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HETEROGENEOUS MULTISCALE FINITE ELEMENT METHOD

WITH NOVEL NUMERICAL INTEGRATION SCHEMES∗

RUI DU† AND PINGBING MING‡

Abstract. In this paper we introduce two novel numerical integration schemes within the
framework of the heterogeneous multiscale method (HMM), when the finite element method is used
as the macroscopic solver, to resolve the elliptic problem with a multiscale coefficient. For non-
self-adjoint elliptic problems, optimal convergence rate is proved for the proposed methods, which
naturally yields a new strategy for refining the macro-micro meshes and a criterion for determining
the size of the microcell. Numerical results following this strategy show that the new methods
significantly reduce the computational cost without loss of accuracy.
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1. Introduction

Consider the following elliptic problem:
{
−∇·(aε(x)∇uε(x))=f(x) in D⊂R

d,

uε(x)=0 on ∂D,
(1.1)

where ε is a small parameter that signifies the multiscale nature of the problem.

The matrix aε(x)=
(
aεij(x)

)d
i,j=1

is assumed to have bounded measurable entries, i.e.,

maxi,j ‖aεij‖L∞(D)=Λ<∞, and satisfies the uniform ellipticity condition: for ξ∈R
d,

λ

d∑

i=1

ξ2i ≤
d∑

i,j=1

aεijξiξj

with λ>0, but the matrix aε is not necessarily symmetric. This problem (1.1) plays
a fundamental and practical role in several fields that include mechanical properties
of composite materials and flow transport in porous media for example.

In the sense of H-convergence (see [27]), for every f ∈H−1(D) the sequence {uε}
of solutions of (1.1) satisfies

{
uε⇀U0 weakly in H1

0 (D),

aε∇uε⇀A∇U0 weakly in (L2(D))d,

where U0 is the solution of the problem
{
−∇·(A(x)∇U0(x))=f(x) in D,

U0(x)=0 on ∂D.
(1.2)
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In general, there is no explicit formula for the effective matrix A except in one dimen-
sional problems [27].

The heterogeneous multiscale method introduced in [15] is a general methodol-
ogy for designing and analyzing multiscale methods. It consists of two ingredients:
a macroscopic scheme for macrovariables on a macrogrid and estimating the miss-
ing macroscopic data from the microscopic model. The efficiency of HMM lies in
the following two points: 1) its flexibility and 2) the ability to extract the miss-
ing macroscale data from microscale models with minimum cost, by exploiting scale
separation or other special features of the problems in study. In HMM framework,
the finite element method can be readily employed as the macroscopic solver. The
so-called heterogeneous multiscale finite element method (HMM-FEM) has been de-
veloped to solve (1.1); see [15, 16, 23, 28, 1, 4] and references therein. In HMM-FEM,
the missing macroscopic data is the effective matrix, which is obtained by solving the
microcell problems posed at the quadrature nodes employed in finite element method.

In practice, solving the cell problems numerically is the main computational cost
of HMM-FEM [22, 1], while the number of the cell problems is d times of that of the
macro quadrature nodes. Therefore, if we can reduce the number of the quadrature
nodes, the cost is decreased; even if the cell problems are computed in parallel, the
number of processors is reduced. Based on this observation, we propose two strategies
to reduce the number of cell problems without loss of accuracy. First, we introduce
two new numerical integration schemes which have fewer quadrature nodes in total
compared to the conventional numerical integration schemes in [16]. The new schemes
employ either the vertices of elements or points over the common edge of two adjacent
elements as the quadrature nodes. Second, we use a quadratic finite element method
instead of a linear finite element method as the macroscopic solver. In this way, we
need to solve fewer cell problems to obtain the same accuracy provided the solution is
smooth enough. This is confirmed by the results in section 3 and section 4. Though
using high order finite element methods for the macroscopic solver inHMM-FEM was
introduced and analyzed in [16], their numerical performance has not been evaluated
to date. The advantage of a higher-order macroscopic solver has been demonstrated
in [10] when discontinuous Galerkin method is employed as the macroscopic solver in
the HMM framework, though not in HMM-FEM.

Besides reduction of the number of the cell problems, an alternative approach to
reduce the cost is to avoid over-resolving the cell problems. Based on the optimal error
estimate of the proposed method, we present a strategy for refining the macro-micro
meshes as well as a criterion for determining the size of the microcell. Following this
principle, the cell problems with varied size are solved numerically with minimum
accuracy that may be sufficient for achieving the desired overall accuracy. Therefore,
the computational cost is significantly reduced. A refinement strategy for the macro-
micro meshes was proposed in [3, 2], which works for the cell problem with fixed cell
size.

The cell problems in HMM-FEM are usually approximated by linear finite ele-
ments [22]. The discretization error was carefully studied in [1] for the elliptic homog-
enization problem with periodic coefficients. Using a pseudo-spectral method as the
microscale solver was investigated in [4] to achieve nearly optimal computing com-
plexity. In both works, the cell problems are posed over a cell whose size is equal to
the exact period and supplemented with periodic boundary condition. The analysis
essentially relies on the explicit expression of the solutions of the cell problems; see
[1, (3.14)] and [4, (3.23)]. Such explicit expression is only available when the cell size
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is an integer multiple of the period. However, the exact period is usually unknown
due to the uncertainty of the input data [13, 8]. This means that the cell problems
are usually posed over a cell whose size is not necessarily an integer time of the pe-
riod, and hence we cannot expect the explicit expression of the solutions of the cell
problems in general. In this work we solve the cell problems with Dirichlet boundary
condition and the cell size is not an integer time of the period. Our analysis is based
on a new regularity result proved in the Appendix, and it covers the case when aε

is non-symmetric. The author in [2] studied the same case, while the error estimate
therein only applies to the case when aε is symmetric and under certain unjustified
smoothness assumptions on the solutions of the cell problems.

Following the framework established in [16], we prove the optimal error estimate
of the proposed method, which is also confirmed by extensive numerical examples.
Observe that the analysis in [16] essentially depends on the assumption that aε is a
symmetric matrix, while our analysis covers the case when aε is non-symmetric. This
is achieved by resorting to the adjoint problem used in H-convergence theory of [27].

The paper is organized as follows. In section 2, we introduce a HMM-FEM based
on two new numerical integration schemes. An error estimate of this method is proven
in section 3. Numerical results are reported in section 4 and conclusions are drawn in
the last section.

Most results in this paper apply to d dimensional problems. However, we focus
on the 2−d case for brevity of exposition.

Throughout this paper we use the standard notation Hk(D) for a Sobolev space
of order k with norm given by ‖·‖Hk(D); see e.g., [6] for exact definition. For k=0 we
write L2(D) instead of H0(D) and denote the norm and inner product by ‖·‖L2(D)

and (·, ·), respectively. The standard Euclidean norm will be denoted by ‖·‖.
The generic constant C is assumed to be independent of the parameters ε,δ,H

and h, whose meaning will be specified later.

2. HMM-FEM with novel numerical integration schemes

The macroscopic solver is chosen as the standard Pk element over a triangulation
TH of mesh size H, and the corresponding finite element space is denoted by XH [11].
The HMM solution UH ∈XH satisfies

AH(UH ,V )=(f,V ) for all V ∈XH , (2.1)

where the bilinear form AH is defined for any V,W ∈XH by

AH(V,W )≡
∑

K∈TH

|K|
L∑

ℓ=1

ωℓ

∫
−

Iδ(xℓ)

∇vεh(x) ·aε(x)∇wε
h(x)dx, (2.2)

where {xℓ}Lℓ=1 and {ωℓ}Lℓ=1 are the quadrature nodes and weights in K, |K| is the
volume of K, and the cell Iδ(xℓ) is a square of size δ centered at xℓ. Moreover, we
may replace Iδ(xℓ) by Iδ when no confusion occurs. The function wε

h is defined as
the solution of the following cell problem: wε

h−Wℓ∈Xh satisfies
∫

Iδ(xℓ)

∇z ·aε(x)∇wε
hdx=0 for all z∈Xh, (2.3)

where Wℓ≡W (xℓ)+(x−xℓ) ·∇W (xℓ) is the linear approximation of W at xℓ. The
microscopic finite element space Xh is defined by

Xh≡
{
v∈H1

0

(
Iδ(xℓ)

)
| v|K ∈P1(K), K ∈Th

}
,



866 HMM-FEM

where Th is the triangulation of Iδ(xℓ) of mesh size h. The function vεh is defined in
the same manner as wε

h with W replaced by V ∈XH .
According to [15, 16], the bilinear form AH can be understood as follows. For

any V,W ∈XH , at each xℓ, if we define a matrix AH by

(∇V ·AH∇W )(xℓ)≡
∫
−

Iδ(xℓ)

∇vεh(x) ·aε(x)∇wε
h(x)dx (2.4)

then the bilinear form can be rewritten as

AH(V,W )=
∑

K∈TH

QK(∇V ·AH∇W )

where QK is a quadrature scheme that approximates
∫
K
p for any function p as

QK(p)= |K|
L∑

ℓ=1

ωℓp(xℓ) with ωℓ>0, ℓ=1, . . . ,L.

The following condition for QK has been introduced in [16] to ensure the accuracy
of HMM-FEM:

QK(p)=

{∫
K
p(x)dx for all p∈P2k−2, k≥2,∫

K
p(x)dx for all p∈P1.

(2.5)

This condition immediately implies

QK(|∇V |2)=
∫

K

|∇V |2dx for all K ∈TH , V ∈XH . (2.6)

Numerical integration schemes satisfying (2.5) can be found in [26]. We list some
schemes for k=1,2 by specifying the quadrature nodes and the weights, and refer to
figure 2.1 for the location of the quadrature nodes.

1. Vertices-based integration scheme:

{ωℓ}3ℓ=1=
1

3
, {xℓ}3ℓ=1 are the vertices of K. (2.7)

2. Barycenter-based integration scheme:

ω=1, x is the barycenter of K. (2.8)

3. Edge-based integration scheme:

{ωℓ}3ℓ=1=
1

3
, {xℓ}3ℓ=1 are the middle points of each edge of K. (2.9)

4. Element-based integration scheme:

ω1=ω2=ω3=
1

3
,

x1=(2/3,1/6,1/6), x2=(1/6,2/3,1/6), x3=(1/6,1/6,2/3)
(2.10)

in the sense of barycentric coordinates [11].
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Figure 2.1. The dots are the quadrature nodes. The little squares are the microcells Iδ
centered at the quadrature nodes. Top left: scheme (2.7), top right: scheme (2.8); bottom
left: scheme (2.9), bottom right: scheme (2.10).

It is straightforward to verify that the above four schemes satisfy (2.5). There-
fore, all of them can be readily used in HMM-FEM. Indeed, the scheme (2.10) has
appeared in [16]. The schemes (2.8) and (2.9) are frequently used in practice, while
the schemes (2.7) and (2.10) introduced in [17, Theorem 2] seem rarely used. How-
ever, HMM-FEM based on (2.7) and (2.9) significantly reduce the cost without loss
of accuracy compared with the methods based on (2.8) and (2.10), respectively. This
observation is the main motivation of the present investigation and will be confirmed
by the theoretical and numerical results in the following two sections.

The cell problem (2.3) is supplemented with Dirichlet boundary condition. It may
be replaced by other boundary conditions such as periodic boundary condition (see
section 3) and Neumann boundary condition. Different boundary conditions have
pros and cons in practice. We refer to [28] for a systematic study of the influence
of various boundary conditions on the accuracy and efficiency of HMM-FEM. See
also [25] for related discussion from the mechanics point of view.

3. Error estimate of HMM-FEM

We first prove the following lemma that implies the existence and uniqueness of
the proposed methods. The proof essentially follows the same way of [16, Lemma 1.9]
with a minor modification since the matrix aε is not necessarily symmetric.

Lemma 3.1. Let AH be defined in (2.2). Then

AH(V,V )≥λ‖∇V ‖2L2(D) for all V ∈XH , (3.1)

and

|AH(V,W )|≤ Λ2

λ
‖∇V ‖L2(D)‖∇W‖L2(D) for all V,W ∈XH . (3.2)
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Proof. Noticing that vεh=Vℓ on ∂Iδ(xℓ) and ∇Vℓ is a constant vector in Iδ(xℓ),
we obtain

∫

Iδ(xℓ)

∇Vℓ ·∇(vεh−Vℓ)dx=0,

which immediately implies

‖∇vεh‖2L2(Iδ)
=‖∇(vεh−Vℓ)‖2L2(Iδ)

+‖∇Vℓ‖2L2(Iδ)
.

Using the ellipticity of aε, the above identity, and (2.6), we obtain

AH(V,V )≥λ
∑

K∈TH

|K|
|Iδ|

L∑

ℓ=1

ωℓ‖∇vεh‖2L2(Iδ)
≥λ

∑

K∈TH

|K|
|Iδ|

L∑

ℓ=1

ωℓ‖∇Vℓ‖2L2(Iδ)

=λ
∑

K∈TH

|K|
L∑

ℓ=1

ωℓ|∇V (xℓ)|2=λ
∑

K∈TH

QK(|∇V |2)=λ‖∇V ‖2L2(D).

This gives (3.1).
Taking z=wε

h−Wℓ in (2.3), we obtain

∫

Iδ(xℓ)

∇wε
h ·aε(x)∇wε

hdx=

∫

Iδ(xℓ)

∇Wℓ ·aε(x)∇wε
hdx,

which immediately implies

‖∇wε
h‖L2(Iδ)≤

Λ

λ
‖∇Wℓ‖L2(Iδ). (3.3)

Taking z=vεh−Vℓ in (2.3), we write AH for any V,W ∈XH as

AH(V,W )=
∑

K∈TH

|K|
|Iδ|

L∑

ℓ=1

ωℓ

∫

Iδ(xℓ)

∇Vℓ ·aε(x)∇wε
hdx.

Substituting the estimate (3.3) into the above equation and invoking (2.6) once again,
we obtain

|AH(V,W )|≤ Λ2

λ

∑

K∈TH

|K|
|Iδ|

L∑

ℓ=1

ωℓ‖∇Vℓ‖L2(Iδ)‖∇Wℓ‖L2(Iδ)

=
Λ2

λ

∑

K∈TH

|K|
L∑

ℓ=1

ωℓ|∇V (xℓ)||∇W (xℓ)|

≤ Λ2

λ

∑

K∈TH

Q
1/2
K (|∇V |2)Q1/2

K (|∇W |2)

=
Λ2

λ

∑

K∈TH

‖∇V ‖L2(K)‖∇W‖L2(K)

≤ Λ2

λ
‖∇V ‖L2(D)‖∇W‖L2(D),
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which gives (3.2).

A direct consequence of the estimates (3.1) and (3.2) is, for ξ∈R
2,

λ(ξ21+ξ22)≤
2∑

i,j=1

(AH)ij(xℓ)ξiξj ≤
Λ2

λ
(ξ21+ξ22),

which leads to the same lower and upper bounds as the H-limit of the effective matrix
A at every quadrature node xℓ; see [27]. If the matrix aε is symmetric, then the upper
bound Λ2/λ is replaced by Λ [16, 27].

Based on the above lemma, as in [16, Theorem 1.1], we obtain

Theorem 3.2. Let U0 and UH be the solutions of (1.2) and (2.1), respectively. Define

e(HMM)= max
K∈TH

xℓ∈K

‖(A−AH)(xℓ)‖.

If U0∈Hk+1(D) and (2.5) holds, then there exists C such that

‖U0−UH‖H1(D)≤C
(
Hk+e(HMM)

)
,

‖U0−UH‖L2(D)≤C
(
Hk+1+e(HMM)

)
.

So far no assumption on aε is necessary except for its ellipticity and bounded-
ness. Under such conditions the best result we know is e(HMM)→0 if ε→0 first
and δ→0, H→0 next provided that A(x) is continuous; see [14, Lemma 1.4] for
a proof. To get the exact convergence order of e(HMM), we have to make further
assumptions on the form of aε. In this paper, we assume that each entry of aε is a
locally periodic function, i.e., aεij(x)=aij(x,x/ε) and aij(x,y) is periodic in y with

period Y =(−1/2,1/2)2 for i,j=1,2. We refer to [16] for the estimate of e(HMM)
when aε is a random stationary field.

For the problem with locally periodic coefficients, the effective matrix A is given
by

Aij(x)=

∫
−

Y

(
aij+aik

∂χj

∂yk

)
(x,y)dy.

where the functions χ={χj}2j=1 are periodic in y with period Y and satisfy





∂

∂yi

(
aik

∂χj

∂yk

)
(x,y)=−

(
∂

∂yi
aij

)
(x,y) in Y,

∫

Y

χj(x,y)dy=0.

(3.4)

This cell problem is solvable due to (3.4)2 (see [9]). We assume that there exists C
such that for j=1,2, and s∈N

|Dα

y
χj(x,y)|≤C for all x∈D and y∈Y, |α|≤s, (3.5)

where α=(α1,α2) is a multi-index whose components αi are non-negative integers,
|α|=α1+α2, and Dα

y
=∂|α|/∂yα1

1 ∂yα2

2 .
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Theorem 3.3. If aij(x,y) is smooth in both x and y for i,j=1,2, and (3.5) is true

for s=1, then

e(HMM)≤C

(
δ+

ε

δ
+

h2

ε2

)
. (3.6)

Remark 3.4. If aε is strictly periodic, i.e., aεij(x)=aij(x/ε), and aij(y) is a periodic
function with period Y , or aε is locally periodic and aε=a(x,x/ε) is replaced by
aεℓ =a(xℓ,x/ε) in (2.3), then δ in the estimates (3.6) and (3.25) below may be dropped;
see (3.22) and also [5].

In order to prove (3.6), we define an auxiliary matrix ÃH by

(
∇V · ÃH∇W

)
(xℓ)=

∫
−

Iδ(xℓ)

∇v̂ε ·aεℓ∇ŵ εdx for all V, W ∈XH ,

where ŵ ε, v̂ε are defined respectively as: find ŵ ε−Wℓ∈H1
0 (Iδ) such that

∫

Iδ(xℓ)

∇z ·aεℓ∇ŵ εdx=0 for all z∈H1
0 (Iδ), (3.7)

and find v̂ε−Vℓ∈H1
0 (Iδ) such that

∫

Iδ(xℓ)

∇z ·aεℓ∇v̂εdx=0 for all z∈H1
0 (Iδ). (3.8)

We define w̃ε as the solution of the adjoint problem of (3.7) with aεℓ replaced by its
transpose (aεℓ)

t, and define ŵ ε
h ,w̃

ε
h∈Xh as the finite element approximation solutions

of ŵ ε and w̃ε, respectively. We also define ṽε, v̂ε
h, ṽ

ε
h in the same manner as w̃ε,ŵ ε

h ,w̃
ε
h,

respectively.
The first step is to bound ‖(A−ÃH)(xℓ)‖ for any xℓ∈K.

Lemma 3.5. Under the same condition of Theorem 3.3, we have, for any xℓ∈K,

‖(A−ÃH)(xℓ)‖≤C
ε

δ
. (3.9)

When aε is symmetric, the above estimate was proved in [16, Theorem 1.2].
However, a direct application of the argument leads to a suboptimal estimate of ‖(A−
ÃH)(xℓ)‖, which seems to contradict the numerical results summarized in figure 4.3.
We prove (3.9) by exploiting the adjoint problems of (3.7) and (3.8) and proceeding
along the same lines of [23, Theorem 1.2], which is essentially the same with [16,
Theorem 1.2].

Estimating ‖(A−ÃH)(xℓ)‖ consists of two steps. First, we estimate ‖(A−
Â)(xℓ)‖, where the matrix Â(xℓ) is defined by

(
∇V · Â∇W

)
(xℓ)=

∫
−

Iδ(xℓ)

∇V̂ ε ·aεℓ∇Ŵ ε for all V,W ∈XH ,

where

V̂ ε=Vℓ+ε(χℓ ·∇)Vℓ and Ŵ ε=Wℓ+ε(χℓ ·∇)Wℓ
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with χℓ=χ(xℓ,x/ε).

Second, we estimate ‖(Â−ÃH)(xℓ)‖, which is based on the following identity:
(
∇V ·

(
ÃH −Â

)
∇W

)
(xℓ)

=

∫
−

Iδ(xℓ)

[∇v̂ε ·aεℓ∇(ŵ ε−Ŵ ε)+∇(v̂ε− V̂ ε) ·aεℓ∇Ŵ ε]dx. (3.10)

Finally, the estimate of ‖(A−ÃH)(xℓ)‖ follows from the triangle inequality.
A straightforward calculation gives

∇·
(
aεℓ∇V̂ ε

)
=0 and ∇·

(
aεℓ∇Ŵ ε

)
=0. (3.11)

Define θε≡ ŵ ε−Ŵ ε, which satisfies
{
∇·(aεℓ∇θε )=0 in Iδ(xℓ),

θε=Wℓ−Ŵ ε on ∂Iδ(xℓ).
(3.12)

Lemma 3.6. Let θε be the solution of (3.12). Then

‖∇θε‖L2(Iδ)
≤C

( ε
δ

)1/2
‖∇Wℓ‖L2(Iδ)

. (3.13)

Proof. Denote by Iκε=xℓ+κεY , where κ is the integer part of δ/ε, i.e., κ=

⌊δ/ε⌋. Define a test function ϕ≡θε+(Ŵ ε−Wℓ)(1−ρε), where the cut-off function
ρε∈C∞

0 (Iδ), |∇ρε|≤C/ε, and

ρε(x)=

{
1, if dist(x,∂Iδ)≥2ε,

0, if dist(x,∂Iδ)≤ ε.

Multiplying both sides of (3.12)1 by ϕ, integrating by parts and using the fact that
ϕ∈H1

0 (Iδ), we have
∫

Iδ(xℓ)

∇θε ·aεℓ∇θεdx=

∫

Iδ(xℓ)

∇[(Wℓ−Ŵ ε)(1−ρε)] ·aεℓ∇θεdx.

By the ellipticity of aεℓ , we obtain

‖∇θε‖L2(Iδ)
≤ Λ

λ

∥∥∥∇[(Ŵ ε−Wℓ)(1−ρε)]
∥∥∥
L2(Iδ)

.

Using (3.5), we obtain
∥∥∥(Ŵ ε−Wℓ)∇(1−ρε)

∥∥∥
L2(Iδ)

≤C‖χ‖L∞(Y )‖∇Wℓ‖L2(Iδ\Iκε)

≤C
( ε
δ

)1/2
‖∇Wℓ‖L2(Iδ)

,

and
∥∥∥(1−ρε)∇(Ŵ ε−Wℓ)

∥∥∥
L2(Iδ)

≤C‖∇yχ‖L∞(Y )‖∇Wℓ‖L2(Iδ\Iκε)

≤C
( ε
δ

)1/2
‖∇Wℓ‖L2(Iδ)

.
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Combining the above two inequalities, we obtain

∥∥∥∇[(Ŵ ε−Wℓ)(1−ρε)]
∥∥∥
L2(Iδ)

≤C
( ε
δ

)1/2
‖∇Wℓ‖L2(Iδ)

, (3.14)

which gives (3.13).

The next lemma concerns the estimate of ‖(A−Â)(xℓ)‖ at any point xℓ.

Lemma 3.7. There exists C such that for any xℓ∈K,

‖(A−Â )(xℓ)‖≤C
ε

δ
. (3.15)

Proof. Integrating by parts with (3.11), we obtain

∫
−

Iκε

∇(V̂ ε−Vℓ) ·aεℓ∇Ŵ εdx=0.

Using the expressions of Ŵ ε and A, we obtain

∫
−

Iκε

∇Vℓ ·aεℓ∇Ŵ εdx=∇Vℓ ·A(xℓ)∇Wℓ.

It follows from the above two equations that

∫
−

Iκε

∇V̂ ε ·aεℓ∇Ŵ εdx=∇Vℓ ·A(xℓ)∇Wℓ.

By the definition of Â, we have

(
∇V ·

(
A−Â

)
∇W

)
(xℓ)

=

(
1− |Iκε|

|Iδ|

)∫
−

Iκε

∇V̂ ε ·aεℓ∇Ŵ εdx− 1

|Iδ|

∫

Iδ\Iκε

∇V̂ ε ·aεℓ∇Ŵ εdx

=

(
1− |Iκε|

|Iδ|

)
∇Vℓ ·A(xℓ)∇Wℓ−

1

|Iδ|

∫

Iδ\Iκε

∇V̂ ε ·aεℓ∇Ŵ εdx.

In view of (3.5) and the definitions of V̂ ε and Ŵ ε, we have

∥∥∥∇V̂ ε
∥∥∥
L2(Iδ\Iκε)

≤C ‖∇Vℓ‖L2(Iδ\Iκε)
≤C

( ε
δ

)1/2
‖∇Vℓ‖L2(Iδ)

, (3.16)

and similarly,

∥∥∥∇Ŵ ε
∥∥∥
L2(Iδ\Iκε)

≤C
( ε
δ

)1/2
‖∇Wℓ‖L2(Iδ)

. (3.17)

Using the above estimates and the ellipticity of A, we obtain

∣∣∣
(
∇V ·

(
A−Â

)
∇W

)
(xℓ)

∣∣∣≤C
ε

δ
|∇Vℓ||∇Wℓ|,

which in turn implies (3.15).
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Now we bound ‖(ÃH −Â )(xℓ)‖ for any xℓ∈K. The proof is based on the iden-
tity (3.10).

Lemma 3.8. There exists C such that

‖(ÃH −Â)(xℓ)‖≤C
ε

δ
. (3.18)

Proof. Define a test function ϕ≡ v̂ε− V̂ ε+(V̂ ε−Vℓ)(1−ρε), where ρε is defined
in Lemma 3.6. Multiplying both sides of (3.11) by ϕ, integrating by parts and using
the fact that ϕ∈H1

0 (Iδ), we obtain

∫
−

Iδ(xℓ)

∇(v̂ε− V̂ ε) ·aεℓ∇Ŵ εdx=

∫
−

Iδ(xℓ)

∇[(Vℓ− V̂ ε)(1−ρε)] ·aεℓ∇Ŵ εdx.

Using (3.17) and (3.14), we obtain

∣∣∣∣∣

∫
−

Iδ(xℓ)

∇(v̂ε− V̂ ε) ·aεℓ∇Ŵ εdx

∣∣∣∣∣≤C
ε

δ
|∇Vℓ||∇Wℓ|. (3.19)

Using the fact that ṽε= v̂ε on ∂Iδ(xℓ), integrating by parts with (3.12)1 we obtain

∫
−

Iδ(xℓ)

∇v̂ε ·aεℓ∇(ŵ ε−Ŵ ε)dx=

∫
−

Iδ(xℓ)

∇ṽε ·aεℓ∇(ŵ ε−Ŵ ε)dx

=

∫
−

Iδ(xℓ)

∇(ŵ ε−Ŵ ε) ·(aεℓ)t∇ṽεdx

=

∫
−

Iδ(xℓ)

∇[(Wℓ−Ŵ ε)(1−ρε)] ·(aεℓ)t∇ṽεdx.

Let Ṽ ε=Vℓ+ε(χ̃ℓ ·∇)Vℓ, where χ̃ℓ is the solution of (3.4) with a(x,y) replaced by
(a(xℓ,y))

t
. By (3.13) and (3.16), we obtain

‖∇ṽε‖L2(Iδ\Iκε)
≤
∥∥∥∇(ṽε− Ṽ ε)

∥∥∥
L2(Iδ)

+
∥∥∥∇Ṽ ε

∥∥∥
L2(Iδ\Iκε)

≤C
( ε
δ

)1/2
‖∇Vℓ‖L2(Iδ)

,

which together with (3.14) gives

∣∣∣∣∣

∫
−

Iδ(xℓ)

∇v̂ε ·aεℓ∇(ŵ ε−Ŵ ε)dx

∣∣∣∣∣≤
Λ

|Iδ|
∥∥∥∇[(Wℓ−Ŵ ε)(1−ρε)]

∥∥∥
L2(Iδ)

‖∇ṽε‖L2(Iδ\Iκε)

≤C
ε

δ
|∇Vℓ||∇Wℓ|.

Combining the above estimate with (3.19), we get (3.18).

Proof of Lemma 3.5. The estimate (3.9) follows from (3.15) and (3.18).

It remains to bound ‖(AH −ÃH)(xℓ)‖, which concerns the accuracy of the mi-
croscopic solver. The main ingredient is the following regularity result:

Lemma 3.9. Let ŵ ε−Wℓ∈H1
0 (Iδ) satisfy (3.7). Then there exists C that is indepen-

dent of ε and δ such that

‖∇ŵ ε‖Hm(Iδ)≤Cε−m‖∇Wℓ‖L2(Iδ)
, m=0,1. (3.20)



874 HMM-FEM

The estimate (3.20) is quite standard except that the constant C is independent
of the cell size δ. In the appendix we provide a proof that is based on the second

fundamental inequality for the elliptic operator [19].

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. The proof is based on the following identity:

(
∇V ·

(
AH −ÃH

)
∇W

)
(xℓ)

=

∫
−

Iδ(xℓ)

[∇vεh ·(aε−aεℓ)∇wε
h+∇vεh ·aεℓ∇(wε

h− ŵ ε
h)]dx

+

∫
−

Iδ(xℓ)

[∇vεh ·aεℓ∇ŵ ε
h −∇v̂ε ·aεℓ∇ŵ ε]dx. (3.21)

It follows from the definitions of wε
h and ŵ ε

h that

λ‖∇(wε
h− ŵ ε

h)‖2L2(Iδ)
≤
∫

Iδ(xℓ)

∇(wε
h− ŵ ε

h) ·aεℓ∇(wε
h− ŵ ε

h)dx

=

∫

Iδ(xℓ)

∇(wε
h− ŵ ε

h) ·aεℓ∇wε
hdx

=

∫

Iδ(xℓ)

∇(wε
h− ŵ ε

h) ·(aεℓ−aε)∇wε
hdx.

If a(x,y)∈C0,1(D;L∞(Y )), then

‖∇(wε
h− ŵ ε

h)‖L2(Iδ)
≤Cδ‖∇wε

h‖L2(Iδ)
≤Cδ‖∇Wℓ‖L2(Iδ)

,

where we have used the estimate (3.3) for wε
h. Using the above inequality, we bound

the first term in (3.21) as

∣∣∣∣∣

∫
−

Iδ(xℓ)

[∇vεh ·(aε−aεℓ)∇wε
h+∇vεh ·aεℓ∇(wε

h− ŵ ε
h)]dx

∣∣∣∣∣≤Cδ|∇Vℓ||∇Wℓ|. (3.22)

Taking z= ṽε
h− v̂ε∈H1

0 (Iδ) in (3.7), we obtain

∫

Iδ(xℓ)

∇v̂ε ·aεℓ∇ŵ εdx=

∫

Iδ(xℓ)

∇ṽε
h ·aεℓ∇ŵ εdx.

Similarly,

∫

Iδ(xℓ)

∇(ŵ ε
h − ŵ ε) ·(aεℓ)t∇ṽεdx=0.

Setting z= ṽε
h−vεh∈Xh in the variational formulation for ŵ ε

h , which is defined in the
same manner as (2.3) with aε replaced by aεℓ , we have

∫

Iδ(xℓ)

∇vεh ·aεℓ∇ŵ ε
h dx=

∫

Iδ(xℓ)

∇ṽε
h ·aεℓ∇ŵ ε

h dx.
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It follows from the above three equations that
∫
−

Iδ(xℓ)

[∇vεh ·aεℓ∇ŵ ε
h −∇v̂ε ·aεℓ∇ŵ ε]dx=

∫
−

Iδ(xℓ)

∇ṽε
h ·aεℓ∇(ŵ ε

h − ŵ ε)dx

=

∫
−

Iδ(xℓ)

∇(ŵ ε
h − ŵ ε) ·(aεℓ)t∇ṽε

hdx

=

∫
−

Iδ(xℓ)

∇(ŵ ε
h − ŵ ε) ·(aεℓ)t∇(ṽε

h− ṽε)dx. (3.23)

Using the standard error estimate for linear finite elements and the regularity esti-
mate (3.20), we obtain

‖∇(ŵ ε− ŵ ε
h)‖L2(Iδ)

≤C
h

ε
‖∇Wℓ‖L2(Iδ)

, ‖∇(ṽε− ṽε
h)‖L2(Iδ)

≤C
h

ε
‖∇Vℓ‖L2(Iδ)

,

which leads to∣∣∣∣∣

∫
−

Iδ(xℓ)

[∇vεh ·aεℓ∇ŵ ε
h −∇v̂ε ·aεℓ∇ŵ ε]dx

∣∣∣∣∣≤C
h2

ε2
|∇Vℓ||∇Wℓ|.

This together with (3.22) implies

‖(ÃH −AH)(xℓ)‖≤C

(
δ+

h2

ε2

)
.

Combining the above estimate and (3.9), we obtain (3.6).

When the cell problem (2.3) is supplemented with the periodic boundary condi-
tion, the microscopic finite element space Xh is defined as

Xh≡
{
v∈H1

# (Iδ(xℓ)) | v|K ∈Pk′(K), K ∈Th, and
∫

Iδ(xℓ)

vdx=0

}
, (3.24)

where H1
# (Iδ(xℓ)) is the closure of C∞

# (Iδ(xℓ)) for the H1 norm, and C∞
# (Iδ(xℓ)) is

the subset of C∞(Iδ(xℓ)) of Iδ(xℓ)−periodic functions [12].

Corollary 3.10. Let δ=Nε with N an integer, and solve (2.3) with a periodic

boundary condition. If Assumption (3.5) holds true for s=k′+1, then

e(HMM)≤C

(
δ+

(
h

ε

)2k′
)
. (3.25)

Proof. It is easy to check that

ŵ ε=Wℓ+ε(χℓ ·∇)Wℓ and ŵ ε
h =Wℓ+ε(χh

ℓ ·∇)Wℓ,

where χh
ℓ is the finite element approximation of χℓ associated with Problem (3.4)

and the finite element space Xh defined in (3.24). It follows from the standard finite
element error estimate and (3.5) that

‖∇(ŵ ε− ŵ ε
h)‖L2(Iδ)

= ε
∥∥∇(χℓ−χh

ℓ )
∥∥
L2(Iδ)

|∇Wℓ|

≤Cεhk′

∥∥∥∇k′+1χℓ

∥∥∥
L2(Iδ)

|∇Wℓ|

≤Cεhk′‖∇k′+1χℓ‖L∞(Y )‖∇Wℓ‖L2(Iδ)

≤C

(
h

ε

)k′

‖∇Wℓ‖L2(Iδ)
. (3.26)
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Since ŵ ε=Ŵ ε and δ=Nε, we have

(∇V ·A∇W )(xℓ)=

∫
−

Iδ(xℓ)

∇v̂ε ·aεℓ∇ŵ εdx.

Replacing ÃH by A in (3.21), proceeding along the same lines that lead to (3.23),
and using (3.26), we obtain (3.25).

In [1, 2], Assyr proved (3.25) for the case when aε=(aε)t,δ= ε,aεℓ in place of aε

and the periodic boundary condition is employed in the cell problem (2.3), i.e., he
proved

e(HMM)≤C(h/ε)2k
′

.

Remark 3.11. We have proved Theorem 3.3 under the assumption (3.5), which is
quite common in the analysis of HMM [16, 23, 1]. In case of s=1, it has been proved
to be true for certain interesting cases (see [20]). However, this assumption is not true
for real composite materials [7], even for s=1. Actually, this assumption has been
removed recently by the authors in [14].

4. Numerical examples

Let the domain D be a unit square (0,1)2. We firstly triangulate D into N×N
squares and then divide each square into two sub-triangles along its diagonal with
positive slope. Similarly, we triangulate each microcell into M × M squares and then
divide each square into two sub-triangles along its diagonal with positive slope; see
figure 4.1. We solve (1.1) with HMM-FEM (2.1), and the resulting linear systems are
solved by a parallel sparse direct solver MUMPS [24]. Total CPU time is recorded
on the SGI Origin3800 as a measure of the computational cost. We emphasize that
the CPU time instead of the total number of the degrees of freedom is used as the
a measure of cost since the dominant cost in HMM-FEM is the cost on numerically
solving the cell problem. Other costs are negligible; see [22, 1].

Macro mesh

Micro mesh

Figure 4.1. Schematic showcase of triangulation over D and microcell that is located at
the vertex. The total number of microcells for the schemes (2.7), (2.8), (2.9), and (2.10) are
25,32,56, and 96, respectively.

It is more transparent to reshape the error estimates in Theorems 3.2 and 3.3 in
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terms of N and M . For k=1,2,

‖U0−UH‖H1(D)≤C
(
N−k+e(HMM)

)
, (4.1)

‖U0−UH‖L2(D)≤C
(
N−(k+1)+e(HMM)

)
, (4.2)

e(HMM)≤C
(
δ+

ε

δ
+M ′−2

)
, (4.3)

whereM ′≡Mε/δ, which signals the resolution per wave length and the term δ+ε/δ in
the right-hand side of e(HMM) represents the error caused by estimating the effective
matrix. The term ε/δ is dubbed as the resonance error by the authors in [18].

As a starting point, we investigate the accuracy of the microscopic solver and
order of the resonance error through the following example.

Example 4.1. Consider the following matrix aε that is non-symmetric and each

entry is a strictly periodic function.

a(x/ε)=



5+

3

2
cos

2πx1

ε
2+sin

2πx1

ε

3+2cos
2πx1

ε
6+2sin

2πx1

ε




with ε=1/100.

Using [12, Theorem 5.10], a direct calculation gives the explicit formula of the
effective matrix as

A=




√
91

2
2

2
√
91

3
− 11

3
6


 .

In practice, we take Wℓ as the canonical basis xi=ei ·x in (2.3) and each entry
of AH is evaluated by (2.4).

Accuracy of microscopic solver. Choose δ= ε and solve the cell problem (2.3)
with periodic boundary conditions: find φε

i −xi∈Xh such that

∫

Iδ

∇z ·a(x/ε)∇φε
i dx=0 for all z∈Xh. (4.4)

The effective matrix AH is given by

(
AH

)
ij
=ei ·AHej =∇xi ·AH∇xj =

∫
−

Iδ

∇φε
i ·a(x/ε)∇φε

j dx. (4.5)

The estimate (3.25) changes to

e(HMM)≤CM−2k′

.

Adopting different micro mesh sizes, we obtain the log−log plot of e(HMM) in terms
of M for k′=1,2. figure 4.2 confirms the sharpness of the above estimate.

Order of the resonance error. Choose δ=Lε, where L is not necessarily an integer.
The cell problems are solved over a 1024×1024 mesh by linear finite elements with a
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Figure 4.2. Accuracy of the microscopic solvers. Left: P1; Right: P2.

Dirichlet boundary condition, and AH is computed by (4.5). The estimate (4.3) now
changes to

e(HMM)≤C(L−1+L2M−2), M =1024.

Obviously, the dominant term in the right hand side of e(HMM) is O(L−1). Adopting
different cell sizes, we obtain the log−log plot of e(HMM) in terms of L. By figure 4.3,
we can see the clear first order convergence that is conforming with the above estimate.

10
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10
1

10
210

−2

10
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10
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L

e(
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M
M
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 Dirichlet
least square

Slope = −1

Figure 4.3. Order of the resonance error.

Next we study the effect of different numerical integration schemes and different
macroscopic solvers. Solve (1.1) with

Example 4.2.





a(x,x/ε)=
(R1+R2 sin(2πx1))(R1+R2cos(2πx2))(
R1+R2 sin

2πx1

ε

)(
R1+R2 sin

2πx2

ε

)I,

f =1, u=0 on ∂D,

(4.6)

where I is the identity matrix of order 2 and ε=1/100. This coefficient is taken
from [18]. A direct calculation gives the explicit formula of the effective matrix as

A(x1,x2)=
(R1+R2 sin(2πx1))(R1+R2 cos(2πx2))

R1

√
R2

1−R2
2

I.
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We take R1=2.5 and R2=1.5 in the simulation. We compute U0 by solving (1.2)
with the above expression of A over a 256×256 mesh with linear finite elements.
To obtain UH , we let δ= ε and solve the cell problems (2.3) with periodic boundary
condition as in (4.4). The coefficient a(x,x/ε) in (2.3) is replaced by a(xℓ,x/ε). For
convenience, we will use the notation “Pk−type of numerical integration scheme” to
describe the solvers. Using (4.1), (4.2), and Corollary 3.10, we have, for k=1,2,

‖U0−UH‖H1(D)≤C
(
N−k+M−2

)
,

‖U0−UH‖L2(D)≤C
(
N−(k+1)+M−2

)
.

The above estimate suggests the following refinement strategy on the microcell:

M =

{
Nk/2 H1 error,

N (k+1)/2 L2 error.
(4.7)

We note that the same strategy has been proposed in [1] when k=1. We report the
results in Tables 4.1–4.4, which are based on the above choice. For clarity of the
comparison between the P1 and P2 macro solvers, we choose the number of the macro
sampling points N as listed in the tables below.

Table 4.1. Relative error ‖UH −U0‖H1(D)/‖U0‖H1(D) and CPU time (in second) of

P1−vertices vs. P1−barycenter for the parameters δ= ε=1/100. R is the CPU time ratio.

P1−vertices P1−barycenter

N M H1 error CPU(s) H1 error CPU(s) R
16 4 0.40E-01 8 0.32E-01 14 1.75
64 8 0.11E-01 155 0.10E-01 300 1.94
256 16 0.26E-02 5320 0.26E-02 10560 1.98

Table 4.2. Relative error ‖UH −U0‖H1(D)/‖U0‖H1(D) and CPU time (in second) of P2−edge

vs. P2−element for the parameters δ= ε=1/100. R is the CPU time ratio.

P2−edge P2−element

N M H1 error CPU(s) H1 error CPU(s) R
4 4 0.31E-01 1.5 0.42E-01 2.6 1.73
8 8 0.11E-01 7.6 0.10E-01 14 1.84
16 16 0.26E-02 64 0.27E-02 123 1.92

It follows from Tables 4.1–4.4 that the cost of P1−vertices and P2− edge solvers is
approximately one half of the P1−barycenter and P2−element, respectively. The cost
is reduced because the information obtained from the cells located at the common
quadrature nodes can be shared. The saving is about one half due to the following
simple argument: for a regular triangulation over a general planar bounded domain,
the ratio among the total number of vertices, elements and edges is approximately
1 : 2 : 3 [26]; see e.g., figure 4.1.

Figure 4.4 shows the CPU time for different macroscopic solvers when they reach
the same accuracy. It is clear that P2 solver is more cost-effective than P1 solver, i.e.,
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Table 4.3. Relative error ‖UH −U0‖L2(D)/‖U0‖L2(D) and CPU time (in second) of

P1−vertices vs. P1−barycenter for the parameters δ= ε=1/100. R is the CPU time ratio.

P1−vertices P1−barycenter

N M L2 error CPU(s) L2 error CPU(s) R
8 8 0.28E-01 3.0 0.28E-01 4.7 1.57
64 64 0.47E-03 3336 0.51E-03 6458 1.94

Table 4.4. Relative error ‖UH −U0‖L2(D)/‖U0‖L2(D) and CPU time (in second) of P2−edge

vs. P2−element for the parameters δ= ε=1/100. R is the CPU time ratio.

P2−edge P2−element

N M L2 error CPU(s) L2 error CPU(s) R
4 8 0.16E-01 2.1 0.14E-01 3.6 1.71
16 64 0.22E-03 631 0.20E-03 1210 1.92

it requires less CPU time to achieve the same accuracy. We also observe that the
advantage of P2 solver is more pronounced if the error is measured in the H1 norm.
This can be seen from the following simple argument. The total number of numerical
integration nodes is almost N2 for P1−vertices and 3N for P2−edge if the error is
measured in H1 norm; while the total number of numerical integration nodes changes
to N2 for P1−vertices and 3N4/3 for P2−edge if the error is measured in L2 norm.

Remark 4.1. It is clear that the higher order macroscopic solver is preferred if the so-
lution U0 is smooth enough. However, high order microscopic solver is not preferred
since the solution of the cell problem is usually nonsmooth due to the microstruc-
ture inside the cell; see Remark 3.11. Therefore, numerical methods tailored to the
microstructure are required to achieve better efficiency. We refer to [21] and the ref-
erences therein for the related discussion on the periodic homogenization problem.

In most of the above examples, we have chosen δ= ε and solved the cell problem
with periodic boundary conditions. However, this is unrealistic since the exact period
ε is in general unknown due to the measuring error and uncertainty [13]. We turn to
the case when L= δ/ε /∈N as advocated in [16, 22], and study the following two-scale
periodic homogenization problem that is taken from [22].

Example 4.3.




a(x,x/ε)=

(
1.5+sin(2πx1/ε)

1.5+sin(2πx2/ε)
+

1.5+sin(2πx2/ε)

1.5+cos(2πx1/ε)
+sin(4x2

1x
2
2)+1

)
I,

f =10, u=0 on ∂D,

(4.8)

where ε=1/100. There is no explicit formula of the effective matrix in contrast
to (4.6). The homogenized solution U0 is computed with a P1−vertices solver on a
256×256 macro mesh. The cell problem (2.3) is solved on a 100×100 micro mesh
with δ= ε and periodic boundary condition. We also employ P1−vertices solver to
compute UH , and solve the cell problems (2.3) with a Dirichlet boundary condition.
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Figure 4.4. CPU time (in seconds) for different solvers at the same accuracy in dif-
ferent relative norm with δ=ε=1/100. Left: ‖UH −U0‖H1(D)/‖U0‖H1(D); Right: ‖UH −
U0‖L2(D)/‖U0‖L2(D).

In both cases, we replace the coefficient a(x,x/ε) in the cell problem by a(xℓ,x/ε).
The estimates (4.1) and (4.2) change to

‖U0−UH‖H1(D)≤C
(
N−1+L−1+L2M−2

)
,

‖U0−UH‖L2(D)≤C
(
N−2+L−1+L2M−2

)
,

which suggest the following strategy of refining the macro-micro meshes and a criterion
for determining the size of the microcell:

{
L=N, M =N3/2, H1 error,

L=N2, M =N3, L2 error.
(4.9)

The refinement strategy is understood as follows: in terms of H1 error, the microcell
size is doubly enlarged, the macro-micro meshes are doubly and triply (2

√
2) refined,

respectively; in terms of L2 error, the microcell size is four times enlarged and the
macro-micro meshes are refined to the ratio of 2 and 8, respectively. This seems the
best refinement strategy for the optimal convergence rate with minimal computational
cost, since the error estimates (4.1) and (4.2) are sharp. We summarize the results
in Tables 4.5 and 4.6 (in the first three rows), which clearly illustrate the first and
second order of convergence for the relative H1 and L2 error, respectively.

Table 4.5. Relative error ‖UH −U0‖H1(D)/‖U0‖H1(D) with P1−vertices solver for ε=1/100
when macro, micro sampling points N,M are increased and the microcell size δ is enlarged simul-
taneously.

N δ/ε M H1 error order
4 100/24 8 0.58E-01
8 100/12 25 0.31E-01 0.90
16 100/6 64 0.16E-01 0.95

4 100/64 4 0.60E-01
8 100/32 10 0.33E-01 0.86
16 100/16 25 0.15E-01 1.14

In view of the results in the above tables, the error is even decreased when the
cell size is larger than the macro element size as predicted by the theoretical results
in Theorems 3.2 and 3.3; see figure 4.5.



882 HMM-FEM

Table 4.6. Relative error ‖UH −U0‖L2(D)/‖U0‖L2(D) with P1−vertices solver for ε=1/100
when macro, micro sampling points N,M are increased and the microcell size δ is enlarged simul-
taneously.

N δ/ε M L2 error order
2 100/24 8 0.11E-00
4 100/6 64 0.37E-01 1.57
8 100/1.55 512 0.10E-01 1.89

2 100/64 4 0.13E-00
4 100/16 32 0.46E-01 1.50
8 100/4 256 0.14E-01 1.72

K

Iδ

Figure 4.5. Showcase of the microcell used in Example 4.3. It is larger than the macro
element.

It was pointed out in [18] that the constant in front of the resonance error O(L−1)
is much smaller than the constants in front of other terms in the error bound. The
same phenomenon was observed in HMM-FEM. Therefore, we may begin with a
smaller microcell in the refinement strategy (4.9). It follows from the last three lines
of Tables 4.5 and 4.6 that the same order of convergence can be retained even with a
much smaller L and M . Therefore, the cost is even reduced.

Let us compare the mesh refinement strategies for the different choices of cell size.
If we consider the H1 error and δ= ε, then the microcell should be refined to the ratio
of

√
2 to achieve the optimal accuracy according to (4.7). However, for the general

case when δ/ε /∈N, the microcell should be almost triply refined. Otherwise, the mi-
crostructures inside each cell has not been fully resolved and the optimal convergence
rate can not be guaranteed. The same scenario happens for the L2 error.

Now we come to the global phase of the accuracy of HMM-FEM. In all examples
studied, we fixed the slow variable of the coefficients to solve the cell problem, namely,
the coefficient a(x,x/ε) is replaced by a(xℓ,x/ε). Therefore, the term δ disappears
from e(HMM). This is not the case in general. If the term O(δ) appears in e(HMM),
then the overall accuracy threshold is of O(

√
ε). The strategy (4.9) can still be used

to refine the macro-micro meshes under this threshold. In the future, we will develop
methods to improve the order of the term O(δ), which may be achieved by employing
certain special average methods in the evaluation of the effective matrix; see e.g., [15].
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5. Conclusion and discussion

We have proposed two new numerical integration schemes in the framework of
HMM-FEM. Compared with the numerical integration schemes commonly used in
HMM-FEM, the proposed methods significantly reduce the cost while retaining the
accuracy. Optimal error estimates are proven, which generalize the previous estimates
to the non-self-adjoint elliptic problems. The technique developed in this paper can
be employed to obtain improved error estimates for the parabolic homogenization
problems [23]. Our sharp estimates also give a natural refinement strategy for the
microscopic and macroscopic solvers. Based on this refinement strategy, extensive
numerical experiments are performed, and the results are in good agreement with the
theoretical prediction.

Future work will involve the extension of the new numerical integration schemes
to three-dimensional problems in which the computational cost saving is more pro-
nounced. Equally interesting problem is to study the random homogenization prob-
lems. The first step is to prove the sharp bound for e(HMM), which is highly non-
trivial. The development and analysis of the new numerical integration schemes for
HMM-DG is also promising.

Acknowledgement. The authors are grateful to professors W. E and X.-Y. Yue
for helpful discussions.

Appendix A. Proof of Lemma 3.9.

Proof of (3.20).
In case of m=0, the estimate (3.20) can be obtained in the same manner as the

estimate (3.3) for wε
h.

Define wε
1≡ ŵ ε−Wℓ. It is clear that w

ε
1 satisfies

{
L(wε

1)=F in Iδ,

wε
1=0 on ∂Iδ,

(A.1)

where

L(wε
1)=−(aεℓ)ij

∂2wε
1

∂xi∂xj
and F =

∂(aεℓ)ij
∂xi

∂ŵ ε

∂xj
.

Integrating by parts, we obtain

∫

Iδ

|L(wε
1)|2dx=

∫

Iδ

(aεℓ)ij(a
ε
ℓ)kl

∂2wε
1

∂xi∂xj

∂2wε
1

∂xk∂xl
dx

=

∫

Iδ

(aεℓ)ij(a
ε
ℓ)kl

∂2wε
1

∂xi∂xk

∂2wε
1

∂xj∂xl
dx

−
∫

Iδ

∂

∂xj

(
(aεℓ)ij(a

ε
ℓ)kl
)∂wε

1

∂xi

∂2wε
1

∂xk∂xl
dx

+

∫

Iδ

∂

∂xk

(
(aεℓ)ij(a

ε
ℓ)kl
)∂wε

1

∂xi

∂2wε
1

∂xj∂xl
dx+

∫

∂Iδ

I(s)dσ,

where the line integrand I(s) is defined as

I(s)≡ (aεℓ)ij(a
ε
ℓ)kl

∂wε
1

∂xi

[
∂2wε

1

∂xk∂xl
nj−

∂2wε
1

∂xj∂xl
nk

]
,
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where nj is the j−th component of the outward unit normal of ∂Iδ. By [19, p. 151]
and the fact that Iδ is convex, we have

∫

∂Iδ

I(s)dσ≥0.

This together with the ellipticity of aεℓ leads to

∫

Iδ

|L(wε
1)|2dx≥λ2

∫

Iδ

|D2wε
1|2dx−2Λ‖∇aεℓ‖L∞(D)

∫

Iδ

|∇wε
1D

2wε
1|dx

≥ λ2

2

∫

Iδ

|D2wε
1|2dx− 2Λ2

λ2
‖∇aεℓ‖2L∞(D)

∫

Iδ

|∇wε
1|2dx.

It follows from (A.1) that

∥∥D2wε
1

∥∥2
L2(Iδ)

≤ 4Λ2

λ4
‖∇aεℓ‖2L∞(D)‖∇wε

1‖2L2(Iδ)
+

2

λ2
‖F‖2L2(Iδ)

≤ 4Λ2

λ4
‖∇aεℓ‖2L∞(D)‖∇wε

1‖2L2(Iδ)
+

2

λ2
‖∇aεℓ‖2L∞(D)‖∇ŵ ε‖2L2(Iδ)

≤ Λ2

λ4
‖∇aεℓ‖2L∞(D)

(
4‖∇wε

1‖2L2(Iδ)
+2‖∇Wℓ‖2L2(Iδ)

)
. (A.2)

Taking z=wε
1 in (3.7), we obtain

∫

Iδ(xℓ)

∇wε
1 ·aεℓ∇wε

1dx=−
∫

Iδ(xℓ)

∇wε
1 ·aεℓ∇Wℓdx,

which implies

‖∇wε
1‖L2(Iδ)

≤ Λ

λ
‖∇Wℓ‖L2(Iδ)

.

Substituting the above inequality into (A.2), we obtain

∥∥D2wε
1

∥∥2
L2(Iδ)

≤
(
2Λ2/λ4+4Λ4/λ6

)
‖∇aεℓ‖2L∞(D)‖∇Wℓ‖2L2(Iδ)

.

Using the fact that ‖∇aεℓ‖L∞(D)≤C/ε, we obtain

∥∥D2wε
1

∥∥
L2(Iδ)

≤Cε−1‖∇Wℓ‖L2(Iδ)
,

where C only depends on λ,Λ and ‖a(xℓ,y)‖C1(Y ). Therefore we obtain (3.20) with
m=1.
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