107 10° 10

Fic. 3.4. The computed G and G as a function of the dimensionless frequency w. At low
frequencies, the slopes for G’ and G are 2 and 1, respectively. At high frequencies, the slopes of G’
and G are 0 and 1, respectively.

At low frequencies,

G ~1/2 <2qfﬁ(cosh<p>) — 6k (COSh<\/\/%q>>3

oo () <ot (o () o
#20/EVTz (com (VE9) ) (Y22 g com (VE

—qf\fc%h<\\p>+4 \T\Fcosh(?> h(

05) o) (o () (5
s (s () o o (L) o
(o () o ()
() () e (2

-3 cosh(\/\/k; > sin ( (\/Eq> +1) _1k1_3/2w2 = O(Br)w?

)

7
)
)

+3kq sinh (

Vi
(3.17)
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1 VE NS
" qvR2 . qvr2
G ~-q\ksy (cosh( >+51nh< >> -1
4 Vi vk

e - (5w () (35

) (cosh q\/\/g))?j +2cosh (q\\//g>

<
ot () o (2) 2o ()
|

+2 <cosh (q\/\/kfﬂ 3sinh <q\/\/]§) ) _1w =0(q)w, (3.18)

The last expressions in G and G are based on ¢>> 1.
At high frequencies,

G ~O(L), 19)
G ~0(w),

which show that G is independent of w while G is independent of ¢ and E'r.
Another important material function is the phase angle between stress and strain
or loss angle [1] defined as

"

d=arctan CC’;, ) (3.20)

Fig. depicts the loss angle as a function of the dimensionless frequency shows
that CLCPs behave as viscous fluid at low and high frequency (6 =7/2) and in between
they behave as a viscoelastic materials. By solving j—f} =0, we obtain the resonance
frequency at which the maximum elastic storage occurs is w=4.25.

Fig. [3.6] depicts the magmtude of the complex viscosity (n*) and the components
of the complex viscosity 7 and n as a function of the dlmensmnless frequency w.
The magnitude of the complex viscosity and component 77 display three regions, with
low and high frequency plateaus and a power-law intermediate region. For both low
and high frequencies, |n*| —>77'7 which shows that the fluid response of these limits are
Newtonian like. At low frequency regime, ' =O(q) while at high frequency regime,
7 =0(1). " achieves its maxima at w1.0 which shows that at the intermediate
frequency regime, the fluid is viscoelastic in the oscillatory response.
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Fic. 3.5. The profile of the loss angle as a function of the dimensionless frequency. It shows
that viscoelasticity is only observed at intermediate frequencies and the material is essentially viscous
at low and high frequency regimes.

4. Conclusion

In summary, we have derived the governing equations for the permeation flow in
CLCPs subject to a small amplitude oscillatory shear and studied the director dy-
namics and flow behavior as well as linear viscoelasticity. Small amplitude oscillatory
permeation shear flow of CLCPs is characterized by a Newtonian response at low and
high frequencies and viscoelasticity only exists in intermediate frequency regime. At
low frequencies, the steady permeation modes are recovered and the director rotates
in phase with the applied shear. At high frequencies, the out of phase component
dominates the dynamics. The asymptotic formulas for the loss modulus (G”) and
storage modulus (G') are obtained at both low and high frequencies. In the low fre-
quency limit, both the loss modulus and storage modulus exhibit a classical frequency
w dependence but their magnitudes are of order O(Er) and O(q), respectively. The
magnitudes of complex viscosity are calculated, which displays three regimes, with
two Newtonian plateaus at low and high frequencies while a power-law response at
intermediate frequency regime. These results are consistent with those obtained from
a continuum model [8] and they are insensitive to a molecular shape.



956 SMALL AMPLITUDE OSCILLATORY SHEAR PERMEATION FLOW

I T IIII T IIII T IIII T IIII T IIII T IIII T IIII T IIII
1004 1073 1002 100! 100 10! 102 100 10t
0]

F1G. 3.6. The magnitude of the complex viscosity (n*) and the components of complex viscosity
as a function of the dimensionless frequency (w). At both low and high frequencies, the magnitude
of the complex viscosity is dominated by its real component.
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Appendix A. The governing equations at order O(c).
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Appendix B. The coefficients in the solutions.
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