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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE FULL

COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE HALF
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Abstract. The one-dimensional motion of compressible viscous and heat-conductive fluid is
investigated in the half space. By examining the sign of fluid velocity prescribed on the boundary,
initial boundary value problems with Dirichlet type boundary conditions are classified into three
cases: impermeable wall problem, inflow problem and outflow problem. In this paper, the asymptotic
stability of the rarefaction wave, boundary layer solution, and their combination is established for
both the impermeable wall problem and the inflow problem under some smallness conditions. The
proof is given by an elementary energy method.
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1. Introduction

The one-dimensional full compressible Navier-Stokes equations in Eulerian coor-
dinate is given by























ρ̃t +(ρ̃ũ)x̃ =0,

(ρ̃ũ)t +(ρ̃ũ2 + p̃)x̃ =µũx̃x̃,
(

ρ̃

(

ẽ+
ũ2

2

))

t

+

(

ρ̃ũ

(

ẽ+
ũ2

2

)

+ p̃ũ

)

x̃

=κθ̃x̃x̃ +(µũũx̃)x̃,

(1.1)

where ũ(x̃,t) denotes the velocity, ρ̃(x̃,t)>0 the density, θ̃(x̃,t)>0 the absolute tem-
perature, µ>0 the viscosity constant, and κ>0 the coefficient of heat conduction.
The pressure p̃, the internal energy ẽ, and the entropy s̃ are functions of ρ̃ and θ̃ or
functions of ṽ and θ̃, where ṽ= 1

ρ̃
is the specific volume. Since there are only two

independent variables, p̃ and ẽ are also regarded as functions of ṽ and s̃. We denote

p̃= p̃(ṽ, θ̃)= p̂(ṽ, s̃), ẽ= ẽ(ṽ, θ̃)= ê(ṽ, s̃).

We assume that

p̃ṽ<0, ẽθ̃>0, p̂ṽṽ>0,

p̂(ṽ, s̃) is a convex function of (ṽ, s̃),
(1.2)

which together with the thermodynamic relation

dẽ= θ̃ds̃− p̃dṽ (1.3)
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ensures the inviscid system of (1.1) is strictly hyperbolic and each characteristic field is
either genuinely nonlinear or linearly degenerate. It is noted that the ideal polytropic
gas satisfies this assumption (1.2).

We consider the motion of a gas in the half space x̃>0. Our initial data is

(ρ̃,ũ, θ̃)(x̃,0)=(ρ̃0,ũ0, θ̃0)(x̃)→ (ρ+,u+,θ+), as x̃→∞. (1.4)

As pointed out by [8], boundary conditions of Dirichet type for (1.1) are classified
into three cases:

Case 1. (zero velocity on the boundary):

ũ(0,t)=u− =0, θ̃(0,t)=θ−,t>0, (1.5)1

Case 2. (negative velocity on the boundary):

ũ(0,t))=u−<0, θ̃(0,t)=θ−, t>0, (1.5)2

Case 3. (positive velocity on the boundary):

ũ(0,t)=u−>0, ρ̃(0,t)=ρ−, θ̃(0,t)=θ−,t>0. (1.5)3

We assume that the initial data satisfies one of (1.5) as compatibility condition. It is
noted that in cases 1 and 2, the density on the boundary can not be imposed, but in
case 3 it has to be imposed so that the first equation of (1.1) is well posed. The initial
boundary value problems (1.1)−(1.5)1, (1.1)−(1.5)2, and (1.1)−(1.5)3 are called the
impermeable wall problem, outflow problem, and inflow problem respectively.

There have been many works on the asymptotic behavior of solutions to the
Cauchy problem of the system (1.1). We refer to [3-4, 9-11] and the references therein.
All these results showed that the large time behavior of the solutions are described
by the corresponding Riemann solutions to the hyperbolic part of (1.1). Recently,
the initial boundary value problem has attracted interest because it is more physical
than the Cauchy problem. We refer to [1-2, 7-8, 12-16]. Most of these results are
concerned with isentropic gas, where only the conservation of mass and momentum of
(1.1) are considered. It was found that a new wave, boundary layer solution, appears
in the solutions due to the boundary effect. To be more physical, we should consider
the full compressible Navier-Stokes equation (1.1). Comparing with isentropic gas,
the boundary conditions for the full compressible Navier-Stokes system become more
complicated and analytically it is more difficult to control the terms coming from the
boundary. More recently, Kawashima and Zhu [16] investigated the existence of the
boundary layer solution and its asymptotic stability for the outflow problem of (1.1)
in which the sign of the velocity u− on the boundary is negative, which plays a key
role in the a priori estimate. In this paper we focus our attention on the impermeable
wall problem and inflow problem. We shall investigate the asymptotic stability of
the rarefaction wave, the boundary layer solution and their combination. Unlike the
outflow problem, the velocity u− on the boundary for the inflow problem is positive
which is not good for the analysis, we have to estimate more boundary terms than
those of [16].

Let us turn to the original problem. To handle the system (1.1) more easily,
we transform (1.1) into the Lagrangian coordinate (x,t) for the impermeable wall
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problem and inflow problem, i.e.,























vt−ux =0, x>k−t, t>0,

ut +p(v,θ)x =µ
(ux

v

)

x
, x>k−t, t>0,

(

e(v,θ)+
u

2

2

)

t

+
(

p(v,θ)u
)

x
=

(

κ
θx

v
+µ

uux

v

)

x

, x>k−t, t>0,

(1.6)

where ρ(x,t)= ρ̃(x̃,t), etc., p̂=p(v,s), etc., k− =−u−

v−

, and the boundary condition

(1.5)1 and (1.5)3 become, respectively:
Impermeable wall problem:

u(0,t)=u− =0, θ(0,t)=θ−, t>0, (1.7)1

Inflow problem:

u(k−t,t)=u−>0, v(k−t,t)=v−, θ(k−t,t)=θ−, t>0, (1.7)2

and the initial data is

(v,u,θ)(x,0)=(v0,u0,θ0)(x)→ (v+,u+,θ+) as x→∞. (1.8)

Before stating our main results, we recall some properties of p, which is useful in the
following. The second law of thermodynamics (1.3) yields if p=p(v,θ), e=e(v,θ), s=
s(v,θ),

ev =−(p−θpθ), sv =pθ, sθ =
eθ

θ
, (1.9)

and if p= p̂(v,s), θ= θ̂(v,s), e= ê(v,s),

êv =−p, ês =θ, p̂v =pv −
θp2

θ

eθ

, p̂s =
θpθ

eθ

, θ̂v =−
θpθ

eθ

, θ̂s =
θ

eθ

. (1.10)

We now formulate our main results. It is known that the characteristic speeds of
hyperbolic part of (1.6) are

λ1 =−
√

−p̂v(v,s), λ2 =0, λ3 =
√

−p̂v(v,s), (1.11)

and the sound speed c(v,s) is defined by

c(v,s)=v
√

−p̂v(v,s) . (1.12)

We divide the half space (v,u,θ),u>0 into three regions:

Ωsub =
{

(v,u,θ)
∣

∣u<c(v,s), v >0, u>0, θ>0
}

,

Γtrans =
{

(v,u,θ)
∣

∣u= c(v,s), v >0, u>0, θ>0
}

,

Ωsuper =
{

(v,u,θ)
∣

∣u>c(v,s), v >0, u>0, θ>0
}

.

(1.13)

We call them the subsonic, transonic, and supersonic regions, respectively. For the
inflow problem, we mainly consider the situation when (v+,u+,θ+)∈Ωsub. If the left
state (v−,u−,θ−) is sufficiently close to (v+,u+,θ+) such that (v−,u−,θ−)∈Ωsub also



642 COMPRESSIBLE NAVIER-STOKES EQUATIONS

holds, then the first characteristic speed λ1(v−,u−,θ−) is less than k− due to (1.13).
Thus a travelling wave solution

(VB ,UB ,ΘB)(ξ),ξ=x−k−t,

(VB ,UB ,ΘB)(0)=(v−,u−,θ−), (VB ,UB ,ΘB)(+∞)=(v+,u+,θ+)

is expected. Substituting this into (1.6), we have



















































































−k−V
′
B −U ′

B =0, ′ =
d

dξ
, ξ=x−k−t>0,

−k−U
′
B +p(VB ,ΘB)′ =µ

(

U ′
B

VB

)′

,

−k−

(

e(VB ,ΘB)+
U2

B

2

)′

+
(

p(VB ,ΘB)UB

)′

=

(

κ
Θ′

B

VB

+µ
UBU

′
B

VB

)′

,

(VB ,UB ,ΘB)(0)=(v−,u−,θ−),

(VB ,UB ,ΘB)(+∞)=(v+,u+,θ+).

(1.14)

We call the solution (VB ,UB ,ΘB) the boundary layer solution, or BL-solution simply.
If (VB ,UB ,ΘB) exists, integration of (1.14) over (ξ,+∞) yields







































−k−(VB −v+)−(UB −u+)=0,

−k−(UB −u+)+(p(VB ,ΘB)−p(v+,θ+))=µ
U ′

B

VB

,

−k−

(

e(VB ,ΘB)−e(v+,θ+)+
U2

B −u2
+

2

)

+
(

p(VB ,ΘB)UB −p(v+,θ+)u+

)

=

(

κ
Θ′

B

VB

+µ
UBU

′
B

VB

)

.

(1.15)

Let ξ=0 in (1.15), then the first equation yields

k− =−
UB(ξ)

VB(ξ)
=−

u−

v−
=−

u+

v+
. (1.16)

Substituting (1.16) into (1.15)2 and (1.15)3, we have



























































V ′
B =−

VB

µk−

[

k2
−(VB −v+)+

(

p(VB ,ΘB)−p(v+,θ+)
)]

:=f(VB ,ΘB),

Θ′
B =

VB

κ

[

−k−
(

e(VB ,ΘB)−e(v+,θ+)
)

−k−p(v+,θ+)(VB −v+)+
k3
−

2
(VB −v+)2

]

:=g(VB ,ΘB).

(1.17)
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Let

WB =

(

VB

ΘB

)

, F (WB)=

(

f(VB ,ΘB)
g(VB ,ΘB)

)

,

W− =

(

v−

θ−

)

, W+ =

(

v+

θ+

)

,

(1.18)

and consider the system below

{

W ′
B =F (WB), F (W+)=0,

WB(0)=W−, WB(+∞)=W+.
(1.19)

The Jacobian matrix of (1.19) at ξ=+∞ is

J+ =







−
v+

µk−

(

k2
−+pv(v+,θ+)

)

−
v+

µk−
pθ(v+,θ+)

−
k−v+

κ

(

ev(v+,θ+)+p(v+,θ+)
)

−
k−v+

κ
eθ(v+,θ+)






. (1.20)

Since (v+,u+,θ+)∈Ωsub, (1.9), (1.10), and (1.13) yield

detJ+ =
v2
+

µκ

[

(k2
−+pv)eθ −(ev +p)pθ

]∣

∣

(v+,θ+)

=
v2
+

µκ

[

(k2
−+ p̂v)eθ

]∣

∣

(v+,θ+)
<0.

(1.21)

Thus J+ has two eigenvalues Λ1<0<Λ2. On the contrary, by [5] and (1.16) there
exists a local (unique) one dimensional stable manifold M+ =M+(v+,u+,θ+) around
(v+,u+,θ+) such that for any (v−,u−,θ−)∈M+ there exists a unique solution to (1.14)
satisfying

(|VB −v+|,|UB −u+|,|ΘB −θ+|)(ξ)=O(δ)e−cξ, (1.22)

(|V ′
B |,|V ′′

B |,|U ′
B |,|U ′′

B |,|Θ′
B |,|Θ′′

B |)(ξ)=O(δ)e−cξ, (1.23)

where δ= |v−−v+|+ |u−−u+|+ |θ−−θ+| and the positive constant c is independent
of δ.

On the other hand, for any given right state (v+,u+,θ+), the i-rarefaction wave
curve (i=1,3) through (v+,u+,θ+) is known as

R1(v+,u+,θ+)=
{

(v,u,θ)
∣

∣s=s+ ,u=u+−

∫ v

v+

λ1(η,s+)dη,v<v+
}

, (1.24)

R3(v+,u+,θ+)=
{

(v,u,θ)
∣

∣s=s+ ,u=u+−

∫ v

v+

λ3(η,s+)dη,v>v+
}

, (1.25)

where s+ =s(v+,θ+). When (v+,u+,θ+)∈Ωsub, we define

BLR3(v+,u+,θ+)=
⋃

M+(v∗,u∗,θ∗),

(v∗,u∗,θ∗)∈R3(v+,u+,θ+)∩Ωsub.
(1.26)
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If (v−,u−,θ−)∈BLR3(v+,u+,θ+), there exists a unique point (v∗,u∗,θ∗)∈Ωsub such
that (v∗,u∗,θ∗)∈R3(v+,u+,θ+) and (v−,u−,θ−)∈M+(v∗,u∗,θ∗). In fact, by (1.16),
we have u∗ =−k−v∗. Substituting into (1.25) yields that

−k−v∗ =u+−

∫ v∗

v+

λ3(η,s+)dη. (1.27)

To the contrary, it is easy to see that v∗ is uniquely determined by (1.27) due to the
fact that −k−v is increasing and the right hand side is decreasing with respect to
v>v+. After v∗ is obtained, we obtain θ∗ =θ(v∗,s+).

When (v−,u−,θ−)∈Ωsuper, then 0>λ(v−,u−,θ−)>k−. Thus the behavior of the
solutions is expected to be the same as that for the Cauchy problem. We define

R1R3(v+,u+,θ+)=
⋃

R1(v∗,u∗,θ∗), (v∗,u∗,θ∗)∈R3(v+,u+,θ+). (1.28)

Our aim is to investigate the stability of the rarefaction wave, the BL-solution and
their combination for the impermeable wall problem and inflow problem. Our results
are, roughly speaking, as follows:

(1) Impermeable problem:

For any given right state (v+,u+,θ+) with u+>0, there exist unique v− and θ−
such that (v−,0,θ−)∈R3(v+,u+,θ+) and the 3-rarefaction wave connecting (v−,0,θ−)
and (v+,u+,θ+) is stable provided that |v+−v−|+u+ + |θ+−θ−| is small.

(2) Inflow problem:

(I) For any (v+,u+,θ+)∈Ωsub, if (v−,u−,θ−)∈M+(v+,u+,θ+), then the BL-
solution, connecting (v−,u−,θ−) and (v+,u+,θ+) is stable provided that |v+−v−|+
|u+−u−|+ |θ+−θ−| is small.

(II) For any (v+,u+,θ+)∈Ωsub, if (v−,u−,θ−)∈BLR3(v+,u+,θ+) then there ex-
ists a unique point (v∗,u∗,θ∗)∈R3(v+, u+,θ+) such that the superposition of the BL-
solution connecting (v−,u−,θ−) with (v∗,u∗,θ∗) and the 3-rarefaction wave connecting
(v∗,u∗,θ∗) with (v+,u+,θ+) is stable provided that |v∗−v−|+ |u∗−u−|+ |θ∗−θ−| and
|v+−v∗|+ |u+−u∗|+ |θ+−θ∗| are small.

(III) If (v−,u−,θ−)∈R1R3(v+,u+,θ+)∩Ωsuper, then there exists a unique point
(v∗,u∗,θ∗)∈R3(v+, u+,θ+) such that the superposition of the 1-rarefaction wave con-
necting (v−,u−,θ−) with (v∗,u∗,θ∗) and the 3-rarefaction wave connecting (v∗,u∗,θ∗)
with (v+,u+,θ+) is stable provided that |v∗−v−|+ |u∗−u−|+ |θ∗−θ−| and |v+−v∗|+
|u+−u∗|+ |θ+−θ∗| are small.

Our plan of this paper is as follows. In section 2, we discuss the impermeable wall
problem. In section 3 the inflow problem is treated.

Notations. Throughout this paper, several positive generic constants are denoted by
C without confusions. For function spaces, H l(Ω) denotes the l-th order Sobolev
space with its norm

‖f‖l =





l
∑

j=0

‖∂j
xf‖

2





1
2

, when ‖·‖ :=‖·‖L2(Ω). (1.29)

The domain Ω will be often abbreviated without confusion.
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2. Impermeable wall problem

For any right state (v+,u+,θ+) with u+>0, it is obvious that there exist unique
v−>0 and θ−>0 such that (v−,0,θ−)∈R3(v+,u+,θ+). The 3-rarefaction wave
(vr,ur,θr)(x

t
) connecting (v−,0,θ−) and (v+,u+,θ+) is the weak solution of the Rie-

mann problem






























vt−ux =0,
ut +p(v,θ)x =0,

(e(v,θ)+
u

2

2
)t +(p(v,θ)u)x =0,

(v0,u0,θ0)(x)=

{

(v−,0,θ−), x<0,
(v+,u+,θ+), x>0.

(2.1)

To study the large time behavior of the solutions, it is necessary to construct a smooth
approximate rarefaction wave (V,U,Θ)(x,t) of (vr,ur,θr)(x

t
) in R+×(0,+∞). To this

end, we apply the idea of [1]. We first construct the solution w(x,t) of the following
problem















wt +wwx =0, (x,t)∈R×(0,+∞),

w
∣

∣

t=0
=







w−, x<0,

w−+ w̃Kq

∫ εx

0

zqe−zdz, x≥0,
(2.2)

where w± =λ3(v±,s+), s+ =s(v+,θ+), w̃=w+−w−, Kq is a constant such that

Kq

∫ +∞

0
zqe−zdz=1 for large constant q≥8 and a small positive constant ε. We

have the following properties of w(x,t) due to [1].

Lemma 2.1.
[1] Let 0<w−<w+. Then the problem (2.2) has a unique smooth

solution w(x,t) satisfying

i. w−≤w(x,t)<w+, wx ≥0, for x≥0, t≥0.

ii. For any p(1≤p≤+∞), there exists a constant Cp,q such that for t≥0,

‖wx(·,t)‖Lp ≤Cp,q min
(

w̃ε1−
1
p ,w̃

1
p t−1+ 1

p

)

,

‖wxx(·,t)‖Lp ≤Cp,q min
(

w̃ε2−
1
p ,w̃

1
q ε1−

1
p
+ 1

q t−1+ 1
q

)

.

iii. when x≤0, w(x,t)−w− =wx(x,t)=wxx(x,t)=0.

iv. limsupt→+∞,x∈ℜ

∣

∣w(x,t)−wR(x,t)
∣

∣=0.

Here wR(x,t) is the Riemann solution of the scalar equation (2.2) with the initial data
w0(x)=w−, if x<0, and w0(x)=w+, if x>0.

Then the smooth approximation (V r,Ur,Θr) to (vr,ur,θr)(x,t) is given by















Sr(x,t)=s+,

λ3

(

V r(x,t),s+
)

=w(x,t),

Ur(x,t)=u+−

∫ V r(x,t)

v+

λ3

(

η,s+
)

dη.

(2.3)

Setting

(

V,U,Θ
)

(x,t) :=
(

V r,Ur,Θr
)

(x,t)
∣

∣

x≥0
, (2.4)
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then one easily has










































Vt−Ux =0, x>0, t>0,

Ut +p(V,Θ)x =0, x>0, t>0,

(

e(V,Θ)+
1

2
U2
)

t
+(p(V,Θ)U)x =0, x>0, t>0,

(V,U,Θ)
∣

∣

x=0
=(v−,0,θ−),

(V,U,Θ)
∣

∣

t=0
=(V0,U0,Θ0)(x)=(V,U,Θ)(x,0).

(2.5)

Due to Lemma 2.1, (V,U,Θ) has the following properties.

Lemma 2.2. Let δ1 = |v+−v−|+u+ + |θ+−θ−|. Then (V,U,Θ)(x,t) satisfies, if
q≥p,

i. Ux(x,t)≥0, |Ux|≤Cεδ1, for t≥0, x≥0,

ii. For any p(1≤p≤+∞), there exists a constant Cp,q such that

‖(Vx,Ux,Θx)‖Lp(x≥0)≤Cp,q min{δ1ε
1− 1

p ,δ
1
p

1 (1+ t)−1+ 1
p },

‖(Vxx,Uxx,Θxx)‖Lp(x≥0)≤Cp,q min{δ1ε
2− 1

p ,δ
1
q

1 (1+ t)−1+ 1
q }, t≥0.

iii. (V,U,Θ)|x≤0 =(v−,0,θ−), (Vx,Ux,Θx,Vxx,Uxx,Θxx)|x≤0 =0.

iv. limsup
t→+∞,x∈{x≥0}

|(V,U,Θ)(x,t)−(vr,ur,θr)
(x

t

)

|=0.

We assume

(v0−V0,u0−U0,θ0−Θ0)∈L
2(R+), (v0,u0,θ0)x ∈L

2(R+), (2.6)

and set

N0 =‖v0−V0‖1 +‖u0−U0‖1 +‖θ0−Θ0‖1. (2.7)

It is noted that on the boundary x=0, (V,U,Θ)(0,t)=(v−,0,θ−) and (u−U,θ−
Θ)(0,t)=(0,0). That is, the boundary effect is exactly eliminated by our approx-
imation because (v−V )(0,t) is not important in the energy estimates. Thus the
impermeable wall problem is similar to the Cauchy problem for the rarefaction wave
case. Using the same lines as in [4], we have

Theorem 2.3. For any right state (v+,u+,θ+) with u+>0, there exist unique
v− and θ− such that (v−,0,θ−)∈R3(v+,u+,θ+). Suppose that the Assumption (2.6)
holds. Then there exists a positive constant δ0 such that if N0 +δ1<δ0, the imper-
meable wall problem (1.6), (1.7)1, and (1.8) has a unique global solution in time
satisfying















(v−V,u−U,θ−Θ)∈C0(0,+∞;H1),

(v,u,θ)x ∈L
2(0,+∞;L2),

(u,θ)xx ∈L
2(0,+∞;L2),

(2.8)

and

limsup
t→+∞, x>0

∣

∣

∣
(v,u,θ)(x,t)−(vr,ur,θr)(

x

t
)
∣

∣

∣
→0. (2.9)
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3. Inflow problem

3.1. BL-solution. Assume that (v+,u+,θ+)∈Ωsub. Then there exists a local
(unique) stable manifold M+ =M+(v+,u+,θ+) such that for any (v−,u−,θ−)∈M+,
there exists a unique travelling wave solution (VB ,UB ,ΘB)(ξ),ξ=x−k−t, satisfying
(1.14). For simplicity, let (V,U,Θ)(ξ)=(VB ,UB ,ΘB)(ξ). We define the perturbation
by

(φ,ψ,ζ)(ξ,t)=(v,u,θ)(ξ,t)−(V,U,Θ)(ξ). (3.1)

On the other hand, by (1.9) and (1.10) the third equation of (1.6) can be reduced to

eθθt +θpθux =θst =κ

(

θx

v

)

x

+µ
u2

x

v
. (3.2)

Thus (φ,ψ,ζ) satisfies,














































































φt−k−φξ −ψξ =0,

ψt−k−ψξ +[p(v,θ)−p(V,Θ)]ξ =µ
(uξ

v

)

ξ
−µ

(

Uξ

V

)

ξ

,

ζt−k−ζξ +
θpθ

eθ

(v,θ)ψξ +

{

θpθ

eθ

(v,θ)−
Θpθ

eθ

(V,Θ)

}

Uξ

=
1

eθ(v,θ)

{

(

κθξ

v

)

ξ

+
µu2

ξ

v

}

−
1

eθ(V,Θ)

{

(

κΘξ

V

)

ξ

+
µU2

ξ

V

}

,

(φ,ψ,ζ)|ξ=0 =0,

(φ,ψ,ζ)|t=0 =(φ0,ψ0,ζ0)=(v0(ξ)−V,u0−U,θ0−Θ)(ξ).

(3.3)

We have the following stability theorem for the BL-solution.

Theorem 3.1. Suppose that (φ0,ψ0,ζ0)∈H
1
0 (R+). Then there exists a positive

constant δ0 such that if

‖(φ0,ψ0,ζ0)‖1 + |v+−v−|+ |u+−u−|+ |θ+−θ−|≤ δ0, (3.4)

then the initial boundary value problem (3.3) has a unique global solution in time
satisfying















(φ,ψ,ζ)∈C0(0,+∞;H1
0 ),

φξ ∈L
2(0,+∞;L2),

(ψ,ζ)ξ ∈L
2(0,+∞;H1),

(3.5)

and

limsup
t→+∞, ξ>0

|(φ,ψ,ζ)(ξ,t)|→0. (3.6)

To show the stability Theorem 3.1, we seek the solution (φ,ψ,ζ) in the solution
space

X(0,T )=
{

(φ,ψ,ζ)∈C0(0,T ;H1
0 )
∣

∣φξ ∈L
2(0,T ;L2),

(ψξ,ζξ)∈L
2(0,T ;H1), sup

[0,T ]

‖(φ,ψ,ζ)(t)‖1 ≤ε1},
(3.7)
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where ε1 = 1
4 min{v−,v+}. Let δ= |v+−v−|+ |u+−u−|+ |θ+−θ−| and

N(T )= sup
0≤τ≤T

(‖φ(τ)‖1 +‖ψ(τ)‖1 +‖ζ(τ)‖1). (3.8)

Then N(T )≤ε1 which ensures the system (3.3) is nonsingular. By using the same
lines as in the previous papers [12-13], it is easy to prove the local existence. We
omit the proofs here. To justify Theorem 3.1, it is necessary to establish the a priori
estimates. We have

Proposition 3.2. There exist positive constants δ0, ε2(≤ε1) and C0 such that, if
δ1≤ δ0, N(T )≤ε2 and (φ,ψ,ζ)(ξ,t)∈X(0,T ) is a solution of (3.3) for some T >0,
then (φ,ψ,ζ) satisfies

‖(φ,ψ,ζ)(t)‖2
1 +

∫ t

0

{

‖φξ(τ)‖
2 +‖(ψ,ζ)ξ (τ)‖2

1

}

dτ

≤C0‖(φ,ψ,ζ)(0)‖2.

(3.9)

Proposition 3.2 is proved by a series lemmas. We first give the following key lemma.

Lemma 3.3. It follows that

‖(φ,ψ,ζ)(t)‖2 +

∫ t

0

{

‖ψξ(τ)‖
2 +‖ζξ(τ)‖

2
}

dτ

≤C‖(φ,ψ,ζ)(0)‖2 +Cδ

∫ t

0

‖φξ‖
2(τ)dτ .

(3.10)

Proof. Let

E =e(v,s)−e(V,S)+
ψ2

2
+p(V,Θ)(v−V )−Θ(s−S). (3.11)

Then by (1.9)–(1.10), (3.2)–(3.3), we have

Et+
µψ2

ξ

v
+
κζ2

ξ

vθ
+∆1Uξ +k−∆2Sξ

=(k−E+µψ

(

uξ

v
−
Uξ

V

)

+κζ

(

θξ

vθ
−

Θξ

VΘ

)

−(p(v,θ)−p(V,Θ))ψ)ξ

+
µφψξUξ

vV
+µζ

(

u2
ξ

vθ
−
U2

ξ

VΘ

)

+κζ

(

θ2ξ

vθ2
−

Θ2
ξ

VΘ2

)

−κζξΘξ

(

1

vθ
−

1

VΘ

)

,

(3.12)

where

∆1 = p̂(v,s)− p̂(V,S)− p̂v(V,S)φ− p̂s(V,S)(s−S),

∆2 =θ−Θ− θ̂v(V,S)φ− θ̂s(V,S)(s−S).

satisfy |∆i|≤C(φ2 +ζ2), i=1,2. It is noted that e(v,s) is a strictly convex function
of v and s due to (1.2), (1.9), and (1.10). Since sθ = eθ

θ
>0, the Cauchy inequality

yields that there exists a positive constant c1>0 such that

E ≥ c1(φ
2 +ψ2 +ζ2). (3.13)
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Note that (φ,ψ,ζ)(0,t)=(0,0,0). Integrating (3.12) over [0,t]×R+, we have

‖(φ,ψ,ζ)(t)‖2 +

∫ t

0

‖∂ξ(ψ,ζ)(τ)‖
2dτ

≤C1‖(φ,ψ,ζ)(0)‖2 +C1

∣

∣

∣

∣

∣

∫ t

0

∫ +∞

0

µφψξUξ

vV
+µζ(

u2
ξ

vθ
−
U2

ξ

VΘ
)−∆1Uξ dξdt

∣

∣

∣

∣

∣

+C1

∣

∣

∣

∣

∣

∫ t

0

∫ +∞

0

κζ

(

θ2ξ

vθ2
−

Θ2
ξ

VΘ2

)

−κζξΘξ

(

1

vθ
−

1

VΘ

)

−k−∆2Sξ dξdt

∣

∣

∣

∣

∣

=:C1‖(φ,ψ,ζ)(0)‖2 +I1 +I2.

(3.14)

We use the idea of [6] to estimate the right hand side of (3.14). Since

|(φ2,ψ2,ζ2)(ξ)|≤ ξ‖(φξ,ψξ,ζξ)‖
2, ∀ξ >0, (3.15)

the Cauchy inequality and (1.23) yield that

I1≤Cδ

∫ t

0

‖(φξ,ψξ,ζξ)‖
2dt+CN(T )

∫ t

0

‖ψξ‖
2dt (3.16)

and

I2≤Cδ

∫ t

0

‖(φξ,ψξ,ζξ)‖
2dt+CN(T )

∫ t

0

‖ζξ‖
2dt. (3.17)

Thus there exist positive small constants δ0 and ε2. When δ≤ δ0 and N(T )≤ε2,
substituting (3.16)–(3.17) into (3.14) yields the desired estimate (3.10).

Lemma 3.4. It follows that

‖φξ(t)‖
2 +

∫ t

0

‖φξ‖
2dτ≤C‖(φ,ψ,ζ)(0)‖2

1 +C

∫ t

0

v̌2
ξ (0,t)dt. (3.18)

Proof. Following [11], we introduce a new variable v̌= v
V

. Then (3.3)2 is rewrit-
ten as

(µ
v̌ξ

v̌
−ψ)t =k−(µ

v̌ξ

v̌
−ψ)ξ +(p(v,θ)−p(V,Θ))ξ. (3.19)

Multiplying (3.19) by
v̌ξ

v̌
, we have

{

µ

2
(
v̌ξ

v̌
)2−ψ

v̌ξ

v̌

}

t

−pv(v,θ)V
v̌2

ξ

v̌
+

(

v̌t

v̌
ψ−

k−µ

2

(

v̌ξ

v̌

)2
)

ξ

=µ
ψ2

ξ

v
−
µφψξUξ

vV
+(pv(v,θ)v̌−pv(V,Θ))Vξ

v̌ξ

v̌

+(pθ(v,θ)θξ −pθ(V,Θ)Θξ)
v̌ξ

v̌
.

(3.20)

We compute
∣

∣

∣

∣

(pv(v,θ)v̌−pv(V,Θ))Vξ

v̌ξ

v̌

∣

∣

∣

∣

≤ δ̃v̌2
ξ +Cδ̃(φ

2 +ζ2)V 2
ξ , (3.21)
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∣

∣

∣

∣

(pθ(v,θ)θξ −pθ(V,Θ)Θξ)
v̌ξ

v̌

∣

∣

∣

∣

≤ δ̃v̌2
ξ +Cδ̃ζ

2
ξ +Cδ̃(φ

2 +ζ2)Θ2
ξ , (3.22)

∣

∣

∣

∣

µφψξUξ

vV

∣

∣

∣

∣

≤Cφ2U2
ξ +Cψ2

ξ , (3.23)

∫ ∞

0

(φ2 +ζ2)(V 2
ξ +U2

ξ +Θ2
ξ)dx≤Cδ

2(‖φξ‖
2 +‖ζξ‖

2), (3.24)

and

c2φ
2
ξ −c3φ

2V 2
ξ ≤ v̌2

ξ ≤C2φ
2
ξ +C3φ

2V 2
ξ , (3.25)

where ci, Ci, i=2,3 are positive constants which only depend on v− and v+. Note
that δ is small. Thus integrating (3.20) on R+× [0,t], using (3.21)–(3.25) and Lemma
3.3 and choosing δ̃ is suitably small, we get (3.18). Thus Lemma 3.4 is proved.

Lemma 3.5. It follows that

‖(ψξ,ζξ)(t)‖
2 +

∫ t

0

‖(ψξξ,ζξξ)(τ)‖
2dτ ≤C‖(φ,ψ,ζ)(0)‖2

1. (3.26)

Proof. Multiplying (3.3)2 by −ψξξ and (3.3)3 by −ζξξ, and adding the resulting
equalities, we have

(

1

2
ψ2

ξ +
1

2
ζ2
ξ

)

t

+

(

k−

2
(ψ2

ξ +ζ2
ξ )−ψtψξ −ζtζξ

)

ξ

+µ
ψ2

ξξ

v
+κ

ζ2
ξξ

veθ(v,θ)

=(p(v,θ)−p(V,Θ))ξψξξ +

(

θpθ

eθ

(v,θ)uξ −
Θpθ

eθ

(V,Θ)Uξ

)

ζξξ

−µψξξUξξ

(

1

v
−

1

V

)

+µψξξ

(

uξvξ

v2
−
UξVξ

V 2

)

−κζξξΘξξ

(

1

eθv
(v,θ)−

1

eθV
(V,Θ)

)

+κζξξ

(

θξvξ

eθv2
(v,θ)−

ΘξVξ

eθV 2
(V,Θ)

)

−µζξξ

(

u2
ξ

eθv
(v,θ)−

U2
ξ

eθV
(V,Θ)

)

.

(3.27)

We estimate

RHS≤ δ̃(ψ2
ξξ +ζ2

ξξ)+Cδ̃(φ
2
ξ +ψ2

ξ +ζ2
ξ )+Cδ̃(φ

2 +ζ2)(V 2
ξ +U2

ξ

+Θ2
ξ +U2

ξξ +Θ2
ξξ)+C(|ψξξψξφξ|+ |ζξξζξφξ|+ |ζξξψ

2
ξ |).

(3.28)

It is noted that
∫ ∞

0

|ψξξψξφξ|dξ≤C‖ψξξ‖
3
2 ‖ψξ‖

1
2 ‖φξ‖≤CN(T )(‖ψξ‖

2 +‖ψξξ‖
2). (3.29)

The last two terms can be treated by the same way. Note that k−<0 and ψt(0,t)=
ζt(0,t)=0. Thus, integrating (3.27) over R+× [0,T ], choosing δ̃ suitably small and
using Lemmas 3.3–3.4, we have

‖(φξ,ψξ,ζξ)(t)‖
2 +

∫ t

0

(‖φξ(τ)‖
2 +‖(ψξξ,ζξξ)(τ)‖

2)dτ

≤C‖(φ,ψ,ζ)(0)‖2
1 +C

∫ t

0

‖ψξ‖
2dτ,

(3.30)
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where we have used the fact that

v̌2
ξ (0,t)≤Cφ2

ξ(0,t)≤Cψ
2
ξ (0,t)≤ δ̃‖ψξξ‖

2 +Cδ̃‖ψξ‖
2. (3.31)

Adding (3.30)×λ and (3.10), we have

‖(φ,ψ,ζ)(t)‖2 +λ‖(φξ,ψξ,ζξ)(t)‖
2 +(1−Cλ)

∫ t

0

‖ψξ‖
2dτ

+

∫ t

0

‖ζξ‖
2dτ+(λ−Cδ)

∫ t

0

‖φξ‖
2dτ+λ

∫ t

0

‖(ψξξ,ζξξ)‖
2dτ

≤C‖(φ,ψ,ζ)(0)‖2
1.

(3.32)

We now choose λ= 1
2C
>0 such that 1−Cλ= 1

2 . Let δ be suitably small so that
λ−Cδ> 1

2λ. Therefore Lemma 3.5 is proved from (3.32).

Proof of Proposition 3.2. Proposition 3.2 is obtained at once from Lemmas 3.3–3.5.

3.2. The superposition of the BL-solution and the rarefaction wave.

In this section, we investigate the case (v−,u−,θ−)∈BLR3(v+,u+,θ+). Accord-
ing to the previous arguments, there exists a unique point (v∗,u∗,θ∗)∈Ωsub such
that (v∗,u∗,θ∗)∈R3(v+,u+,θ+). We study the stability of the superposition of the
BL-solution (VB ,UB ,ΘB)(ξ),ξ=x−k−t, connecting (v−,u−,θ−) with (v∗,u∗,θ∗) and
the rarefaction wave (vr,ur,θr)(x

t
) connecting (v∗,u∗,θ∗) with (v+,u+,θ+). The BL-

solution (VB ,UB ,ΘB) satisfies (1.14), (1.22), and (1.23), where the right state is re-
placed by (v∗,u∗,θ∗) and δ= |v∗−v−|+ |u∗−u−|+ |θ∗−θ−|.

For the rarefaction wave, we use the same smooth approximation (V r,Ur,Θr) to
(vr,ur,θr)(x

t
) as in (2.2) and (2.3), where the left state is replaced by (v∗,u∗,θ∗). Let

(V3,U3,Θ3)(x,t) :=(V r,Ur,Θr)|x≥k−t. (3.33)

If we introduce a new coordinate t= t, ξ=x−k−t, then we have














































V3t−k−V3ξ −Uξ =0, ξ >0, t>0,

U3t−k−U3ξ +p(V3,Θ3)ξ =0, ξ >0, t>0,

Θ3t−k−Θ3ξ +
Θ3pθ

eθ

(Θ3,V3)U3ξ =0, ξ >0, t>0,

(V3,U3,Θ3)
∣

∣

ξ=0
=(v∗,u∗,θ∗), (V3,U3,Θ3)

∣

∣

ξ→+∞
=(v+,u+,θ+),

(V3,U3,Θ3)
∣

∣

t=0
=(V3,U3,Θ3)(ξ,0).

(3.34)

Similar to Lemma 2.2, (V3,U3,Θ3)(ξ,t) has the following properties.

Lemma 3.6. Let δ1 = |v+−v∗|+ |u+−u∗|+ |θ+−θ∗|, then (V3,U3,Θ3)(ξ,t) satisfies,
if q≥p,

i. U3ξ(x,t)≥0,|U3ξ|≤Cεδ1, for t≥0, ξ >0,

ii. For any p(1≤p≤+∞), there exists a constant Cp,q such that

‖(V3ξ,U3ξ,Θ3ξ)‖Lp(ξ≥0)≤Cp,q min{δ1ε
1− 1

p ,δ
1
p

1 (1+ t)−1+ 1
p },

‖(V3ξξ,U3ξξ,Θ3ξξ)‖Lp(ξ≥0)≤Cp,q min{δ1ε
2− 1

p ,δ
1
q

1 (1+ t)−1+ 1
q }, t≥0.

iii. (V,U,Θ)|ξ≤−k−t =(v∗,u∗,θ∗),(V3ξ,U3ξ,Θ3ξ,V3ξξ,U3ξξ,Θ3ξξ)|ξ≤−k−t =0.

iv. limsup
t→+∞,ξ∈{ξ≥0}

|(V,U,Θ)(ξ,t)−(vr,ur,θr)(ξ,t)|=0.
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Let




V

U

Θ



(ξ,t)=





VB(ξ)+V3(ξ,t)−v∗
UB(ξ)+U3(ξ,t)−u∗
ΘB(ξ)+Θ3(ξ,t)−θ∗



 , (3.35)

and

(φ,ψ,θ)(ξ,t)=(v−V,u−U,θ−Θ)(ξ,t). (3.36)

Then the system (1.6) is rewritten as



















































































φt−k−φξ −ψξ =0,

ψt−k−ψξ +[p(v,θ)−p(V,Θ)]ξ =µ
(uξ

v

)

ξ
−µ

(

Uξ

V

)

ξ

+Fξ,

ζt−k−ζξ +
θpθ

eθ

ψξ +

{

θpθ

eθ

(v,θ)−
Θpθ

eθ

(V,Θ)

}

Uξ

=

{

(

κθξ

v

)

ξ
+

µu2
ξ

v

}

eθ(v,θ)
−

{

(

κΘξ

V

)

ξ
+

µU2
ξ

V

}

eθ(V,Θ)
+G,

(φ,ψ,ζ)|ξ=0 =(0,0,0),

(φ,ψ,ζ)|t=0 =(v−V,u−U,θ−U)(ξ,0)=: (φ0,ψ0,ζ0)(ξ).

(3.37)

where

F =−[p(V,Θ)−p(VB ,ΘB)−p(V3,Θ3)+p(v∗,θ∗)]+µ

(

Uξ

V
−
UBξ

VB

)

=:−F1 +F2,

G=−

[

Θpθ

eθ

(V,Θ)Uξ −
ΘBpθ

eθ

(VB ,ΘB)UBξ −
Θ3pθ

eθ

(V3,Θ3)U3ξ

]

+







[(
κΘξ

V
)ξ +

µU2
ξ

V
]

eθ(V,Θ)
−

[(
κΘBξ

VB
)ξ +

µU2
Bξ

VB
]

eθ(VB ,ΘB)







=:−G1 +G2.

(3.38)

The equation (3.37) is almost the same as (3.3) except for the terms Fξ and G. Since

|F1ξ|≤C (|V3−v∗|+ |Θ3−θ∗|)(|VBξ|+ |ΘBξ|)

+C (|VB −v∗|+ |ΘB −θ∗|)(|V3ξ|+ |Θ3ξ|) ,
(3.39)

and V3ξ =Θ3ξ =V3−v∗ =Θ3−θ∗ =0 for any ξ <−k−t duo to Lemma 3.6, we have

∫ ∞

0

|F1ξ|dξ≤Cδ1

∫ ∞

−k−t

|VBξ|+ |ΘBξ|+ |VB −v∗|+ |ΘB −θ∗|dξ

≤Cδδ1e
−k−t.

(3.40)

Thus
∫ t

0

∫ +∞

0

|F1ξψ|dξdt≤Cδδ1. (3.41)
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On the other hand, since

|F2ξ|≤ C(|V3−v∗||UBξξ|+ |U3ξξ|+ |V3ξU3ξ|+ |V3ξUBξ|

+|U3ξVBξ|+ |V3−v∗||VBξ|),
(3.42)

we have
∫ ∞

0

|F2ξ|dξ≤Cδδ1e
−k−t +Cδ

1
8

1 (1+ t)−
7
8 , (3.43)

and then

∫ t

0

∫ ∞

0

|F2ξψ|dξdt≤Cδδ1 +ν

∫ t

0

‖ψξ‖
2dt+Cνδ

1
6

1 , (3.44)

for any ν >0. The terms
∫ t

0

∫∞

0
|G1ψ|dξdτ and

∫ t

0

∫∞

0
|G2ψ|dξdτ can be treated in the

same way. Using the same argumens as in section 3.1, we obtain

‖(φ,ψ,ζ)(t)‖2 +

∫ t

0

‖∂ξ(ψ,ζ)(τ)‖
2dτ

≤C

(

‖(φ,ψ,ζ)(0)‖2
1 +δ

∫ t

0

‖φξ‖
2dτ+δ+δ

1
6

1

)

.

(3.45)

The high order estimates are omitted here because they are similar to those in section
3.1. Therefore we have

Theorem 3.7. Suppose that (φ0,ψ0,ζ0)∈H
1
0 (R+). Then there exists a positive

constant δ0 such that if

‖(φ0,ψ0,ζ0)‖1 +δ+δ1≤ δ0 (3.46)

then the initial boundary value problem (3.37) has a unique global solution in time
satisfying















(φ,ψ,ζ)∈C0(0,+∞;H1
0 ),

φξ ∈L
2(0,+∞;L2),

(ψ,ζ)ξ ∈L
2(0,+∞;H1),

(3.47)

and

limsup
t→+∞, ξ>0

|(φ,ψ,ζ)(ξ,t)|→0. (3.48)

Remark 3.1. The case (v−,u−,θ−)∈R1R3(v+,u+,θ+)∩Ωsuper can be treated in a
similar way and then the assertion (III) holds.
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