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Abstract. Recently the author developed a numerical method for the multidimensional moment-
constrained maximum entropy problem, which is practically capable of solving maximum entropy
problems in the two-dimensional domain with moment constraints of order up to 8, in the three-
dimensional domain with moment constraints of order up to 6, and in the four-dimensional domain
with moment constraints of order up to 4, corresponding to the total number of moment constraints of
44, 83 and 69, respectively. In this work, the author brings together key algorithms and observations
from his previous works as well as other literature in an attempt to present a comprehensive exposition
of the current methods and results for the multidimensional maximum entropy moment problem.
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1. Introduction

The moment-constrained maximum entropy problem yields an estimate of a prob-
ability density with highest uncertainty among all densities satisfying supplied mo-
ment constraints. The moment constrained maximum entropy problem arises in a
variety of settings in solid state physics [7, 22, 23, 39], econometrics [34, 40], statis-
tical description of gas flows [27, 33], geophysical applications such as weather and
climate prediction [4, 5, 21, 25, 28, 29, 35, 36], and many other areas. The approxima-
tion of the probability density itself is obtained by maximizing the Shannon entropy
under the constraints established by measured moments (phase space-averaged mono-
mials of problem variables) [32]. A standard formalism [41] transforms the constrained
maximum entropy problem into the unconstrained minimization problem of the dual
objective function. More details on theoretical aspects of the maximum entropy mo-
ment problem can be found in [8, 15, 14, 38].

Recently, the author developed new algorithms for the multidimensional moment-
constrained maximum entropy problem [1, 2, 3]. While the method in [1] is somewhat
primitive and is only capable of solving two-dimensional maximum entropy problems
with moments of order up to 4, the improved algorithm in [2] uses a suitable orthonor-
mal polynomial basis in the space of Lagrange multipliers to improve convergence of
its iterative optimization process. It is capable of practically solving two-dimensional
problems with moments of order up to 8, three-dimensional problems with moments
of order up to 6, and four-dimensional problems of order up to 4, totalling 44, 83 and
69 moment constraints, respectively, not counting the normalization constraint for a
probability density. In [3], further improvements were introduced to the algorithm
for the multidimensional moment-constrained maximum entropy problem, such as
multiple Broyden-Fletcher-Goldfarb-Shanno (BFGS) iterations [9, 10, 12, 19, 37] to
adaptively progress between points of polynomial reorthonormalization, as opposed
to single Newton steps introduced in [2], and suitable constraint rescaling to reduce
difference in magnitude between high and low order moment constraints. These two
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improvements were observed in [3] to significantly reduce computational wall clock
time (typically by a factor of 5-6) for the same maximum entropy problem.

In this work we bring together key algorithms and observations from [1, 2, 3]
as well as other literature in an attempt to give the reader a comprehensive exposi-
tion of the current numerical methods and results for the multidimensional moment-
constrained maximum entropy problem.

The manuscript is organized as follows. In section 2 we formulate two maximum
entropy problems for the Shannon entropy and the relative entropy, or the Kullback-
Leibler divergence [26], respectively, with general constraints. Section 3 shows the
equivalence of the two maximum entropy problems in the framework of moment con-
straints. In section 4 we sketch the preconditioning method for the input moment
constraints which maps an arbitrary maximum entropy problem into one with zero
mean state and a diagonal covariance matrix with comparable magnitudes of high and
low order moment constraints. Section 5 outlines the numerical algorithm with an
orthonormal polynomial basis for the maximum entropy moment problem to improve
stability and convergence. In section 6 we give an exposition of the modified Gram-
Schmidt process for maintaining orthogonality of the polynomial basis. In section 7
we introduce the BFGS optimization algorithm, which improves computation speed of
the basic algorithm with the polynomial basis. In section 8 we explain how to use the
Gauss-Hermite quadratures to compute the integrals arising in section 5, given the
problem scaling from section 4. Section 9 presents a schematic outline of the whole
algorithm. Section 10 presents a few vivid examples of multidimensional maximum
entropy problems with highly non-Gaussian states. Finally, section 11 outlines future
directions of this work.

2. Maximum entropy problems for general constraints

Before providing a detailed exposition of the moment-constrained entropy prob-
lem, a more general optimization framework for an arbitrary set of constraints is
formulated in this section for both the Shannon entropy and relative entropy. Let the
partial knowledge of a probability density ρ(~x), where ~x denotes a vector of phase
space coordinates, be available in the form of linear constraints

F0(ρ)=

∫

RN

ρ(~x)d~x=f0 =1,

Fi(ρ)=

∫

RN

Ci(~x)ρ(~x)d~x=fi, 1≤ i≤L,

(2.1)

where Ci(~x) are such that the integrals (2.1) are finite, linearly independent, and
arbitrary otherwise. Then the two maximum entropy problems are formulated as:

1. Maximum entropy problem of the first kind: find the optimal probability
density ρ∗S which maximizes the Shannon entropy

S(p)=−

∫

RN

ρ(~x)lnρ(~x)d~x (2.2)

(i.e. such that S(ρ∗S)=max
ρ

S(ρ)) and simultaneously satisfies the constraints

in (2.1);

2. Maximum entropy problem of the second kind: find the optimal probability
density ρ∗P which minimizes the relative entropy

P (ρ,Π)=

∫

RN

ρ(~x)ln

[

ρ(~x)

Π(~x)

]

d~x (2.3)
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(i.e. such that P (ρ∗P ,Π)=min
ρ

P (ρ,Π)) and simultaneously satisfies the con-

straints in (2.1), where Π(~x) is some known probability density.
A standard optimization approach allows the reformulation of the above two problems
for the dual space of the Lagrange multipliers in the unconstrained form [32, 41]. In
particular, the constrained optimization problems of the first and second kind in (2.2)
and (2.3), respectively, are reduced to the unconstrained minimization of the dual
objective functions in the form

LS(~λ)=

∫

RN

exp

(

L
∑

i=0

λiCi(~x)

)

d~x−

L
∑

i=0

λifi, (2.4a)

LP (~θ)=

∫

RN

Π(~x)exp

(

L
∑

i=0

θiCi(~x)

)

d~x−

L
∑

i=0

θifi, (2.4b)

over their sets of Lagrange multipliers ~λ and ~θ, respectively. The Hessians (matrices
of second derivatives) of (2.4a) and (2.4b) are positive definite [41], and therefore
the optimization problems of both the first and second kind are convex with unique
optima (if the optima exist). The optimal probability densities ρ∗S and ρ∗P are then

ρ∗S(~x)=exp

(

L
∑

i=0

λiCi(~x)

)

, (2.5a)

ρ∗P (~x)=Π(~x)exp

(

L
∑

i=0

θiCi(~x)

)

. (2.5b)

It is easy to see that if the optima for (2.4a) and (2.4b) are reached (i.e. the gradients
of (2.4a) and (2.4b) are zero), then the constraints in (2.1) are automatically satisfied
by (2.5a) and (2.5b).

Note that since C0(x)=1 in (2.5), λ0 and θ0 can be found as explicit functions of
all other Lagrange multipliers:

λ0 =−ln

∫

RN

exp

(

L
∑

i=1

λiCi(~x)

)

d~x, (2.6a)

θ0 =−ln

∫

RN

Π(~x)exp

(

L
∑

i=1

θiCi(~x)

)

d~x. (2.6b)

However, for the purpose of simplicity and better adaptation to numerical methods,
developed below, here we prefer to treat λ0 and θ0 as generic Lagrange multipliers.

3. The unified maximum entropy problem for moment constraints

For practical applications it is common for the constraints in (2.1) to be vari-
ous products of powers of phase space coordinates (moments). Since optimization
problems with moment constraints are less general than those in (2.4a) and (2.4b),
additional simplifications can be made in the theoretical formulation of the optimiza-
tion problems before proceeding with their numerical implementation. First, however,
we need to introduce a concise written form of an arbitrary moment. Here we follow
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notations introduced earlier in [1, 2, 3], where for ~x∈R
N , with N being the dimen-

sion of the domain, an arbitrary monomial of ~x (the product of arbitrary powers of
components of ~x) is concisely written as

~x
~i =

N
∏

k=1

xik

k , ~i∈ I
N , (3.1)

such that the monomial order |~i| is the total power of all vector components, i.e.

|~i|=

N
∑

k=1

ik. (3.2)

Using the above notation, for a probability density p we write a set of arbitrary
moment constraints up to the total power M as

µ~i(ρ)=

∫

RN

~x
~iρ(~x)d~x=m~i, |~i|=0...M. (3.3)

With the set of moment constraints in (3.3), the unconstrained optimization problems
in (2.4a) and (2.4b) become

LS(~λ)=

∫

RN

exp





M
∑

|~i|=0

λ~i~x
~i



 d~x−
M
∑

|~i|=0

λ~im~i, (3.4a)

LP (~θ)=

∫

RN

Π(~x)exp





M
∑

|~i|=0

θ~i~x
~i



d~x−

M
∑

|~i|=0

θ~im~i, (3.4b)

with corresponding optimal probability densities

ρ∗S(~x)=exp

(

M
∑

i=0

λi~x
~i

)

, (3.5a)

ρ∗P (~x)=Π(~x)exp

(

M
∑

i=0

θi~x
~i

)

. (3.5b)

Note that the probability densities in (3.5a) and (3.5b) differ from each other solely
due to the Π(~x) factor in the latter. In particular, if Π(~x) itself is of the form (3.5a),
then the optimization problem of the second kind in (3.4b) can be reduced to the
optimization problem of the first kind in (3.4a), which we demonstrate below. Let Π
be of the form

Π(~x)=exp





M
∑

|~i|=0

β~i~x
~i



 . (3.6)

This choice of Π is natural if Π is itself the optimal probability density for the op-
timization problem of the first kind in (3.4a) with different constraints. Then the
optimization problem of the second kind in (3.4b) can be written as

LP (~θ)=

∫

exp





M
∑

|~i|=0

(θ~i +β~i)~x
~i



dx−

M
∑

|~i|=0

θ~im~i. (3.7)
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Changing variables ξ~i =θ~i +β~i we obtain for (3.4b)

LP (~ξ)=

∫

exp





M
∑

|~i|=0

ξ~i~x
~i



 dx−
M
∑

|~i|=0

ξ~im~i +
M
∑

|~i|=0

β~im~i, (3.8)

where the last sum is constant and does not affect the location of the minimum of
(3.8). Now it can be seen that LP (~ξ) in (3.8) and LS(~λ) in the optimization problem
of the first kind (3.4a) differ by a constant, which means that, for the same set of

initial constraints, the optimal set of Lagrange multipliers ~ξ for (3.8) coincides with

the set ~λ for (3.4a).
Once the optimal sets of Lagrange multipliers for ρS(~x) and ρP (~x) are found, the

corresponding Shannon and relative entropies are computed as follows:

S(ρ∗S)=−
M
∑

|~i|=0

λ~im~i, (3.9a)

P (ρ∗P ,Π)=

M
∑

|~i|=0

(ξ~i−β~i)m~i. (3.9b)

4. Preconditioning of input constraints

Before proceeding with the numerical algorithm for optimization, it is desirable
to simplify and standardize the initial problem as much as possible via linear trans-
formations of coordinates in the phase space R

N . This preconditioning removes many
implementation problems and improves the dynamic range of applicability and con-
vergence of optimization algorithms.

The first step we suggest is to perform a coordinate change so that the mean state
of the target probability density ρ∗ is shifted to zero. Let ~m be the mean state of ρ∗

and ρ̃∗ be the shifted probability density

ρ̃∗(~x)=ρ∗(~x+ ~m) (4.1)

so that the mean state of ρ̃∗ is automatically zero. Our purpose then is to obtain the
set of moment constraints up to the same power for ρ̃∗ from the given moments of ρ∗.
One can directly verify that the new moments are obtained as linear combinations of
old moments by

µ~i(ρ̃
∗)=

∑

~j≤~i

(−1)|
~j|

N
∏

k=1

(

ik

jk

)

µ~i−~j(ρ
∗)~m

~j . (4.2)

At the end of computations the following direct formula can be used for the backward
transformation of the computed Lagrange multipliers λ̃~i to the Lagrange multipliers
λ~i of the original coordinates:

λ~i =
∑

~j≥~i

(−1)|
~j−~i|

N
∏

k=1

(

jk

ik

)

λ̃~j ~m
~j−~i. (4.3)

After the mean shift has been performed as described above, the next step of
preconditioning is to rotate and stretch the coordinate system in such a way that the
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constraint covariance matrix (the matrix of second moments) becomes the identity
matrix in the new coordinates. This is achieved by setting

~xold =EΛ1/2~xnew, (4.4)

where E is the matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues for
the constraint covariance matrix. Let ρ̂∗ be the mapping of the probability density
ρ̃∗ in the rotated coordinates with rotation matrix A=(EΛ1/2)−1, that is,

ρ̂∗(~x)=
1

detA
ρ̃∗(A−1~x). (4.5)

Then, one can verify that the formula for the constraint transformation is

µ~i(ρ̂
∗)=

∑

|~j1|=i1

...
∑

|~jN |=iN

N
∏

k=1

[(

ik
~jk

)

~A
~jk

k

]

µP

N

k=1
~jk

(ρ̃∗), (4.6)

where ~Ak is the k-th row of the rotation matrix A and the multinomial coefficients
are defined as

(

n
~j

)

=
n!

∏N
k=1

(jk!)
. (4.7)

At the end of computations the following direct formula can be used for the backward
transformation of the computed Lagrange multipliers λ̂~i to the Lagrange multipliers

λ̃~i of the mean-shifted coordinates:

λ̃~i =
∑

~j1...~jN
P

l
~jl=~i

N
∏

k=1

[

(

|~jk|
~jk

)

~A
~jk

k

]

λ̃|~j1|,...,|~jN |. (4.8)

Note that for linear coordinate transformations, recomputation of the moment con-
straints of order M in the new coordinates requires only the moment constraints up to
order M in the old coordinates. Since no extra information beyond the set of moment
constraints has to be provided for this preconditioning to work, its user-transparent
encapsulation into the main optimization routine makes it very convenient in practical
use.

However, shifting the mean state of a maximum entropy moment problem to zero
and setting its covariance matrix to identity is not sufficient to achieve computational
stability, as one can observe even with zero mean state the moment constraints of
high power to differ from the moment constraints of low power by several orders of
magnitude, which in general negatively impacts convergence of the algorithm. As an
example, the moments of a simple one-dimensional Gaussian distribution with zero
mean state and unit variance obey the relation

µM (ρG)=(M −1)!!, Meven, (4.9)

where (M −1)!! denotes the factorial over odd numbers up to M −1. As we can
see, the Gaussian moments in (4.9) grow extremely fast with increasing M . This
situation is further complicated by the fact that for a maximum entropy problem of
moment constraints of order up to M the polynomial reorthonormalization procedure
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requires computation of moments of order up to 2M . For instance, when the 8-order
maximum entropy problem is started with the initial Gaussian distribution of zero
mean and unit variance, the polynomial reorthonormalization algorithm computes
µ16 =15!!=2,027,025, which exceeds µ0 and µ2 (computed by the same algorithm)
by 6 orders of magnitude.

To partially remedy the difference in magnitude between moments of different
order, we suggest the following strategy. Instead of constraining the problem with the
original set of moments, we will look for the optimal probability distribution

ρ∗α(~x)=αN ρ̂∗(α~x), (4.10)

with α being a scalar parameter, with moment constraints

µ~i(ρ
∗
α)=α−|~i|µ~i(ρ̂

∗), 0≤|~i|≤M. (4.11)

α can be chosen to minimize the difference in magnitude between different moments.
Note that for polynomial reorthonormalization the moments of total power up to
2M have to be computed, and therefore are needed to be taken into account for
determining α.

Note that the more general way to minimize difference in magnitude between
moments would be to set α to an N ×N matrix and then choose its entries at each
polynomial reorthonormalization so that the difference between magnitudes of all
the moments of order up to 2M is minimized, with subsequent rescaling of moment
constraints. While such an elaborate strategy for α will probably be addressed by the
author in the future, it is somewhat sophisticated and requires a separate optimization
subproblem to be solved for α at each polynomial reorthonormalization, which could
drive the computational cost of the problem further up.

Here the scaling coefficient α is chosen once in the beginning of the optimization
process, where the Gaussian distribution with zero mean state and identity covariance
matrix is chosen as the starting guess. As the moments of the target probability
distribution of order greater than M are unknown at the start, instead we choose α

to set the common value of the highest-order corner moments µn
2M to the value of

the normalization constant µ0 of the starting guess of the iterations, where the corner
moments µn

2M are defined as follows:

µn
2M (ρ)=

∫

RN

x2M
n ρ(~x)dx. (4.12)

With the starting Gaussian distribution ρ̂∗ of zero mean and identity covariance ma-
trix, all the corner moments of order 2M are equal to (2M −1)!! while the normaliza-
tion constant µ0 =1. With this, α becomes

α= 2M

√

(2M −1)!!. (4.13)

One can verify that setting α to the value in (4.13) automatically equates the new
normalization constant and all corner moments of order 2M for the starting Gaussian
distribution.

With the rescaling in (4.13), one can check that for the 8-th order moment problem
with Gaussian distribution, the 6-order difference in magnitudes of the moments is
reduced to a single order. As we can see, the scaling in (4.13) is quite efficient, despite
its apparent simplicity. After ρ∗α(~x) is found, it is easy to convert it back into ρ∗(~x)
via (4.3), (4.8), and (4.10).
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5. Polynomial basis for the moment-constrained maximum entropy

problem

Although the minimization problem in (3.4a) is convex, the straightforward opti-
mization of (3.4a) via an iterative technique like the Newton method [13] or the BFGS
algorithm [10] directly over its Lagrange multipliers encounters numerical difficulty

due to sensitivities of the value of the dual objective function L(~λ) to changes in
different Lagrange multipliers λ~i. Indeed, it is easy to see that the value of the dual
objective function is not likely to respond as much to a change in a first-level Lagrange
multiplier λ~i with |i|=1, as it is likely to respond to a change in, say, a fifth-level
Lagrange multiplier with |i|=5, due to the fact that the exponential function in the
integrand of the phase-space integral in (3.4a) is more sensitive to changes in higher
powers of ~x. As a result, optimizing over the Lagrange multipliers directly often fails
when the maximum moment order M exceeds the value of 6 or even 4.

Thus, in order to successfully iterate the optimization problem in (3.4a) one has

to replace the set of monomials ~x
~i with a different basis in which the dual objective

function in (3.4a) has roughly same sensitivity to changes in any of the coordinates

of such a basis. A simple solution is to replace basis monomials ~x
~i with a set of M -th

order polynomials pk(~x),

{~x
~i,λ~i},

~i∈ I
N , 0≤|i|≤M → {pk(~x),γk}, 1≤k≤K, K =

(M +N)!

M !N !
, (5.1)

where γk are the Lagrange multipliers of the new basis. Since each basis polynomial
pk(~x) is of M -th order, the dual objective function should have comparable sensitivity
to changes in different γk. The dual objective function (3.4a) is written in the new
polynomial coordinates as

L(~γ)=

∫

RN

exp

(

K
∑

k=1

γkpk(~x)

)

d~x−
K
∑

k=1

γkpk(~µ), (5.2)

where pk(~µ) above in (5.2) denotes the polynomial pk(~x) where all the powers ~x
~i are

replaced with corresponding constraints µ~i from (3.3). The corresponding optimal
probability density function is now written as

ρ∗(~x,~γ)=exp

(

K
∑

k=1

γkpk(~x)

)

. (5.3)

For the one-dimensional setting (i.e., when ~x is a scalar), it is common to use the
shifted Chebyshev polynomials [7] or the Lagrange interpolation polynomials with
suitably spaced roots [39] so that comparable sensitivity of the dual objective function
to changes in new coordinates is ensured. Although it might be possible to generalize
the Chebyshev polynomials or the Lagrange interpolants to the multidimensional
setting, here we instead use an adaptive system of K general orthogonal polynomials,
tailored for the optimization problem.

Below we adapt the key properties of a suitable polynomial system to the Newton
method. First, we write the formula of the Newton iterations for (5.2):

~γn+1 =~γn−ζn

(

H−1∇L
)

|~γn , (5.4)

where ~γn denotes the vector of Lagrange multipliers in the new basis at the n-th
Newton iteration, and ζn is a stepping distance parameter at the n-th optimization
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step. Here the entries of the gradient ∇L and Hessian (matrix of second derivatives)
H are given by

(∇L)k =
∂L

∂γk
=Q~γ(pk)−pk(~µ), (5.5a)

(H)kl =
∂2L

∂γk∂γl
=Q~γ(pkpl), (5.5b)

where the quadrature Q~γ(g) for an arbitrary function g(~x) is computed as

Q~γ(g)=

∫

RN

g(~x)ρ∗(~x,~γ)d~x. (5.6)

It is easy to see that the optimization problem in new coordinates remains convex;
the inner product ~vT H~v for an arbitrary vector ~v is

~vT H~v =vkQ(pkpl)vl =Q(vkpkplvl)=Q((vkpk)2)≥0,

where, by convention, a summation is performed over each pair of identical indices. In
order to improve numerical stability of the Newton iterations in (5.4), we require the
following orthogonality condition for the polynomials pk at each step of the Newton
iterations:

Q(pkpl)= δpl, (5.7)

where δpl is the usual Kronecker delta-symbol. The orthogonality requirement in (5.7)
also provides roughly same sensitivity of the dual objective function in (5.2) to changes
in different γk due to identical curvatures of the second-order surface approximation
tangent to L in all directions at the current iteration point, and turns the formula in
(5.5b) for the Hessian matrix into

(H)kl =(H−1)kl = δkl. (5.8)

With (5.8), the Newton method in (5.4) coincides with the steepest descent method:

~γn+1 =~γn−ζn (∇L) |~γn . (5.9)

6. Reorthonormalization of the polynomial basis

In section 5 we have formulated the orthogonality condition in (5.7) for the basis
polynomials in (5.1) in order to improve the numerical stability and convergence of the
minimization of the dual objective function in (5.2). However, the quadratures Q in
(5.6) are weighted by the probability density function of the form (5.3) which changes
between different points of the optimization path, and thus the orthogonal relation
in (5.7) is not necessarily preserved as the optimization process evolves. Therefore,
a Gram-Schmidt type of polynomial reorthonormalization of pk is required to keep
polynomials pk orthogonal in the sense of (5.7). Poor numerical stability of the clas-
sical Gram-Schmidt reorthonormalization is widely known, and common numerically
stable tools to reorthonormalize a set of Euclidean vectors usually involve the House-
holder reflections or Givens rotations [20]. However, it is not clear whether an analog
of Householder or Givens decomposition exists for polynomials of an arbitrary dimen-
sion and order, and a suitable stabilized modification of the Gram-Schmidt algorithm
will be used instead.
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Recent work [11, 16, 17, 18] demonstrates that the modified Gram-Schmidt al-
gorithm yields a good precision for vectors which are not “too ill-conditioned”. In
particular, it is demonstrated in [17] that the modified Gram-Schmidt algorithm with
reorthogonalization yields errors which are small multiples of the machine round-off
error.

According to the classical Gram-Schmidt method, K arbitrary linearly indepen-
dent polynomials ak are converted into the orthonormal (in the sense of (5.7)) set of
polynomials pk as

pk =

ak−

k−1
∑

l=1

Q(akpl)pl

Q





[

ak−
k−1
∑

l=1

Q(akpl)pl

]2




1/2
, 1≤k≤K. (6.1)

As mentioned before, the classical Gram-Schmidt method is numerically unstable, and
here we use a suitably modified version of the Gram-Schmidt method with reorthogo-
nalization from [18], tailored for a polynomial basis. It is not convenient to illustrate
the modified Gram-Schmidt method as a formula in (6.1) due to recursive nature of
its computational implementation, and instead we give a step-by-step program of the
algorithm as in [18] in a fashion which resembles modern computer languages:

Modified Gram-Schmidt algorithm

for k =1,... ,K {
for l=1,r

for m=1,... ,k−1
ak =ak−Q(akpm)pm

pk =Q(a2
k)−1/2ak

}

The parameter r above is 1 if the reorthonormalization is not performed, and 2 other-
wise. We observed that the modified Gram-Schmidt algorithm either with or without
reorthogonalization produces sufficiently orthogonal polynomials for the maximum en-
tropy problems considered in [2, 3]. Note that the modified Gram-Schmidt algorithm
without reorthogonalization is more easily parallelizable, and therefore is a better
candidate for parallel implementations of the maximum entropy problem.

7. The BFGS optimization algorithm

The optimization algorithm with the polynomial basis described above in sec-
tion 5 performs the Gram-Schmidt reorthonormalization of the basis polynomials at
each step of the steepest descent iterations in (5.9), which, on one hand, yields sec-
ond order convergence in the vicinity of the optimal point, but, on the other hand,
increases computational expense of the method, since the computational cost of poly-
nomial reorthonormalization roughly matches the cost of Hessian computation in the
monomial basis. Thus, an obvious way to reduce the computational expense of the
basic algorithm is to perform several descent iterations between the Gram-Schmidt re-
orthonormalizations. However, the steepest descent method in (5.9) in this case loses
precision down to the first order and becomes vulnerable to curvature anisotropy due
to its lack of affine invariance. On the other hand, we need to avoid computing the
Hessian during the iterations between polynomial basis reorthonormalizations, which
suggests using one of the quasi-Newton methods such as BFGS.
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The Broyden-Fletcher-Goldfarb-Shanno formula [9, 10, 12, 19, 37] is a quasi-
Newton method, widely used in optimization algorithms. It needs the Hessian (or an
approximation to it) at the starting point of iterations and only requires computation
of the gradient of the dual objective function in (5.2) at each successive iteration,
which significantly reduces computational cost in our case. The structure of the
BFGS algorithm is the following:

• In the first iteration, provide the starting gradient of the dual objective func-
tion (∇L)0 and starting Hessian H0, which is an identity matrix after poly-
nomial reorthonormalization (see (5.5b));

• At iteration m, perform the following steps:

a) Find the direction of descent by solving

Hm
~dm =−(∇L)m; (7.1)

b) Perform a line search for the step distance ζm and find the next iterate
~γm+1 as

~γm+1 =~γm +ζm
~dm; (7.2)

c) At the new iterate ~γm+1, compute the gradient (∇L)m+1;

d) Compute the new iterate of the pseudo-Hessian as

Hm+1 =Hm +
~ym⊗~ym

~sm~ym
−

(Hm~sm)⊗(Hm~sm)

~smHm~sm
, (7.3)

where ~sm =~γm+1−~γm and ~ym =(∇L)m+1−(∇L)m.

In practice, to compute the descent direction in (7.1), we apply the Sherman-
Morrison formula to the pseudo-Hessian in (7.3) and obtain

H−1

m+1 =H−1
m +

~sm~ym +~ymH−1
m ~ym

(~sm~ym)2
(~sm⊗~sm)−

−
1

~sm~ym

[

(H−1
m ~ym)⊗~sm +~sm⊗(H−1

m ~ym)
]

.

(7.4)

Then, the descent direction in (7.1) is computed as

~dm =−H−1
m (∇L)m. (7.5)

For details on the Sherman-Morrison formula see, for example, [20].
As successive BFGS steps change the current iterate of the probability distribution

ρ∗ in (5.3), the current set of polynomials pk in (5.1), which stays the same, gradually
loses orthogonality with respect to changing ρ∗, which negatively impacts convergence
of the BFGS iterations due to increased numerical errors in computation of the descent
direction. Thus, when the error in the descent direction becomes too large, the basis
polynomials in (5.1) have to be reorthonormalized with respect to the current iterate of
(5.3) and the BFGS process has to be restarted. This adaptive reorthonormalization
approach requires a computationally cheap estimate of the numerical error in the
descent direction to be available at each step of the BFGS iterations. One can observe
from (7.5) that errors in the search direction ~dm originate from the errors in the
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computed gradient of the dual objective function ∇L, amplified by the inverse pseudo-
Hessian H−1

m . The main source of errors in the gradient of the dual objective function
are the Gauss-Hermite quadrature errors in computing moments of ρ∗, which usually
remain bounded since the size of the quadrature and locations of abscissas are fixed
during the course of computation. Thus, errors in the computed descent direction
increase mainly when amplified by the inverse pseudo-Hessian H−1 in (7.5), and may
grow significantly when H−1 becomes too ill-conditioned.

In the present algorithm, we monitor the condition number κ of the inverse
pseudo-Hessian H−1 during the BFGS iterations and reorthonormalize the polyno-
mial basis when κ exceeds the value of 20 (this threshold value of κ is empirically
found to be small enough to preserve numerical stability of iterations, and at the
same time large enough to allow multiple successive BFGS iterations between poly-
nomial reorthonormalizations). Following [20], we compute the condition number in
the L∞ norm as

κ=‖H‖∞‖H−1‖∞, ‖H‖∞ =max
i

∑

j

|Hij |. (7.6)

Thanks to the Sherman-Morrison formula, both H and H−1 are readily available
through (7.3) and (7.4), respectively, and the computation of the condition number κ

is inexpensive.

8. Quadrature computations

The integrals in (5.6) are computed using the Gauss-Hermite quadrature (for
a standard reference, see, for example, [6]). The standard formula for the T -point
Gauss-Hermite integration is

∫ +∞

−∞

f(x)exp

(

−
1

2
x2

)

dx≈

T
∑

j=1

f(xj)wj . (8.1)

The Gauss-Hermite abscissae xj are found as roots of the T -th order Hermite poly-
nomial, which by itself is defined through the recurrence

H0 =1, Hj+1 =xHj −jHj−1, (8.2)

and weights wj are computed through the formula

wj =
(HN−1,HN−1)

HN−1(xj)H ′
N (xj)

, (8.3)

where the inner product is defined in the sense of (8.1). In order to adapt the Gauss-
Hermite quadrature to the α-rescaling from (4.13), the abscissas and weights are
trivially scaled by α. The choice of the Gauss-Hermite quadrature is based on the
following observation: recall that the optimization problem is preconditioned in sec-
tion 4 to have a zero mean state and diagonal covariance matrix; thus, if the optimal
probability density is Gaussian, then the Gauss-Hermite quadrature for such a density
becomes exact for T >M up to the machine round-off error. For non-Gaussian con-
straints the Gauss-Hermite quadrature loses exactness. However, the location of the
abscissas and magnitude of the weights are important. In the vicinity of the optimal
point, the integrands in (5.6) decay rapidly away from the origin due to precondi-
tioning. The Gauss-Hermite abscissas are concentrated near the origin and become
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sparse away from it, and the Gauss-Hermite weights approach zero away from the ori-
gin (where the integrands in (5.6) approach zero as well). Thus, the Gauss-Hermite
quadrature offers a consistent sampling of an integrand of the form (5.6), which makes
it more suitable for our problem than other standard high-order quadratures.

It is worth to mention that, while the moment-constrained maximum entropy
problem is formulated on R

N (i.e. it is the upper entropy bound of the multidimen-
sional Hamburger moment problem), the numerical integration through the Gauss-
Hermite quadratures occures via the summation over the finite number of Gaussian
abscissas. Potentially, the use of a finite-point numerical integration may lead to a
situation where the computed estimate of the maximum entropy state is not normaliz-
able on R

N , although the finite-point quadratures remain bounded. This situation for
the one-dimensional 4-moment maximum entropy problem has been studied in [24],
and, to some extent, in [2]. While in the one-dimensional case a negative value of the
Lagrange multiplier for the highest moment power is sufficient (but not necessary)
to guarantee integrability, it is not as trivial in the multidimensional setting, where
imposing the same constraint on the Lagrange multipliers of highest-order corner mo-
ments does not guarantee integrability, since there may exist noncompact manifolds
in R

N on which the maximum entropy estimate grows exponentially away from the
origin while being integrable along any of the basis directions. Currently, verification
of integrability of the computed maximum entropy estimate is not implemented due
to this difficulty, although it may be addressed by the author in the future.

9. Schematic outline of the algorithm

This section illustrates a schematic step-by-step outline of the algorithm, suitable
as a set of general guidelines for its practical numerical implementation.

1. Precondition input constraints by setting zero mean and diagonal covariance
as in section 4 above;

2. Generate a set of K random linearly independent polynomials pk of M -th
order;

3. Choose the starting set of the Lagrange multipliers γk corresponding to the
Gaussian distribution matching the mean and covariance constraints of the
preconditioned problem in the new polynomial basis pk;

4. Reorthogonalize the set of polynomials pk according to (5.7) with respect to
the current iterate of ρ, using the Gauss-Hermite quadratures to compute
integrals Q in (5.6), and recompute the set of Lagrange multipliers γk with
respect to the reorthogonalized basis;

5. Compute the gradient of the new iterate of the dual objective function L;

6. Perform BFGS steps until the minimum is reached or the condition number
of the BFGS pseudo-Hessian becomes too ill-conditioned;

7. If the minimum of the dual objective function is not reached, return to step
4; otherwise, recompute the optimal γk into the set of standard Lagrange

multipliers λ~i for the monomial basis ~x
~i, to match the format of the input

constraints.

The algorithm is implemented for an arbitrary phase space dimension N and an
arbitrary order of input constraints M , using the object-oriented style of the C++
programming language. However, practical limitations on N and M are imposed by
computational speed of machine-specific hardware.
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Fig. 10.1. The two-dimensional test PDF and their maximum entropy estimates. Left: mea-

sured directly from the long-term model simulation through standard bin-counting. Right: computed

by the 8-order maximum entropy problem.

10. Computational ability

The algorithm for the maximum entropy problem schematically outlined above
in section 9 has been used in [3] to produce moment-constrained maximum entropy
estimates for the model variables of the model of large-scale oceanic currents [30, 31].
The details of the model physics, implementation and variables are beyond the scope
of this review; for more details, see [3, 30, 31]. Here we pick three two-dimensional
highly non-Gaussian test PDFs from [3] to demonstrate the computational ability of
the maximum entropy alogirthm. In figure 10.1 in the left column we show the di-
rectly measured two-dimensional joint PDFs, computed by the standard bin-counting.
The algorithm was found in [3] to be capable of computing 2-dimensional maximum
entropy problems with moments of order up to 8 (44 moment constraints in total,
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not counting the normalization requirement for a PDF), 3-dimensional problems with
moments of order up to 6 (83 constraints), and 4-dimensional problems with moments
of order up to 4 (69 constraints). The computed optimal 2-dimensional PDFs of 8th
order are shown in figure 10.1 in the right column. Here we do not show the pic-
tures of computed 3- and 4-dimensional PDFs; for detailed information about timing
performance, accuracy and more pictures the reader is referred to [3].

11. Future work

Future work in this direction will be aimed at the ability of the developed suite
of algorithms to converge for problems with higher dimension and moment constraint
order. With higher dimension and moment order, the number of iterations needed
to converge for a higher-moment maximum entropy problem increases, as well as the
time to perform a single iteration in a higher-dimensional setting. We would especially
like to stress that the “envelope of convergence” of the algorithm depending on the
problem dimension and order (that is, 2D – 8th order, 3D – 6th order, 4D – 4th order)
presented in section 10 does not imply that the algorithm fails to converge outside
of the envelope. Rather, the computational cost of a single polynomial reorthonor-
malization or a BFGS iteration becomes so high that it is not feasible to perform
computations with the existing implementation, which is not currently adapted to
parallel computation on multiple processors.

On the other hand, it is trivial to parallelize the computations of the Gauss-
Hermite quadratures onto multiple processors, and somewhat less trivial, but possible,
to parallelize the modified Gram-Schmidt algorithm for polynomial reorthonormaliza-
tion. In the future, various options for speeding up the iteration process will be stud-
ied, mainly focusing on parallel implementation of the Gauss-Hermite quadratures
and the modified Gram-Schmidt process in a parallel computational environment. In
particular, the use of contemporary graphic processing units (GPU), will be consid-
ered for accelerating the maximum entropy algorithm.
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