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Abstract. In this note we revisit the homogenization theory of Hamilton-Jacobi and “viscous”-
Hamilton-Jacobi partial differential equations with convex nonlinearities in stationary ergodic envi-
ronments. We present a new simple proof for the homogenization in probability. The argument uses
some a priori bounds (uniform modulus of continuity) on the solution and the convexity and coer-
civity (growth) of the nonlinearity. It does not rely, however, on the control interpretation formula
of the solution as was the case with all previously known proofs. We also introduce a new formula
for the effective Hamiltonian for Hamilton-Jacobi and “viscous” Hamilton-Jacobi equations.
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1. Introduction

There has been considerable interest and progress in the study of the homog-
enization of fully nonlinear first- and second-order pde in stationary environments.
The results obtained so far concern “non-viscous” and “viscous” Hamilton-Jacobi
equations (see [13, 12, 9, 6, 7, 14]) such as
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=0 in U, (1.1)

and fully nonlinear elliptic second-order equations (see [1]) such as
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D2uε,Duε,uε,x,
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,ω

)
=0 in U, (1.2)

where the nonnegative symmetric matrix A, the Hamiltonian H, which is convex
with respect to the gradient, and the uniformly elliptic nonlinearity F are stationary
ergodic — the precise definitions are given later.

Up to now there exist two different, although with many points in common,
approaches to study the asymptotics, as ε→0, of (1.1). Both make strong use of the
control interpretation of the solution (a by-product of the convexity of H and the
fact that A is independent of the gradient) and yield the a.s. convergence of the uε’s.
The methodology of [13] and [9] (see also [12]) is based on several a priori bounds,
the control formula of uε, and the subadditive ergodic theorem. The approach of
[6], which was developed for the case A≡ Id, is based on deriving, using the ergodic
theorem, a new formula for the effective nonlinearity that agrees, in view of the min-
max theorem, with the formula already found in [13], [9], etc.. The homogenization
of (1.2) follows from entirely different methods based on nonlinear pde techniques.
To our knowledge it has not been possible to use the methods of [1] to study (1.1).
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628 STOCHASTIC HOMOGENIZATION - REVISITED

In this note we present a new rather simple argument to prove the homogenization
of (1.1) in probability. The convexity and coercivity of H with respect to the gradient
are again important. The control formula of uε plays, however, absolutely no role in
the proof.

In addition we assume a, uniform with respect to ε, uniform modulus of continuity
for the uε’s, which can be obtained under some additional assumptions on A and H.
We refer, for example, to [9] for apriori Lipschitz estimates and to [6] for a uniform
modulus of continuity under a different set of assumptions when A is independent of
(x,x/ε). In a forthcoming paper [11], we give four general and independent groups of
hypotheses giving rise to such moduli.

To explain the role of the convexity, coercivity and uniform modulus of continuity
it is convenient to introduce, for each fixed fixed (p,r,x)∈R

N ×R×R
N , the auxiliary

problem (its role in the homogenization theory for (1.1) is explained later in this note)

εvε−δ trA(y,ω)D2
yvε +H(Dyvε +p,y,ω)=0 in R

N . (1.3)

The coercivity and convexity of H provide apriori estimates on Dvε in Lα, for
some α>1, and hence an L∞-weak ∗ limit, which, in view of the convexity, can pass
inside H. It then follows that the εvε(0,ω)’s converge, in probability, to a constant.
This relies on showing that the smallest possible limit, i.e., the liminf, and the L∞-
weak ∗ of the εvε’s agree a.s.. The uniform continuity of the vε’s together with
the stationary ergodic structure are used to show that the εvε’s actually converge
uniformly and always in probability in balls of radius O(ε−1). As is discussed later
this is enough to prove the homogenization in probability of the solutions of (1.1).
As a by-product of this new proof we are also able to obtain a new formula for the
effective nonlinearity which is similar to the one obtained in [6] for A≡ Id. The same
proof would work for (1.2) with convex nonlinearity provided we could obtain an
appropriate estimate guaranteeing the (weak) convergence, as ε→0, of the Hessians.

The notation needed to state the main results is too cumbersome to be included
in the Introduction. Instead we present it, along with the necessary background and
the main homogenization result for (1.1), in section 1. The proofs are presented in
section 2. Section 3 is devoted to the derivation and proof of the formula for the
effective nonlinearity.

We will not list any of the assumptions needed for (1.1) to have “well behaved”
viscosity solutions. We refer instead to the “User’s Guide” [2] and the references
therein. Here we will state only the assumptions that are necessary for the results we
prove.

Finally we emphasize that our goal in this paper is to present the key ideas instead
of trying to prove the most general result. Hence in several places we do not make
the most general assumptions on A and H.

2. Background and main result

Let (Ω,F ,µ) be a fixed probability space. A random field ξ :RN ×Ω→R is called
stationary if, for any finitely many x1,... ,xk ∈R

N and h∈R
N , the distribution of the

random vector (ξ(x1 +h,·),ξ(x2 +h,·),... ,ξ(xk +h,·)) is independent of h. It turns
out that ξ is stationary if

ξ(x,ω)= ξ̃(τxω)

for some random variable ξ̃ :Ω→R and a measure preserving transformation τx :Ω→Ω
with x∈R

N .
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A group (τx)x∈RN of measure preserving transformations in Ω is ergodic if all
subsets of Ω, which are invariant with respect to (τx)x∈RN , have probability either
zero or one.

Finally here we say that a random field is stationary ergodic if it is stationary
and the underlying group of measure preserving transformations is ergodic.

For (p,r,x)∈R
N ×R×R

N fixed, let vε(·,ω)∈BUC(RN ), the space of bounded
uniformly continuous functions in R

N , be the solution of the auxiliary problem (1.3).
It is well known (see, for example, [13] and [9]), that (1.1) homogenizes in probability
if and only if, for all fixed (p,r,x)∈R

N ×R×R
N , the εvε’s converge uniformly in balls

BR/ε (Br is the ball of radius r in R
N centered at the origin) and in probability to a

unique constant −H(p,r,x), i.e., for all R>0,

lim
ε→0

max
BR/ε

|εvε(·,ω)+H(p,r,x)|=0 in probability. (2.1)

In the following, to keep the notation simple we drop the explicit dependence of
(1.3) on (r,x) and we consider the approximate problem

εvε−δ trA(y,ω)D2
yvε +H(Dyvε +p,y,ω)=0 in R

N . (2.2)

Observe that, if vε(y,ω)=εvε(
y
ε ,ω), then

vε−δ trA(
y

ε
,ω)D2

yvε +H(Dyvε +p,
y

ε
,ω)=0 in R

N .

If homogenization takes place in probability, we must have that, as ε→0,
vε(·,ω)→ v̄ in C(RN ) and in probability, where v̄∈BUC(RN ) solves

v̄+H(Dy v̄+p)=0 in R
N .

The uniqueness of viscosity solutions yields v̄ =−H(p), while the local uniform
and in probability convergence of the vε’s to v̄ is equivalent to (2.1).

The main assumptions on H :RN ×R
N ×Ω→R and A :RN ×Ω→SN , the space

of N ×N symmetric matrices, which are assumed to hold a.s. in ω, are:

A and H are stationary ergodic processes, (2.3)

{
A(y,ω)=Σ(y,ω)Σ(y,ω)T where Σ(·,ω)∈C0,1

loc (RN )

is a Lipschitz continuous N ×M -matrix,
(2.4)

and




H(·,·,ω)∈C0,1
loc (RN ×R

N ), ξ 7→H(ξ,y,ω) is convex for all y∈R
N ,

sup
y∈RN

|H(ξ,y,ω)|≦CR for |ξ|≦R, and there exist α>1 and C1,C2 >0

such that H(ξ,y,ω)≧C1|ξ|
α−C2 for all y∈R

N .

(2.5)

We also assume that




there exists a modulus ω : [0,∞)→R such that lim
r→0

ω(r)=0 and,

for all ε>0, y,ŷ∈R
N and a.s. in ω,

|vε(y,ω)−vε(ŷ,ω)|≦ω(|y− ŷ|).

(2.6)

The result is:
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Theorem A. Assume (2.3), (2.4), (2.5), and (2.6). Then, for all R>0, (2.1) holds.

The key step of the proof of Theorem A is that, using the assumptions on H and
A, it is possible to construct a.s. in ω a strictly sublinear at infinity solution v of

H(Dyv+p,y,ω)≦λ in R
N ,

where λ is the L∞-weak ∗ limit of −εvε(0,ω), which, in view of the stationarity,
ergodicity and the uniform modulus of continuity of the vε’s, is constant a.s. in ω.

The existence of this subsolution allows to show that,

lim
ε→0

εvε(0,ω)≧−λ a.s. in ω.

It then follows from a simple real analysis lemma that actually the limit
limε→0εvε(0,ω) exists in probability. The uniform convergence on balls of radius
O(ε−1) is a consequence of a standard result in ergodic theory and (2.6).

We conclude with some basic facts from the theory of viscosity solutions. First
we recall the definition of the relaxed half-limits of a family (Wε)ε>0 of bounded,
uniformly in ε, functions. We have

W ∗(x)= limsup
ε→0,y→x

Wε(y) and W∗(x)= liminf
ε→0,y→x

Wε(y).

Next fix some W :RN ×Ω→R such that W (·,ω)∈BUC(RN ) a.s. in ω and, for
θ >0, consider the (classical) sup- and inf-convolution regularization W θ and Wθ of
W given by

W θ(x,ω)= sup
y∈RN

{
W (y,ω)−

|x−y|2

θ
} and Wθ(x,ω)= inf

y∈RN
{W (y,ω)+

|x−y|2

θ

}
.

It is well known (see, for example [5] and [2]) that, a.s. in ω, W θ(·,ω) and
Wθ(·,ω) are Lipschitz continuous with a constant depending on θ, and, as θ→0,
W θ(·,ω)→W (·,ω) and Wθ(·,ω)→W (·,ω) uniformly on R

N . It is also immediate
that, if W is stationary, then so do W θ and Wθ.

3. The proof of Theorem A

Proof. Since p plays absolutely no role in the proof below, we omit it.
It is immediate from (2.5) that there exists C3 >0 such that

sup
ε∈(0,1)

(ε‖vε(·,ω)‖)≦C3 a.s. in ω, (3.1)

where ‖f‖ denotes the L∞-norm.
The rest of the argument would be considerably simpler had we assumed that the

vε’s were uniformly Lipschitz continuous. Instead it is necessary to work a bit harder
introducing another layer of approximations.

For θ >0, consider next the sup-convolution vθ
ε of the solution vε of (1.3). It

follows from (2.4), (2.5), and (2.3) (see [2]) that, for each R>0 and a.s. in ω, vθ
ε is a

subsolution of

αvθ
α−δ trA(y,ω)D2vθ

α +H(Dvθ
α,y,ω)≦oR(1) in BR,

where, as θ→0, oR(1)→0 a.s. in ω.
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It is a classical fact in the theory of viscosity solutions (see, for example, [8], [4])
that, for any φ∈D+(B2R)={φ∈C∞

0 (B2R) :φ≧0} and a.s. in ω,

∫
εvθ

εφdy−δ

∫
vθ

ε

N∑

i,j=1

(Aijφ)yiyj
dy+

∫
φH(Dvθ

ε ,y,ω)dy ≦oR(1)

∫
φdy,

and, since vθ
α is Lipschitz continuous and H is coercive,

∫
εvθ

εφdy+δ

∫ N∑

i,j=1

(Aijφ)yi
(vθ

ε)yj
dy+C1

∫
|Dvθ

ε |
αφdy−C2

∫
φ≦oR(1)

∫
φdy.

(3.2)
Moreover, in view of (3.1),

sup
ε∈(0,1), θ∈(0,1)

ε‖vθ
ε(·,ω)‖≦C3 a.s. in ω. (3.3)

Next choose φ such that φ≡1 on BR and recall that, a.s. in ω,

∫

BR

|Dvθ
ε(·,ω)|dy ≦

(∫

BR

|Dvθ
ε(·,ω)|αdy

)1/α

|BR|
1/α′

,

where α′ is the Hölder dual of α.
It follows from (3.2) and (2.4) that, for some C4,R >0,

E

∫

BR

|Dvθ
ε |

αdy ≦C4,R.

Since α>1, and, as θ→0, vθ
ε →vε locally uniformly and a.s. in ω, we find that,

for some other C5,R >0,

Dvθ
ε ⇀Dvε in Lα(BR×Ω) and E

∫

BR

|Dvε(·,ω)|α ≦C5,R. (3.4)

Next we introduce the “normalized” function

wε(y,ω)=vε(y,ω)−vε(0,ω),

which is a solution of

εwε−δ trAD2wε +H(Dwε,y,ω)=−εvε(0,ω) in R
N . (3.5)

Given that

Dwε =Dvε,

it follows from the estimates above and the uniform continuity assumption on the vε’s
that, for all R>0,





(wε)ε>0 bounded in L∞(BR×Ω),

(Dwε)ε>0 bounded in Lα(BR×Ω),

(εvε(0,ω))ε>0 bounded in L∞(Ω), and

|wε(y,ω)−wε(ŷ,ω)|≦ω(|y− ŷ|) a.s. in ω.

(3.6)
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Therefore there exist w∈L∞(BR×Ω), for all R>0, and c∈L∞(Ω) such that
along subsequences, which we still denote by ε, ε→0

−εvε(0,·)⇀c in L∞(Ω)-weak ∗,

and, for each R>0,




wε ⇀w in L∞(BR×Ω)-weak*,

Dwε ⇀Dw in Lα(BR×Ω), and

|w(y,ω)−w(ŷ,ω)|≦ω(|y− ŷ|) for all y,ŷ∈R
N and a.s. in ω.

It also follows from standard arguments from the theory of viscosity solutions
that

−δ trAD2w+H(Dw,y,ω)≦ c in R
N and a.s. in ω. (3.7)

Finally, since Dwε =Dvε and EDvε =0, we also have

EDw=0.

One straightforward consequence of the ergodic theorem is that w(·,ω) is, a.s. in
ω, strictly sublinear at infinity, i.e., it satisfies

|y|−1w(y,ω)→0 as |y|→∞ and a.s. in ω. (3.8)

The last observation is that c is actually independent of ω. Indeed, in view of the
ergodicity assumption, it suffices to show that, for all y,h∈R

N ,

c(y,τhω)= c(y,ω). (3.9)

To this end, recall that the uniqueness of viscosity solutions of (1.3) and (2.3)
yield that for each ε>0 the process vε is stationary, and hence, a.s. in ω,

vε(0,τhω)=vε(h,ω).

The uniform modulus of continuity yields, a.s. in ω,

|vε(h,ω)−vε(0,ω)|≦ω(|h|),

and, hence, (3.9).
We summarize all the above saying that, a.s. in ω, there exists a constant c, the

L∞-weak* limit of the −εvε(0,ω)’s, and an a.s. strictly sublinear at infinity uniformly
continuous solution w of

−δ trA(y,ω)D2w+H(Dw,y,ω)≦ c in R
N and a.s. in ω.

Next we consider the smallest possible local uniform limit (εvε(·,ω))∗ of the εvε’s
given by

(εvε(·,ω))∗(y)= liminf
ε→0,z→y

εvε(z,ω).

The uniform modulus of continuity of vε yields that actually

(εvε(·,ω))∗(y)= liminf
ε→0

εvε(y,ω).
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Moreover, (εvε(·,ω)∗(0) is, a.s. in ω, a constant greater equal than −c. Indeed,
for y,h∈R

N and a.s. in ω, we have

εvε(y,τhω)=εvε(y+h,ω) and |εvε(y,ω)−εvε(0,ω)|≦ω(|y|).

Let w̃=w−c/ε. Then w̃ is an a.s. strictly sublinear at infinity solution of

εw̃−δ trA(y,ω)D2w̃+H(Dw̃,y,ω)≦εw in R
N .

Next we compare w̃ and vε. Using the strict sublinearity of w̃ at infinity and
the uniform continuity of w̃ and vε, we find, employing standard arguments from
the theory of viscosity solution (see, for example, [2]), that, for λ,β >0, there exist
oλ(1)→0, as λ→0, depending on ω, and Cλ >0 such that

εw(0,ω)−c−εvε(0,ω)=ε(w̃(·,ω)−β(1+ | · |2)1/2)(0)−εvε(0,ω)+εβ

≦εmax
RN

(w(·,ω)−β(1+ | · |2)1/2)+oλ(1)+βCλ.

Letting first ε→0 and then β→0 and, finally, λ→0, we obtain

−c≦ lim
ε→0

εvε(0,ω).

Since −c is the L∞-weak*-limit of (εvε(0,ω))ε>0, we must also have

lim
ε→0

εvε(0,ω)≦−c,

and, hence, a.s. in ω,

lim
ε→0

εvε(0,ω)=−c. (3.10)

An elementary real analysis lemma (see Lemma 1 below) yields that, as ε→0,

εvε(0,ω)→−c in probability. (3.11)

It now follows once again from the stationarity, the ergodicity and the assumed
modulus of continuity (see Lemma 2 below) that (3.11) actually implies that, for each
R>0, as ε→0,

max
y∈BR/ε

|εvε(y,·)+c|→0 in probability.

We continue with the two technical results used in the above proof.

Lemma 1. Let (X,M,m) be an arbitrary measure space with m(X)<∞ and (fn)n∈N

a sequence of measurable functions such that, for some C >0, |fn|≤C m-a.e. and∫
B

fndm→
∫

B
liminfn→∞fndm for all B∈M. Then, for all p∈ [1,∞),

fn →f =liminf
n→∞

fn in Lp(X) and in probability.
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Proof. Let gn =infk≧nfk. The definition of the liminf yield that, as n→∞, gn ր

liminfn→∞fn m-a.e. and in Lp(X) for p∈ [1,∞).

Let hn =fn−gn. Then hn ≧0 and, as n→∞,
∫

B
fndm→0 for all B∈M and, in

particular, B =X.

It follows that, as n→∞, fn−gn →0 in L1(X) and in probability. The uniform
bound on the |fn| and the fact that m(X)<∞, then yield as n→∞, fn−gn →0 in
Lp(X) for all p∈ [1,∞).

Lemma 2. Let vε :RN ×Ω→R be a family of stationary processes which are, uni-

formly in ε, uniformly continuous in R
N a.s. in ω. If, for some C ∈R, εvε(0,ω)→C

in probability, as ε→0, then, for any r>0, as ε→0,

max
y∈Br/ε

|εvε(y,·)+C|→0 in probability.

Proof. Without any loss of generality we may assume that C =0.

Since εvε(0,ω)→0 in probability, for each δ >0 there exists εδ >0 and Aδ ⊂Ω
such that

esssup
ω∈Aδ

|εvε(0,ω)|≤ δ for ε≤εδ and µ(Ω\Aδ)≦ δ.

Applying the ergodic theorem to the characteristic function 1Aδ
of Aδ, we find

Ωδ ⊂Ω such that µ(Ωδ)=1 and, for all ω∈Ωδ,

lim
R→0

|BR|
−1

∫

BR

1Aδ
(τxω)dx=µ(Aδ)>0.

If Ω1 =∩δ∈(0,1)Ωδ, then µ(Ω1)=1 and the ergodic theorem holds for ω∈Ω1 and
all δ∈ (0,1).

Fix r>0. It follows that, given θ >0, if ε is sufficiently small and ω∈Ω1,

|{y : τyω∈Aδ}∩Br/ε|≧ (1−2θ)|Br/ε|.

The regularity of the Lebesgue measure implies that there exists γ(θ)>0 such
that, as θ→0, γ(θ)→0 and, for all x∈Br/ε, there exists x̂∈{y : τyω∈Aδ}∩Br/ε such
that |x− x̂|≦γ(θ)ε−1.

Then

esssup
ω∈Aδ

|εvε(x,ω)|≦ esssup
ω∈Aδ

|εvε(x,ω)−εvε(x̂,ω)|+esssup
ω∈Aδ

|εvε(x̂,ω)|

≦εω(γ(θ)/ε)+esssup
ω∈Aδ

|εvε(0,τx̂ω)|≦2δ.

This last inequality implies the claim.
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4. New formulae for the effective nonlinearity

Throughout this section we ignore the possible dependence of H on (r,x). It was
shown in [9] that the effective Hamiltonian H for (1.1) is given, for each p∈R

N , by

H(p)= inf
Φ∈S

sup
y∈RN

[−δ trA(y,ω)D2Φ+H(DΦ+p,y,ω)], (4.1)

where the sup in (4.1) is interpreted in the viscosity sense, and

S ={Φ:RN ×Ω→Ω: Φ(·,ω)∈C(RN ), |y|−1Φ(y,ω)−−−−→
|y|→∞

0 and

Φ(y+z,ω)−Φ(y,ω)=Φ(z,τyω)−Φ(0,τyω) for all y,z∈R
N and a.s. in ω}.

It is worth remarking that, if Φ∈S is a.e. differentiable with respect to y, then
the identity in the definition of S implies that DyΦ(y,ω) is stationary, while the
prescribed a.s. behavior at infinity is equivalent to EDΦ(y,·)=0.

Recall that any stationary process f :RN ×Ω→R can be written as f(y,ω)=
f̃(τyω) with f̃(ω)=f(0,ω) for some f̃ :Ω→R. In what follows given a stationary

process f we will denote by f̃ the random variable it is generated by.
In view of the above it is possible to rewrite (4.1) as

H(p)=− inf
(X̃,q̃)∈S̃

esssup
Ω

[−δ tr(Ã(ω)X̃)+H̃(q̃+p,ω)], (4.2)

where S̃ consists of random variables X̃ and q̃ taking values in SN and R
N respectively,

such that the pair (X(τyω),q(τyω)) must belong to the superdifferential, (see [2]) in
the viscosity sense, of functions Φ∈S whenever the former is nonempty.

A new formula for H was introduced in [6] for (1.1) with δ >0 and A=Id. The
equality between the new formula and (4.1) was then used in [6] to prove the ho-
mogenization result for (1.1) for δ >0. The fact that A was independent of the space
variable as well as uniformly elliptic played a critical role in the analysis and, in
particular, the equality between the formulas in [6].

Having proved the homogenization in a different way, either as in [13] and [9], or as
in Theorem A, we proceed here to obtain, in a very straightforward way, an extension
of the formula of [6] for degenerate elliptic stationary A’s and, in particular, for δ =0.

To write the new formula, it is necessary to introduce some additional terminology
and notation.

The measure preserving transformation (τx)x∈RN gives rise to an isometry on
L2(Ω,F ,µ) with infinitesimal generators (D̃i)1≦i≦N in the coordinate directions. For

A∈L∞(Ω;SN
+ ), where SN

+ is the set of nonnegative matrices in SN , and b̃∈L∞(Ω),
we consider the operator

LA,b =−δ trÃ(ω)D̃2 + b̃(ω) ·D̃.

Let D be the space of probability densities φ̃ :Ω→R relative to µ with φ̃, D̃φ̃,
D̃2φ̃∈L∞(Ω) and infΩ φ̃>0, and, finally, set

E ={(b̃, φ̃)∈L∞(Ω;RN )×D :−δ trD̃2(Ã(ω)φ̃)+d̃iv(b̃(ω)φ̃)=0},

with the equation in the definition of E satisfied in the weak sense.
Note that E is always nonempty. Indeed for δ =0, we can always take b̃≡1 and

φ̃≡1, while, when δ >0, we choose b̃ so that d̃iv b̃=trD̃2Ã, in which case φ̃≡1 is
again admissible.
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Let H :RN →R be defined by

H(p)= sup
(b̃,φ̃)∈E

[(p,E(b̃φ̃))−EH̃(b̃,·)φ̃]. (4.3)

Theorem B. Assume the hypotheses of Theorem A. Then, for all p∈R
N , (4.1) and

(4.3) are equal.

Proof. We begin with the inequality

H ≦H. (4.4)

To this end, let (b̃, φ̃)∈E and recall the equation

εvε−δ trA(y,ω)D2vε +H(Dvε +p,y,ω)=0 in R
N .

Then, a.s. in ω, vε is a viscosity subsolution of

εvε−δ trA(y,ω)Dvε +b(y,ω) ·(Dvε +p)−H∗(b(y,ω),y,ω)≦0,

and, hence, a subsolution in the sense of distributions.
It follows that ṽε(ω)=vε(0,ω) is a weak subsolution in H1(Ω) of

εṽε−δ tr(ÃD̃2ṽε)+ b̃(ω) ·(D̃ṽε +p)−H̃∗(b̃(ω),ω)≦0.

Multiplying this last inequality by φ̃, integrating with respect to the probability
measure µ, and using that (b̃, φ̃)∈E , we find

εE(ṽεφ̃)+
(
p,E(b̃φ̃)

)
−E(H̃(b̃,·)φ̃)≦0.

Recall that, as ε→0,

εṽε(·)→−H(p) in Lp(Ω) for all p∈ [1,∞) and in probability,

and, hence, as ε→0,

εEṽεφ→−H(p).

Since (b̃, φ̃)∈E is a general element of E we conclude that (4.4) holds.
The inequality H(p)≧H(p) follows from the min-max theorem, the assumed su-

perlinear growth of H and the fact that A(·,ω)∈C0,1(RN ) a.s. in ω. The proof of [6],
for A=Id, extends easily here.

We remark that Theorem A played an important role in the above proof to pass
in the limit, as ε→0, in the term εEṽεφ. When the conclusion of Theorem A is not
known a priori, it is necessary to use the ergodic theorem as it is done in [6]. The
difficulty, however, encountered, when Ã is degenerate, is that the invariant measures
φ̃ may not be unique.
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