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TAILORED FINITE POINT METHOD FOR STEADY-STATE

REACTION-DIFFUSION EQUATIONS∗

HOUDE HAN† AND ZHONGYI HUANG‡

Abstract. In this paper, we propose to use the tailored-finite-point method (TFPM) for a type
of steady-state reaction-diffusion problems in two dimensions. Three tailored finite point schemes
are constructed for the given problem. Our finite point method has been tailored to some particular
properties of the problem. Therefore, our TFPM satisfies the discrete maximum principle automat-
ically. We also study the error estimates of our TFPM. We prove that our TFPM can achieve good
accuracy even when the mesh size h≫ ε. Our numerical examples show the efficiency and reliability
of our method.
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1. Introduction

We consider the steady-state reaction-diffusion equation in the unit square Ω=
(0,1)×(0,1):

Lu≡−ε2△u+b(x,y)u=f(x,y), in Ω, (1.1)

u=0, on Γ=∂Ω, (1.2)

where b(x,y) and f(x,y) are two given functions on Ω̄ and

b(x,y)≥ bmin>0, on Ω̄.

Furthermore we suppose that the given functions b(x,y),f(x,y)∈C4,β(Ω̄) for a real
number β∈ (0,1), and the function f(x,y) satisfies the corner compatibility conditions:

f(0,0)=f(1,0)=f(0,1)=f(1,1)=0. (1.3)

Then we know that the solution of problem (1.1)–(1.2), u(x,y)∈C6,β(Ω)∩C3,β(Ω̄)
[5].

The problem (1.1)–(1.2) is a singular perturbation problem when ε≪1; the so-
lution of problem (1.1)–(1.2) is allowed boundary layers as well as corner layers [10].
These layers are characterized by rapid transitions in the solution, and are thus dif-
ficult to capture in a numerical approximation without using a large number of un-
knowns. Also, such layers tend to cause spurious oscillations in a numerical solution
to the problem.

Methods for the numerical solution of problems such as (1.1)–(1.2) in bounded or
unbounded domains that attempt to deal with these difficulties have been developed
by many mathematicians, see e.g., [2, 3, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25].
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For one dimensional singular perturbation problems, people used the method of “ex-
ponential fitting” [2, 12, 18, 22] to get a uniform convergence. Recently, the typical
methods for high dimensional problems are based on the adaptive mesh techniques,
such as Shishkin meshes [3, 14, 15, 23], in which one can get uniform convergence
on nonuniform meshes. Melenk et al also used the so-called hp-version finite element
method to achieve uniform convergence (see [16] and the references in it). Generally
speaking, they need the finest mesh size h∼O(ε) to achieve a satisfactory numerical
result.

In this paper, we propose using the tailored finite point method to deal with
problem (1.1)–(1.2). The tailored finite point method [9] is a new discrete method
for solving differential equations numerically. For each given problem, the discrete
scheme has been tailored to some particular properties of the given problem. We
have obtained good approximations using the tailored finite point method for solving
singular perturbation problems [8, 9], interface problems [11], and high frequency
waves [7]. For problem (1.1)–(1.2), three tailored finite point schemes are constructed.
Each of them can achieve high accuracy on uniform mesh with the mesh size h≫ε.

The paper is organized as follows. In section 2, we recall some asymptotic prop-
erties of the solution for problem (1.1)–(1.2). In section 3, we describe our tailored
finite point method in details. We study the error analysis in section 4. In section 5,
we use some numerical examples to show the efficiency of our new method. Finally,
we draw a conclusion in section 6.

2. Asymptotic properties of the analytic solution

We now recall some properties of the solution u(x,y) of problem (1.1)–(1.2) (cf.
[10, 13]):

Theorem 2.1. The solution u(x,y) of problem (1.1)–(1.2) is uniformly bounded on

Ω̄, namely

|u(x,y)|≤M0, (2.1)

with

M0= max
(x,y)∈Ω̄

|f(x,y)|
b(x,y)

. (2.2)

Proof. It is straightforward to prove it by maximum principle.

Theorem 2.2 (cf. Theorem 2.1 in [10]). Let u(x,y) solve the problem (1.1)–(1.2),
then the following asymptotic expansion holds:

u(x,y)=U2(x,y)+V2(x,y)+W2(x,y)+ Ṽ2(x,y)+W̃2(x,y)+

4
∑

j=1

Zj
2(x,y)+R2(x,y),

∀(x,y)∈ Ω̄, (2.3)

where U2(x,y) is the outer expansion, V2(x,y), W2(x,y), Ṽ2(x,y), and W̃2(x,y) are

the boundary layers, {Zj
2(x,y), (j=1, ...,4)} are the corner layers, R2(x,y) is the

remainder, and

U2(x,y)=
f(x,y)

b(x,y)
+ε2∆

(

f(x,y)

b(x,y)

)

, (2.4)
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|V2(x,y)|≤Ce−α x
ε , (2.5)

|Ṽ2(x,y)|≤Ce−α 1−x
ε , (2.6)

|W2(x,y)|≤Ce−α y
ε , (2.7)

|W̃2(x,y)|≤Ce−α 1−y
ε , (2.8)

|Z1
2 (x,y)|≤Ce−α x+y

ε , (2.9)

|Z2
2 (x,y)|≤Ce−α 1−x+y

ε , (2.10)

|Z3
2 (x,y)|≤Ce−α x+1−y

ε , (2.11)

|Z4
2 (x,y)|≤Ce−α 2−x−y

ε , (2.12)

|R2(x,y)|≤Cε3, (2.13)

with constants C, α independent of ε and α∈ (0,
√
bmin).

3. The tailored finite point scheme

In this section, we will explain how to construct our finite point scheme [7, 8, 9, 11],
which is quite different from the typical finite point methods [4, 17, 21]. We call our
new scheme a “tailored finite point method”(TFPM) because the finite point method
has been tailored to some particular properties of the problem. The finite point
method [4, 17, 21] is a development of finite difference method in which the meshless
technique is emphasized. For one dimensional singular perturbation problems, the
method is very close to the method of “exponential fitting” discussed in [2, 12, 18]
and [22, Chapter I, section 2] .

Let h=N−1 be the mesh size and

xi= ih, yj = jh, 0≤ i,j≤N. (3.1)

Then {Pi,j =(xi,yj), 0≤ i,j≤N} are the mesh points and we have a uniform mesh.

P
0

Q
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P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

hh

h

h

Fig. 3.1. The location of points P0,P1,··· ,P8.

For each mesh point P0 in Ω, there are four mesh points {P1,P2,P3,P4} around
P0 and the distance between P0 and Pi (i=1, ...,4) is h . Namely we obtain a cell Q0

with center P0 (see figure 3.1). We now construct the tailored finite point scheme of
equation (1.1) at mesh point P0. At first equation (1.1) is simplified in the cell Q0 as

−ε2△u+d20u=f0, in Q0, (3.2)
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where

d20= b(P0), f0=f(P0). (3.3)

For any solution u(x,y) of equation (3.2), let

v(x,y)=u(x,y)− f0
d20

, µ0=
d0
ε
, (3.4)

then v(x,y) satisfies:

−△v+µ2
0v=0, in Q0. (3.5)

3.1. TFPM based on Bessel functions. The solution of equation (3.5),
v(x,y), can be expanded as the following:

v(x,y)=α0I0 (µ0r)+

∞
∑

n=1

In (µ0r)[αn cosnθ+βn sinnθ], (3.6)

with constants {α0, αn,βn,n=1,2, ...}.
We take

vh(x,y)=α0I0 (µ0r)+α1I1 (µ0r)cosθ+β1I1 (µ0r)sinθ+α2I2 (µ0r)cos2θ. (3.7)

Let

vh(Pj)=Vj , j=0,1,2,3,4, (3.8)

then we have

V0=α0, (3.9)

V1=α0I0 (µ0r)+α1I1 (µ0r)+α2I2 (µ0r) , (3.10)

V2=α0I0 (µ0r)+β1I1 (µ0r)−α2I2 (µ0r) , (3.11)

V3=α0I0 (µ0r)−α1I1 (µ0r)+α2I2 (µ0r) , (3.12)

V4=α0I0 (µ0r)−β1I1 (µ0r)−α2I2 (µ0r) . (3.13)

Namely we have








V1

V2

V3

V4









=A









α0

α1

β1

α2









, (3.14)

with

A=









I0(µ0h) I1(µ0h) 0 I2(µ0h)
I0(µ0h) 0 I1(µ0h) −I2(µ0h)
I0(µ0h) −I1(µ0h) 0 I2(µ0h)
I0(µ0h) 0 −I1(µ0h) −I2(µ0h)









. (3.15)

The matrix A is invertible and

A−1=











1
4I0(µ0h)

1
4I0(µ0h)

1
4I0(µ0h)

1
4I0(µ0h)

1
2I1(µ0h)

0 − 1
2I1(µ0h)

0

0 1
2I1(µ0h)

0 − 1
2I1(µ0h)

1
4I2(µ0h)

− 1
4I2(µ0h)

1
4I2(µ0h)

− 1
4I2(µ0h)











, (3.16)
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α0

α1

β1

α2









=A−1









V1

V2

V3

V4









. (3.17)

From the equalities (3.9) and (3.17), we arrive at

V0−
1

4I0(µ0h)
(V1+V2+V3+V4)=0. (3.18)

This is a 5-point discrete scheme for equation (3.5). From equality (3.4), let

Uj =Vj+
f0
d20

, j=0,1, ...,4, (3.19)

then we obtain

U0−
1

4I0(µ0h)
(U1+U2+U3+U4)=

(

1− 1

I0(µ0h)

)

f0
d20

. (3.20)

Namely,

(LhU)(P0)≡
d20I0(µ0h)

I0(µ0h)−1

{

U0−
1

4I0(µ0h)
(U1+U2+U3+U4)

}

=f0. (3.21)

The discrete scheme (3.21) is called the 5-point tailored finite point scheme of equation
(1.1).

For the case 0<µ0h≪1, we know that [1, 6]

I0 (µ0h)=1+
1

4
(µ0h)

2
+O(µ0h)

4
. (3.22)

Using 1+ 1
4 (µ0h)

2 to approximate I0(µ0h), then the tailored finite point scheme
(3.21) is reduced to the following standard second-order finite difference scheme of
equation (1.1),

−ε2
U1+U2+U3+U4−4U0

h2
+d20U0=f0. (3.23)

3.2. TFPM based on exponential functions. We can also construct a
scheme for (3.5) as follows. Let

H4=
{

v(x,y) |v= c1e
−µ0x+c2e

µ0x+c3e
−µ0y+c4e

µ0y, ∀c1,c2,c3,c4∈R
}

.

It is straightforward to check that every function in the space H4 is a solution of
equation (3.5). Then we take a scheme as

α1v1+α2v2+α3v3+α4v4+α0v0=0, (3.24)

with vi=v(Pi), such that (3.24) holds for all v∈H4. Thus we obtain

α1e
−µ0h+α2+α3e

µ0h+α4+α0=0, (3.25)

α1e
µ0h+α2+α3e

−µ0h+α4+α0=0, (3.26)

α1+α2e
−µ0h+α3+α4e

µ0h+α0=0, (3.27)

α1+α2e
µ0h+α3+α4e

−µ0h+α0=0. (3.28)
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That means, for any given α0∈R, the system (3.25)–(3.28) has the unique solution

α1=α2=α3=α4=
−α0

eµ0h+e−µ0h+2
≡ −α0

4cosh2(µ0h
2 )

. (3.29)

If we take

α0=
eµ0h+e−µ0h+2

eµ0h+e−µ0h−2
≡ cosh2(µ0h

2 )

sinh2(µ0h
2 )

, (3.30)

we obtain

α1=α2=α3=α4=− 1

eµ0h+e−µ0h−2
≡− 1

4sinh2(µ0h
2 )

. (3.31)

We finally have the following five-point scheme for (3.2):

− d20

4
(

cosh2
(

µ0h
2

)

−1
) (u1+u2+u3+u4−4u0)+d20u0=f0. (3.32)

Remark 3.1. If h≪ε, i.e. µ0h≪1, we have

4

(

cosh2
(µ0h

2

)

−1

)

=(µ0h)
2
+O

(

(µ0h)
4
)

.

If we omit the high order term, the tailored finite point scheme (3.32) is also reduced
to the standard second-order finite difference scheme (3.23) of equation (1.1).

Certainly, we can also construct a nine-point scheme for (3.5) as follows. Let

H8=
{

v(x,y)
∣

∣

∣v= c1e
−µ0x+c2e

µ0x+c3e
−µ0y+c4e

µ0y+c5e
µ0(x+y)

√

2 +c6e
−µ0(x+y)

√

2

+c7e
µ0(x−y)

√

2 +c8e
−µ0(x−y)

√

2 , ∀cj ∈R, j=1, · · · ,8
}

.

It is also easy to check that all the functions in the space H8 is a solution of equation
(3.5). Then we take a scheme as

α1v1+α2v2+α3v3+α4v4+α5v5+α6v6+α7v7+α8v8+α0v0=0, (3.33)

with vi=v(Pi), such that (3.33) holds for all v∈H8. Similarly, we obtain

α1e
−µ0h+α2+α3e

µ0h+α4+α5e
−µ0h+α6e

µ0h+α7e
µ0h+α8e

−µ0h+α0=0,

α1e
µ0h+α2+α3e

−µ0h+α4+α5e
µ0h+α6e

−µ0h+α7e
−µ0h+α8e

µ0h+α0=0,

α1+α2e
−µ0h+α3+α4e

µ0h+α5e
−µ0h+α6e

−µ0h+α7e
µ0h+α8e

µ0h+α0=0,

α1+α2e
µ0h+α3+α4e

−µ0h+α5e
µ0h+α6e

µ0h+α7e
−µ0h+α8e

−µ0h+α0=0,

α1e
µ0h
√

2 +α2e
µ0h
√

2 +α3e
−µ0h

√

2 +α4e
−µ0h

√

2 +α5e
√
2µ0h+α6+α7e

−
√
2µ0h+α8+α0=0,

α1e
−µ0h

√

2 +α2e
−µ0h

√

2 +α3e
µ0h
√

2 +α4e
µ0h
√

2 +α5e
−
√
2µ0h+α6+α7e

√
2µ0h+α8+α0=0,

α1e
µ0h
√

2 +α2e
−µ0h

√

2 +α3e
−µ0h

√

2 +α4e
µ0h
√

2 +α5+α6e
−
√
2µ0h+α7+α8e

√
2µ0h+α0=0,

α1e
−µ0h

√

2 +α2e
µ0h
√

2 +α3e
µ0h
√

2 +α4e
−µ0h

√

2 +α5+α6e
√
2µ0h+α7+α8e

−
√
2µ0h+α0=0.
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Therefore, for any given α0∈R, the system (3.34)–(3.34) has the unique solution

α1=α2=α3=α4=
−α0

(

cosh2(µ0h√
2
)−cosh(µ0h)

)

4
(

cosh2(µ0h
2 )cosh2(µ0h√

2
)−cosh(µ0h)cosh(

µ0h√
2
)
) , (3.34)

α5=α6=α7=α8=
−α0

(

cosh2(µ0h
2 )−cosh(µ0h√

2
)
)

4
(

cosh2(µ0h
2 )cosh2(µ0h√

2
)−cosh(µ0h)cosh(

µ0h√
2
)
) . (3.35)

If we take

α0=4

(

cosh2
(µ0h

2

)

cosh2
(µ0h√

2

)

−cosh(µ0h)cosh
(µ0h√

2

)

)

, (3.36)

we have

α1=α2=α3=α4=cosh(µ0h)−cosh2
(

µ0h√
2

)

, (3.37)

α5=α6=α7=α8=cosh

(

µ0h√
2

)

−cosh2
(

µ0h

2

)

. (3.38)

From the expression (3.36)–(3.38), we know that ∀h>0,

α0>0, α1<0, α5<0; α0+4(α1+α5)>0. (3.39)

We finally get the following nine-point scheme for (3.2):

d20
α1 (u1+u2+u3+u4−4u0)+α5 (u5+u6+u7+u8−4u0)

α0+4(α1+α5)
+d20u0=f0. (3.40)

Remark 3.2. It is easy to check that all of our tailored finite point schemes, i.e.
(3.20), (3.32), and (3.40), satisfy the discrete maximum principle. Because µ0h>
0, we have I0(µ0h)>1 and cosh(µ0h

2 )>1. It is straightforward to check that schemes
(3.20) and (3.32) are diagonally dominant. Because of (3.39), we know that scheme
(3.40) is also diagonally dominant.

4. Error analysis

4.1. Truncation error. We now consider the truncation error of schemes
(3.21), (3.32), and (3.40) at mesh point P0∈Ω.

4.1.1. Truncation error for (3.21). For a function u, the solution of problem
(1.1)–(1.2), we have

(Lhu)(P0)=
d20I0(µ0h)

I0(µ0h)−1

{

u0−
1

4I0(µ0h)
(u1+u2+u3+u4)

}

=d20u0−
d20

4(I0(µ0h)−1)
(u1+u2+u3+u4−4u0), (4.1)

(Lu)(P0)=f0, (4.2)

with

uj =u(Pj), j=0,1, ...,4.
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The truncation error of scheme (3.21) at mesh point P0 is given as

(Thu)(P0)=(Lhu)(P0)−(Lu)(P0)

=d20u0−f0−
d20

4(I0(µ0h)−1)
(u1+u2+u3+u4−4u0). (4.3)

Is the truncation error (Thu)(P0) small? In the case ε≪h<1, the answer is ‘yes’.
More precisely, we consider the case

ε

h
≤hγ0 , (4.4)

where γ0>0 is a constant. It means that we used a coarse mesh with respect to the
small parameter ε. We now estimate the truncation error at point P0=(x0,y0). Since
P0 is a mesh point in Ω, we know that

h≤x0≤1−h, h≤y0≤1−h. (4.5)

By the expansion (2.3), we have

d20u(P0)−f0=d20

{

ε2∆

(

f

b

)

(P0)+V2(P0)+W2(P0)

+Ṽ2(P0)+W̃2(P0)+

4
∑

j=1

Zj
2(P0)+R2(P0)

}

. (4.6)

Combining condition (4.4) and estimates (2.4)–(2.13), we obtain

|d20u(P0)−f0|≤C
{

h2+2γ0 +e−αh
ε

}

. (4.7)

On the other hand, u(x,y), the solution of problem (1.1)–(1.2) is uniformly
bounded on Ω̄ (see (2.1)), then we have

∣

∣

∣

∣

∣

d20
I0(d0

h
ε
)−1

(u1+u2+u3+u4−4u0)

∣

∣

∣

∣

∣

≤ 8M0d
2
0

I0(d0
h
ε
)−1

≤Ce−αh
ε . (4.8)

Finally we arrive at

|(Thu)(P0)|≤C
{

h2+2γ0 +e−α(h−γ0 )
}

. (4.9)

4.1.2. Truncation error for (3.32) and (3.40). Similarly, the truncation
error of scheme (3.32) at mesh point P0 is given by

(Thu)(P0)=(Lhu)(P0)−(Lu)(P0)

=d20u0−f0−
d20

4
(

cosh2
(

µ0h
2

)

−1
) (u1+u2+u3+u4−4u0). (4.10)

Also because the solution of problem (1.1)–(1.2) is uniformly bounded on Ω̄, we have
∣

∣

∣

∣

∣

∣

d20

4
(

cosh2
(

µ0h
2

)

−1
) (u1+u2+u3+u4−4u0)

∣

∣

∣

∣

∣

∣

≤ 2M0d
2
0

cosh2(d0h
2ε )−1

≤Ce−αh
ε . (4.11)
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Finally we also get the truncation error for (3.32) as

|(Thu)(P0)|≤C
{

h2+2γ0 +e−α(h−γ0 )
}

. (4.12)

For the truncation error of scheme (3.37), because

α0∼ e(1+
√
2)µ0h, α1∼ e

√
2µ0h, α5∼ eµ0h, for µ0h≫1,

we can also get the truncation error for (3.37) as

|(Thu)(P0)|≤C
{

h2+2γ0 +e−α(h−γ0 )
}

. (4.13)

4.2. Error estimate. We now consider the discrete scheme of problem (1.1)–
(1.2) on the mesh (3.1), where h satisfies condition (4.4).

4.2.1. Error estimate for scheme (3.21). For scheme (3.21), using the
notation in (3.1), we have

LhUi,j ≡
d2i,jI0(di,j

h
ε
)

I0(di,j
h
ε
)−1

{

Ui,j−
1

4I0(di,j
h
ε
)
(Ui+1,j+Ui,j+1+Ui−1,j+Ui,j−1)

}

=fi,j ,

1≤ i,j≤N−1, (4.14)

Ui,0=Ui,N =0, i=0,1, ...,N, (4.15)

U0,j =UN,j =0, j=1, ...,N−1. (4.16)

For the discrete problem (4.14)–(4.16), we have the following result:

Theorem 4.1. Suppose that {Ui,j , 0≤ i,j≤N} is a solution of problem (4.14)–
(4.16). Then the following estimate holds:

|Ui,j |≤ max
0≤i,j≤N

|fi,j |
d2i,j

, 0≤ i,j≤N. (4.17)

Proof.
(1) Suppose that there exists a mesh point Pi0,j0 such that for Ui0,j0 >0 and

Ui,j ≤Ui0,j0 , 0≤ i,j≤N. (4.18)

By the boundary conditions, we know that 1≤ i0,j0≤N−1, from the discrete
equation (4.14) we obtain

Ui0,j0 ≤
fi0,j0
d2i0,j0

. (4.19)

Namely we have:

Ui,j ≤Ui0,j0 ≤
fi0,j0
d2i0,j0

≤ max
0≤i,j≤N

|fi,j |
d2i,j

, 0≤ i,j≤N. (4.20)

(2) On the other hand, if the hypothesis in (1) is not true, namely

Ui,j ≤0, 0≤ i,j≤N. (4.21)
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Combining inequalities (4.20)–(4.21) we obtain the upper bound estimate

Ui,j ≤ max
0≤i,j≤N

|fi,j |
d2i,j

, 0≤ i,j≤N, (4.22)

for {Ui,j , 0≤ i,j≤N}, the solution of problem (4.10)–(4.12).
Similarly for {Ui,j , 0≤ i,j≤N}, the solution of problem (4.10)–(4.12), we can

obtain the lower bound estimate

Ui,j ≥− max
0≤i,j≤N

|fi,j |
d2i,j

, 0≤ i,j≤N. (4.23)

Theorem 4.1 is proved completely.

Let

Ei,j =Ui,j−u(Pi,j), 0≤ i,j≤N, (4.24)

then

LhE=Thu=O
{

h2+2γ0 +e−αh−γ0
}

. (4.25)

By Theorem 4.1, we have:

Theorem 4.2. Under Assumption (4.4), the following error estimate holds:

|Ei,j |=C
{

h2+2γ0 +e−αh−γ0
}

, 0≤ i,j≤N, (4.26)

with a constant C independent of ε and h.

4.2.2. Error estimate for schemes (3.32) and (3.37).
Similarly, we have the following theorem for schemes (3.32) and (3.37):

Theorem 4.3. Under Assumption (4.4), the following error estimate holds:

|Ei,j |=C
{

h2+2γ0 +e−αh−γ0
}

, 0≤ i,j≤N, (4.27)

with a constant C independent of ε and h.

5. Numerical examples

In this section, we will use some examples to show the accuracy and efficiency of
our method.

Example 5.1. First, we consider the following problem:

−ε2△u+b(x)u=f(x), ∀x=(x,y)∈Ω, (5.1)

u|∂Ω=0, (5.2)

where

Ω=[0,1]2, b(x)=1+x+y, f(x)=sinπ(x+y).

We denote uex to be the ‘exact’ solution which we get by very fine mesh, u1 to be
the approximate solution which we get by scheme (3.21), u2 to be the approximate
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ε=10−3

mesh size h 1/4 1/8 1/16 1/32

max
ij

|E1
ij | 9.02E-8 3.27E-7 4.87E-7 5.04E-7

max
ij

|E2
ij | 9.02E-8 3.27E-7 4.87E-7 5.04E-7

max
ij

|E3
ij | 9.02E-8 3.27E-7 4.87E-7 5.04E-7

ε=10−6

mesh size h 1/4 1/8 1/16 1/32

max
ij

|E1
ij | 0.0 0.0 0.0 0.0

max
ij

|E2
ij | 0.0 0.0 0.0 0.0

max
ij

|E3
ij | 0.0 0.0 0.0 0.0

Table 5.1. L∞ errors of the numerical solutions for different mesh size.

Fig. 5.1. The graphs of u1 for Example 5.1, ε=10−3: h= 1
32

(left), h= 1
128

(right).

solution which we get by scheme (3.32), and u3 to be the approximate solution which
we get by scheme (3.40). Then we let

E1=u1−uex, E2=u2−uex, E3=u3−uex.

The numerical results of example 5.1 are shown in Table 5.1 and figure 5.1.

Example 5.2. Then, we consider the problem (5.1)-(5.2) with different choice of

coefficients:

b(x)=1+(x−0.5)2+(y−0.5)2, f(x)=
(

xy(1−x)(1−y)
)

1
10 .

The numerical results of Example 5.2 are shown in Table 5.2 and figure 5.2.
From Tables 5.1–5.2, we can see that all of our schemes achieve very high accuracy

for h≫ε, which is consistent with the error estimates (4.26)–(4.27). Our schemes can
achieve machine accuracy for ε=10−6. From the error analysis, we know that the
difference between our three schemes is mainly the coefficient on the exponential term.
Then the errors in Tables 5.1–5.2 are almost the same for three schemes because h≫ ǫ.
It is clear that our methods can capture the boundary layers very accurately without
any spurious oscillations on coarse meshes (see figures 5.1–5.2).
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ε=10−3

mesh size h 1/4 1/8 1/16 1/32

max
ij

|E1
ij | 1.59E-6 1.59E-6 1.59E-6 1.59E-6

max
ij

|E2
ij | 1.59E-6 1.59E-6 1.59E-6 1.59E-6

max
ij

|E3
ij | 1.59E-6 1.59E-6 1.59E-6 1.59E-6

ε=10−6

mesh size h 1/4 1/8 1/16 1/32

max
ij

|E1
ij | 0.0 0.0 0.0 0.0

max
ij

|E2
ij | 0.0 0.0 0.0 0.0

max
ij

|E3
ij | 0.0 0.0 0.0 0.0

Table 5.2. L∞ errors of the numerical solutions for different mesh size.

Fig. 5.2. The graphs of u1 for Example 5.2, ε=10−3: h= 1
32

(left), h= 1
128

(right).

6. Conclusion

In this paper, we present a tailored-finite-point method for a kind of linear
reaction-diffusion problems in two dimensional case. First, we approximate the coeffi-
cients with piecewise constants. Then we use the eigenfunction expansion of the local
reduced problem with constant coefficients to get the tailored scheme. We construct
three kinds of schemes based on different functions. All of these schemes satisfy the
discrete maximum principle. Furthermore, we study the error estimates of our TFPM.
We prove that our TFPM can achieve good accuracy even when the mesh size h≫ε.
All of our numerical results support our mathematical theory.

Acknowledgement. The authors thank Prof. R. Bruce Kellogg for fruitful
discussions on this work.
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