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NONLINEAR INERTIA-GRAVITY WAVE-MODE INTERACTIONS

IN THREE DIMENSIONAL ROTATING STRATIFIED FLOWS∗

MARK REMMEL† , JAI SUKHATME‡ , AND LESLIE M. SMITH§

Dedicated to the sixtieth birthday of Professor Andrew Majda

Abstract. We investigate the nonlinear dynamics of inertia-gravity (IG) wave modes in three-
dimensional (3D) rotating stratified fluids. Starting from the rotating Boussinesq equations, we
derive a reduced partial differential equation system, the GGG model, consisting of only wave-mode
interactions. We note that this subsystem conserves energy and is not restricted to resonant wave-
mode interactions. In principle, comparing this model to the full rotating Boussinesq system allows
us to gauge the importance of wave-vortical-wave vs. wave-wave-wave interactions in determining
the transfer and distribution of wave-mode energy. As in many atmosphere-ocean phenomena we
work in a skewed aspect ratio domain H/L (H and L are the vertical and horizontal lengths) with
Fr =Ro<1 such that Bu=1, where Fr, Ro, and Bu are the Froude, Rossby, and Burger numbers,
respectively. Our focus is on the equilibration of wave-mode energy and its spectral scaling under
the influence of random large-scale (kf ) forcing. We present results from two sets of parameters: (i)
Fr =Ro≈0.05, H/L=1/5, and (ii) Fr =Ro≈0.1, H/L=1/3. As anticipated from prior work, when
forcing is applied to all modes with equal weight, with Fr =Ro≈0.05 and H/L=1/5, the wave-mode
energy of the full system equilibrates and its spectrum scales as a power-law that lies between k−1

and k−5/3 for kf <k <kd, where kd is the dissipation scale. For the same parameters, when forcing
is restricted to only wave modes the wave-mode energy fails to equilibrate in both the full system
as well as the GGG subsystem at the resolutions we can achieve. This clearly demonstrates the
importance of the vortical mode (by facilitating wave-vortical-wave interactions) in determining the
wave-mode energy in the rotating Boussinesq system. Proceeding to the second set of simulations,
i.e., for the larger Fr =Ro≈0.1 in a less skewed aspect ratio domain with H/L=1/3, we observe
that the energy of the GGG subsystem equilibrates and is resolution independent. Furthermore, the
full system with forcing restricted to wave modes also equilibrates and both yield identical power-law
scaling of wave-mode energy spectra. Thus it is clear that the wave-wave-wave interactions play a
role in the overall dynamics at moderate Ro, Fr and aspect ratios. From a practical standpoint
these results highlight the difficulty in properly resolving wave-mode interactions when simulating
realistic geophysical phenomena.
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1. Introduction

Inertia gravity (IG) waves, resulting from the rotating and stratified nature of
geophysical fluids, play an important role in atmosphere-ocean dynamics [1]. A broad
overview of their properties with relevance to the ocean can be found in Garrett &
Munk [2], and a recent review focussing on the observational characterization of the
oceanic wave-field can be found in Polzin and Lvov [3]. The general dynamics of these
waves are reviewed by Sommeria & Staquet [4]. Furthermore, Wunsch & Ferrari [5]
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place these waves in context when considering the general circulation of the ocean,
while Fritts & Alexander [6] review their influence on diverse phenomena in the middle
atmosphere.

In their influential papers, Garrett & Munk [2, 7] pointed out the importance
of a deeper understanding of the dynamics of the IG wave modes. In this regard,
one avenue of progress has been to focus upon the subset of resonant interactions
among these waves [8]. In general, the dispersive nature of the linear waves results in
reduced nonlinear transfer between modes by dispersive phase scrambling. However,
resonant interactions are special nonlinear interactions for which phase scrambling is
absent, and nonlinear transfer remains strong. Thus resonant interactions are critical
for the dynamics when they are present; see for example [9] for a broad introduction
to nonlinear dispersive equations, [10] for statistical theories of the so-called weak
turbulence, [11, 12] for geophysical perspectives, and [13, 14] for the roles of resonances
and near-resonances in the specific case of the 3D rotating Boussinesq system.

Investigating resonant IG waves, McComas & Bretherton [8] distinguished be-
tween three classes of resonant interactions that lead to induced diffusion, elastic
scattering, and parametric sub-harmonic instability. The picture put forth was, for a
large-scale initial data: (i) elastic scattering leads to 3D isotropy of an initial condition
that is only horizontally isotropic, (ii) sub-harmonic instability moves energy down-
scale, (iii) induced diffusion tends to force the high wavenumber spectrum towards
equilibrium. A detailed account of these resonances can be found in the extensive
review by Muller et al. [15]; their review also describes approaches that account for
more than resonant interactions, but involve other approximations (such as the di-
rect interaction approximation). Furthermore, the use of resonances to derive kinetic
equations under the weak turbulence paradigm has been an active area of work; for
an overview see Lvov et al. [16]. In particular recent work has shown a correspon-
dence between observed IG energy spectra and particular steady state solutions of
the relevant kinetic equations [17, 18].

Unfortunately, as was pointed out by McComas & Bretherton [8], resonances do
not account for the bulk of interactions among IG waves. A formal statement re-
garding the sparsity of these resonances can be found in Babin et al. [19]. This is
all the more an important issue when Ro,Fr are small (implying strong rotation and
stratification) but far from zero, i.e., 0≪Ro,Fr<1 (where Ro,Fr are the Rossby
and Froude numbers respectively). Indeed, having non-zero Fr and/or Ro opens
the door for near-resonances to enter the dynamics and these interactions can, both
quantitatively and qualitatively, change the behavior of the system [14]. This nat-
urally motivates the construction of a model (called the GGG model) that includes
all possible wave-mode interactions. Quite interestingly, as the two-dimensional (2D)
stratified Boussinesq system only supports wave modes, this new 3D system can be
looked upon as an extension of the full 2D stratified problem [20, 21, 22].

So far, our discussion has been restricted to considering wave modes in isolation.
In reality rotating and stratified fluids support an additional vortical mode of motion
[23], and in fact in geophysically relevant limits, interactions among vortical modes
lead to the celebrated quasigeostrophic (QG) equations [13, 19, 24]. Indeed, one of
the many contributions by Prof. Majda (in collaboration with Prof. P. Embid) in the
field of geophysical fluid dynamics concerns a formal statement on the emergence of
QG dynamics, from the governing rotating Boussinesq equations, in the limit Ro∼
Fr= ǫ→0 while holding Bu∼1 [25, 19]. In addition to clarifying the nature of the
QG equations and constructing a general framework for averaging over fast-modes in
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geophysical systems [26], their work also predicted the emergence of a new regime,
the so-called vertically sheared horizontal flows (VSHF) when Ro∼1 while Fr= ǫ→
0 [25, 27]. Since then, numerical work in the appropriate parameter regime has
confirmed the emergence of VSHF modes when considering a rotating Boussinesq
fluid under random forcing [24, 28, 29, 30].

As it happens, the vortical mode plays an important role in the redistribution of
wave-mode energy by means of the so-called wave-vortical-wave interactions. In fact,
this is thought to be the primary manner in which energy is transferred from large to
small scales in rotating and stratified flows, and is attributed to be the fundamental
mechanism behind geostrophic adjustment [13]. Furthermore, in both decaying and
forced scenarios, numerical simulations of rapidly rotating and strongly stratified (i.e.,
small Ro,Fr) flows have shown the equilibration of wave modes (by means of the
aforementioned forward transfer) while energy continues to be transferred upscale in
the vortical modes via vortical-vortical-vortical (QG) interactions [13, 14]. For f =N
(where f,N are the Coriolis parameter and the Brunt-Väisälä frequency) in a unit
aspect ratio, the wave modes are passively driven by the vortical modes. In this case,
there are no wave-wave-wave resonances (or near-resonances), and the distribution of
energy among the wave modes is strongly influenced by the presence of the vortical
mode [13, 14]. Of course, in the atmosphere-ocean system f 6=N , leading to the
possibility of near and exact wave-wave-wave resonances, though as stated earlier
these sets of interactions are sparse [19]. All in all, this line of reasoning leads one
to believe that the vortical mode should in fact play a significant role in determining
the wave-mode energy distribution.

These scenarios then lead to a somewhat dichotomous state of affairs with regard
to IG wave-mode energy, i.e., on one hand we have theories based on the interactions of
IG modes in isolation. On the other hand, there is reason to attribute a prominent role
to the vortical mode in the overall dynamics of a rotating and stratified fluid, which
includes the distribution of energy among the wave modes themselves. This dichotomy
— in the context of purely stratified flows — has been pointed out and investigated
by Waite & Bartello [30]. By forcing only wave modes of the Boussinesq system, they
inquired into the turbulence generated by a stratified fluid. Their principal conclusion
was to highlight the importance of the vortical mode in mediating wave-mode energy
transfer and distribution. Furthermore, they noted the difficulty in properly resolving
wave-mode interactions [30]. In the present work, in addition to studying the full
Boussinesq equations we derive a model that consists of only wave-mode interactions,
which in principle provides the means for determining the relative importance of
wave-vortical-wave and wave-wave-wave interactions for the distribution of wave-mode
energy. Specifically, by simulating the newly derived GGG model we attempt to see
if this system is capable of a robust forward transfer of energy and compare the
energy spectra of wave modes from the GGG model to the corresponding wave mode
spectra that arise from simulations of the full rotating-stratified Boussinesq system.
We proceed to introduce the basic equations, review the possible means of wave mode
evolution, and derive the GGG model. We then describe the numerical setup and
proceed to the simulations of this system. Finally, we collect and discuss the results.
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2. Basic equations

The rotating Boussinesq equations in a 3D periodic setting are [11]

Du

Dt
+fẑ×u=−∇ϕ−Nθẑ+ν∇2u, (2.1a)

Dθ

Dt
−Nw=κ∇2θ, (2.1b)

∇·u=0, (2.1c)

where u=(u,v,w) is the 3D velocity field, ϕ=p/ρ0 is a scaled pressure, and f is the
Coriolis parameter with rotation assumed to be aligned with the z-axis. Equations
(2.1) result from considering periodic perturbations to a state of hydrostatic balance
wherein the density profile satisfies ρ=ρ0−bz+ρ′ with |ρ′|,|bz|≪ρo. Furthermore,
we have set ρ′ =(Nρo/g)θ where N =(gb/ρ0)

1/2. Finally, ν and κ are the viscosity
and diffusivity respectively.

Linearizing (2.1) about a state of rest, substituting solutions of the form φ=

φ̂exp{ik ·x−σ(k)t} one finds

σ±(k)=± (N2k2
h +f2k2

z)1/2

k
, σ0(k)=0. (2.2)

Here k is the magnitude of the wave-vector and k2
h =k2

x +k2
y. Modes corresponding

to σ± are the IG waves (referred to as wave modes), while the mode corresponding
to σ0 is referred to as the vortical (or geostrophic) mode [23, 13, 24]. Denoting
the eigenfunctions corresponding to σ0,σ± by φ0,φ± respectively, it is known that
these eigenfunctions are mutually orthogonal and form a complete basis (see Embid
& Majda [26, 25] and Smith & Waleffe [24] for details). This enables us to project a
Fourier expansion of the solution to (2.1) onto this eigenfunction basis, i.e., projections
of the form

v(k,t)=a0(k,t)φo(k)+a+(k,t)φ+(k)+a−(k,t)φ−(k), (2.3)

where v is the state vector, vT =(u,v,w,θ) [25, 13, 24]. Symbolically this yields

∂aα(k,t)

∂t
+iσα(k)aα(k,t)=

∑

△

∑

β,γ

Cαβγ
kpqaβ(p,t)aγ(q,t) (2.4)

where △ represents a sum over p,q such that k=p+q. The indices α,β,γ run over
0,+,− and Cαβγ

kpq is the interaction coefficient. The exact form of the interaction
coefficients is not emphasized here, but it is helpful in our discussion to think in
terms of the following symmetric definition

Cαβγ
kpq =

−i

2

(

(φu
β(p) ·q)φγ(q)+(φu

γ (q) ·p)φβ(p)
)

·φ∗α(k), (2.5)

where φu
β contains the first three components of φβ corresponding to the velocity en-

tries and (·)∗ denotes complex-conjugate. Notice that, with this symmetric definition,

Cαβγ
kpq =Cαγβ

kqp ; the coefficient Cαβγ
kpq involves the advection of the mode corresponding

to q by the mode corresponding to p and vice versa. In the following, a triplet (·,·,·)
refers to a particular type of triad interaction, and a v refers to a vortical mode while
a w refers to a wave mode (either a + or a − mode). For example, (w,w,v) (with all
permutations implied) represents all possible interactions between two wave modes
and one vortical mode.
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2.1. Wave-mode evolution. An alternate way to represent
the expansion is v(k,t)= b0(k,t)φo(k)exp[−iσ0(k)t]+b+(k,t)φ+(k)exp[−iσ+(k)t]+
b−(k,t)φ−(k)exp[−iσ−(k)t]. In this case (2.4) takes the form

∂bα(k,t)

∂t
=

∑

△

∑

β,γ

Cαβγ
kpqbβ(p,t)bγ(q,t)exp{i[σ(k)−σ(p)−σ(q)] t}, (2.6)

which shows the influence of the dispersion on the advective nonlinearity. Indeed, it
is now possible to construct a dynamical hierarchy consisting of (i) resonances, i.e.,
|σ(k)−σ(p)−σ(q)|=0, (ii) near-resonances, i.e., 0< |σ(k)−σ(p)−σ(q)|≤ δ where
δ=min(Ro,Fr) and (iii) non-resonant interactions, i.e., |σ(k)−σ(p)−σ(q)|>δ. In
this hierarchy it is postulated that resonances are always important, and near-
resonances play a role when 0<δ<1 i.e., rotation and stratification are strong, but we
are outside limiting scenarios where δ→0. Finally, for rapid rotation and strong strat-
ification, non-resonant interactions are only expected to contribute at higher-orders
(in δ). While it is not possible for non-resonant interactions to lead to qualitatively
different behavior as compared to near-resonances, we note that near-resonances open
up pathways that are precluded under resonance (for details see Sukhatme & Smith
[14]). An explicit example of such a qualitative change induced by near-resonant inter-
actions is provided via cyclonic-anticyclonic asymmetry in rotating flows [31]. Other
examples, such as the influence on the statistical features of water waves and capillary
wave generation may be found in Annenkov & Shrira [32] and Watson & Buschbaum
[33], respectively.

Considering only resonant and near-resonant interactions, the wave modes can
only evolve via the (w,w,v) and (w,w,w) classes (see Bartello [13] or Sukhatme
& Smith [14] for a detailed view of wave and vortical mode evolution). When
1/2≤f/N ≤2 the (w,w,w) (near) resonant interactions are absent and, within this
dynamical hierarchy, the distribution of wave-mode energy is determined by (w,w,v),
indicating the crucial role played by the vortical mode. Furthermore, it was shown
by Bartello [13] that purely resonant (w,w,v) interactions are catalytic in that they
involve the exchange of energy among two wave modes by using the vortical mode
as a catalyst. This leads to the elegant result that when f =N , the wave modes are
passively driven by the vortical mode [13] (this follows as near-resonances are not pos-
sible for a rapidly rotating and strongly stratified fluid when f =N [14]). Of course,
in the most general case we lift the restriction 1/2≤f/N ≤2. As both (w,w,v) and
(w,w,w) are viable means of affecting the wave-mode energy distribution, it is natural
to inquire into their nature and importance. Specifically, given the formal sparsity
of (w,w,w) interactions [19], are (w,w,v) always dominant? Indeed, do the (w,w,w)
interactions play any role in the 3D rotating Boussinesq system? Also, what is the
nature of these interactions, i.e., do they yield a forward transfer of energy under
large-scale forcing? If so, do they lead to an equilibration of wave modes and yield a
well-defined power spectrum? To inquire into these questions, we construct a model
(the GGG model) that includes only wave-mode interactions. In principle, comparing
the results from the GGG model with the full rotating Boussinesq system should help
in settling some of these issues.

2.2. The GGG model. We now present the GGG model in physical space
and its derivation. It is useful to first determine the mode amplitudes in terms of
the physical variables. Towards this goal, begin by defining the stream function ψ,
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the potential function χ, and the horizontally averaged flows u(z) and v(z) in the
standard way

u=χx−ψy +u(z) and v=χy +ψy +v(z). (2.7)

Here (·) denotes a horizontal average. These definitions imply ∇2
hχ=ux +vy and

∇2
hψ=vx−uy. Substituting (2.7) for u and v in the state vector, v, (2.3) and the

orthonormality of the eigenfunctions yields (please see the Appendix for additional
details)

a0
k =

iN

σkk
(−k2

hψ− i
f

N
kzθ), (kh 6=0) (2.8)

a+

k =
1√

2σkk
(−σkwkk

2

kh
−fkzkhψ+iNkhθ), (kh 6=0) (2.9)

a−k =
1√

2σkk
(−σkwkk

2

kh
+fkzkhψ− iNkhθ), (kh 6=0) (2.10)

a0
kz

=θ(z)sgn(fkz), a+

kz
=

−iu+v√
2

, a−kz
=

iu+v√
2
, (kh =0). (2.11)

Next, notice that by adding a+

k and a−k and also subtracting a−k from a+

k , the physical
variables decouple further,

a+

k +a−k =−
√

2kwk

kh
, (kh 6=0) (2.12)

a+

k −a−k =

√
2ifkh

σkk

(

N

f
θ+ikzψ

)

, (kh 6=0) (2.13)

(a+

kz
+a−kz

)=
√

2v(z), (a+

kz
−a−kz

)=−i
√

2u(z) (kh =0). (2.14)

In fact, it is now clear from (2.8) and (2.13) that defining

M =∇2
hψ− f

N

∂θ

∂z
and R=

N

f
θ+

∂ψ

∂z
(2.15)

is advantageous since this means

a0
k =

iN

σkk
Mk and a+

k +a−k =

√
2ifkh

σkk
Rk. (2.16)

In addition, M and R have physical significance: M is the linear potential vorticity
(PV) and R is a measure of the geostrophic imbalance. It is apparent that the vortical
modes contain all the linear PV and that the variable R is associated with the IG
modes [13]. In the following it will prove useful to make the following definitions

Ø=(∇2
h +

f2

N2
∂zz) ; A=Ø−1M, S=Ø−1R. (2.17)

Using these definitions note that (2.15) can be re-arranged in the form
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ψ=A+
f2

N2
Sz , θ=

f

N
∇2

hS−
f

N
Az. (2.18)

A systematic method to complete the derivation of the GGG model in physical space
involves the three equations obtained from (2.4), one for each α (0,+,−), after re-
taining only the interactions among the IG modes. Therefore, when α is 0 there are
no interactions and the right hand side is zero; whereas, when α is + or −, the right
hand side is modified by restricting the sum involving β and γ to run over + and
− only. Then in order to substitute in the physical space variables identified with
a+

k ±a−k (above), add and subtract the equations corresponding to α being + and −.
Finally substitute the physical variables for the mode amplitudes and inverse Fourier
transform the equations. This process involves a fair amount of algebra and relevant
details are presented in the Appendix.

Here, for the sake of brevity, we present a more illuminating and much shorter
derivation. This is possible now that the appropriate physical space variables corre-
sponding to the vortical modes as well as the IG modes have been identified. It is
convenient to rewrite the original system given by (2.1) in a form that has a separate
equation for the time derivative of each of the variables corresponding to the modal
amplitudes. A consistent system of this sort contains a time derivative for M cor-
responding to the vortical modes (2.8) and time derivatives for f∇2

hR, ∇2w, u(z),

and v(z) which all correspond to the IG modes (see (2.12), (2.13) and (2.14)). This
reformulation of (2.1) results in

∂M

∂t
+ ẑ ·∇×(u ·∇u)− f

N
∂z[(u ·∇)θ]=0, (2.19a)

∂f∇2
hR

∂t
−N2Øw+N∇2

h[(u ·∇)θ]+f∂z(ẑ ·∇×(u ·∇u))=0, (2.19b)

∂∇2w

∂t
+f∇2

hR+∇2
h(u ·∇w)−∂z(∇h ·(u ·∇uh))=0, (2.19c)

∂u(z)

∂t
−fv(z)+∂z(uw)=0, (2.19d)

∂v(z)

∂t
+fu(z)+∂z(vw)=0. (2.19e)

Equation (2.19a) is obtained by subtracting f/N times the z derivative of (2.1b),

∂θz

∂t
+∂z((u ·∇)θ)−Nwz =0, (2.20)

from the equation for the vertical component of vorticity,

∂∇2
hψ

∂t
+ ẑ ·∇×(u ·∇u)−fwz =0. (2.21)

Equation (2.19b) follows by adding N times the horizontal Laplacian of (2.1b),

∂∇2
hθ

∂t
+∇2

h((u ·∇)θ)−N∇2
hw=0, (2.22)

to f times the z-derivative of the vertical vorticity equation (2.21). Deriving equation
(2.19c) involves first solving for ϕ in (2.1) by taking the divergence of the momentum
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equation (2.1a) and applying the incompressibility constraint (2.1c) to yield the formal
relation

ϕ=∇−2(−Nθz −∇·(u ·∇u)+f∇2
hψ). (2.23)

Now, taking the Laplacian of the w equation in (2.1a) and using (2.23) for φ leads
to (2.19c). Note that in taking the required derivatives we lost the information for
the time derivatives of the horizontally averaged u and v fields; therefore, we must
include the horizontally averaged time derivative equations for u and v obtained from
(2.1a) to complete the reformulation (2.19). Note that the horizontally averaged
information for θ is contained in (2.19a); the vortical modes for kh =0 do not need
separate consideration 1.

It is clear that the GGG model, i.e., a dynamical system that only involves wave-
mode interactions should not admit any interactions involving M (see (2.16)). This
is most easily achieved by using new variables (u′,v′,w′,θ′), where

u′≡χx−
f2

N2
Szy +u(z) , v′≡χy +

f2

N2
Szx +v(z)

w′≡w , θ′≡ f

N
∇2

hS. (2.24)

All interactions involving vortical modes are removed from (2.19) when we (i) replace
(u,v,w,θ) by (u′,v′,w′,θ′) in (2.19b) and (2.19c), and (ii) set the evolution of M itself
to zero. This results in the following concise form for the GGG model

∂M

∂t
=0,

∂f∇2
hR

∂t
−N2Øw+N∇2

h[(u′ ·∇)θ′]+f∂z(ẑ ·∇×(u′ ·∇u′)=0,

∂∇2w

∂t
+f∇2

hR+∇2
h(u′ ·∇w)−∂z(∇h ·(u′ ·∇u′

h))=0,

∂u(z)

∂t
−fv(z)+∂z(u′w)=0,

∂v(z)

∂t
+fu(z)+∂z(v′w)=0. (2.25)

Note that (2.25) are well-defined PDEs in physical space, in fact they also conserve
energy [34] (see Remmel & Smith [35] for a detailed discussion).

3. Numerical results & discussion

The Rotating Boussinesq Equations and the GGG model, i.e., (2.19) and (2.25)
respectively, are solved using pseudo-spectral codes in a triply periodic box of di-
mensions H×L×L, implying H(L) is the vertical height (horizontal length) of the
domain. The time stepping is done using a third order Runge-Kutta scheme. En-
ergy is removed at small scales via an eighth-order hyperviscosity term and at large
scales via a linear relaxation term. The combination has the following generic form
in Fourier space

∂ŷ(k)

∂t
+ .....=(−νk16−α)ŷ(k), (3.1)

1Technically domain averaged equations for w and θ should be added to the reformulation in
(2.19) . However, although the system in (2.1) is not Galilean invariant, a domain average of the u,
v, w, and θ equations of (2.1) shows that mean flows will be absent for all time if not present initially
nor forced.
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with α=0.1∗I{k≤2.5} and

ν=2.5

(

E(km,t)

km

)1/2

k2−16
m . (3.2)

In (3.2) km is the highest available wavenumber and E(km,t) is the value of the energy
spectrum at wavenumber km. All linear terms, including the aforementioned diffusion
terms, were treated with an integrating factor.

The numerical results were obtained by forcing each system from a state of rest.
The forcing is uncorrelated in time, with wavenumber spectrum F (k) given by a
Gaussian with standard deviation s=0.5 and energy input rate ǫ=1,

F (k)= ǫ
exp(−0.5(k−kf )2/s2)√

2πs
. (3.3)

The peak wavenumber kf is chosen as kf =4 for all results reported herein. The
non-dimensional parameters are defined as Fr=U/(NLz) and Ro=U/(fLh), where
U is derived from the energy input rate and the scale at which the energy enters
the system, i.e., U =(ǫ/kf )1/3. The length scales (Lz,Lh) are consistent with U ,
i.e., Lz =1/kf and Lh follows from the prescribed aspect ratio Lh =L∗Lz/H. As in
atmosphere-ocean phenomena, we set H/L<1 and f <N . In fact, we choose f,N to
offset the skewed aspect ratio (H/L) so as to satisfy Fr=Ro⇒Bu=Ro2/Fr2 =1.
The numerical resolution of the simulations is chosen to yield an isotropic grid, for
example if H/L=1/5, we use five times as many points in the horizontal directions.

The modal decomposition in (2.3) is used to feed energy into the system by directly
forcing the mode amplitudes. The full system is forced by one of the following two
methods:

1. All three mode amplitudes a0, a± are forced with equal weight (see (2.4)).

2. The forcing is not applied to the vortical mode amplitude a0 such that only
wave modes are excited by the forcing.

The latter forcing is always used with the GGG model since there are no interac-
tions involving vortical modes. Note that for fixed ǫ=1 in (3.3), the computed energy
input rate for method 2 will be reduced by a factor 2/3 as compared to method 1,
changing the Ro and Fr numbers by a factor of (2/3)1/3 =0.87. We present the com-
parison of GGG and full model simulations keeping the same level of forcing for the

wave-mode amplitudes, rather than the same Ro and Fr numbers. Thus, apart from
the actual random numbers, the forcing of the IG modes is always identical for the
two methods and for the two systems (full and GGG). The results will be interpreted
keeping this choice in mind.

Given our present computational resources, H/L=1/5 is the most skewed as-
pect ratio we studied (estimates for mid-latitude atmosphere-ocean dynamics lead
to 1/10≤f/N ≈H/L≤1/100, but unfortunately these small ratios are well be-
yond our computational capabilities). Results obtained using H/L=1/5 are pre-
sented first. The full system, forced using method 1, is studied at resolutions
of 80×400×400 and 100×500×500 under rapid rotation and strong stratification
(specifically, Ro=Fr=0.05). As is evident in figure (3.1), the wave-mode energy
saturates after about 5 (dimensional) time units, and is then almost flat for the next
25 time units. In this parameter regime, one expects the energy to be transferred up-
scale among the vortical modes, however the large-scale damping allows these modes
to equilibrate (see [19, 13, 14] for analytical and numerical work on the nature of the
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various mode interactions when Bu∼O(1)). We choose to halt the simulations as
soon as the vortical modes near equilibration, because from then onwards the damp-
ing may directly affect the dynamics of the wave modes. Similarly, if one does not
include large-scale damping, then the build-up of energy in the vortical modes soon
leads to finite-size effects. In essence, one has a small temporal window (depending on
the forcing scale and the Fr,Ro numbers) during which to study the characteristics of
the wave-mode interactions in the absence of either large-scale damping or finite-size
effects. Focussing on the wave modes, we see that the energy transfer is downscale.
Furthermore, on equilibration the wave modes yield a well-defined smooth power-law.
Given our modest resolution, we see in figure (3.2) that the wave-mode spectrum is
consistent with a power law between k−1 to k−5/3 for kf <k<kd, where kf ,kd are
the forcing and dissipation wavenumbers. These results are consistent with previous
forced and decaying simulations with Bu∼1 [13, 14, 36]. Also, note that the results
appear to have converged, i.e., we do not see any dependence of the scaling and be-
havior of the modes for different numerical resolutions. Figure (3.3) shows the wave,
vortical and total energy spectra for the two aforementioned resolutions.

Fig. 3.1. The wave-mode, vortical-mode and total energy vs. time for the full system. The
simulations are at resolutions of 80×400×400 and 100×500×500 in an aspect ratio of 1/5 and
Ro=Fr =0.05. The runs are halted when the vortical modes near equilibration.

It is well-known that the 2D stratified problem (which only supports wave modes),
with large-scale forcing, yields a clear forward transfer of energy [20, 21]. Furthermore,
the kinetic equations derived from considering resonant interactions of wave modes
support power-law solutions [17, 18]. Keeping in mind that the GGG model can
be looked upon as a 3D extension of the 2D stratified problem, these two pieces
of information lead to the possibility that the GGG model will in fact support a
forward transfer of energy and yield an equilibrated power-law spectrum. Forcing
the GGG model with method 2, we show the total energy (equal to the wave-mode
energy) vs. time in figure (3.4). Quite clearly, the energy does not equilibrate. On
comparing the spectra (not shown), none of the runs showed a well-defined power-law.
In essence, there is a forward transfer of energy in the GGG model, but it is highly
inefficient compared to the full system forced by method 1. This inefficiency manifests
itself in the lack of a systematic forward transfer and the resulting lack of an (even
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Fig. 3.2. The wave-mode, vortical-mode and total energy spectrum (at t≈28). The results
are from the 100×500×500 run. Note that the scaling of the vortical modes is consistent with a
enstrophy-cascading k−3 form for kf <k <kd. The wave-mode spectrum is best described by a k−4/3

scaling — we do not attribute any special significance to this number. Rather, it is drawn to show
that the wave-mode scaling is consistent with a power law between −1 and −5/3.

Fig. 3.3. A comparison of the spectra for the full system at the two different resolutions. The
simulations appear to have converged and are insensitive to the increasing resolution.

approximate) inertial range as is observed in the full system. For the given set of
governing parameters, we speculate that the GGG model is probably under-resolved
at a resolution when the full rotating Boussinesq system forced by method 1 yields
consistent results across a range of resolutions.

It is interesting to observe how the presence of the interactions involving vortical
modes compares to the results obtained from the GGG model when the full system
is forced identically to the GGG model by method 2. Like the energy in the GGG
model, the energy in the full system does not equilibrate (figure (3.5)). However,
the full system does appear to do a better job of moving the energy to small scales.
After an initial growth of energy in the vortical modes (≈ t=5), the energy in the
full system grows at a slower rate than in the GGG system. Like the GGG system,
the full system now produces spectra (not shown) that are not well defined power-
laws. In fact, the picture that emerges is that there is some transfer from the wave
to vortical modes that results in the activation of (w,v,w) interactions, which help
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Fig. 3.4. The total energy vs. time for the GGG model. The simulations are at resolutions of
80×400×400 and 100×500×500 in an aspect ratio of 1/5 and Ro=Fr =0.05. Quite clearly, the
system is not near equilibration; some of the runs were carried out significantly longer times and
yet showed no sign of settling down. The spectra (not shown) are also evolving in time and do not
show smooth power-law scaling.

Fig. 3.5. The total energy vs. time for the full system forced by method 2. The resolution is
100×500×500 in an aspect ratio of 1/5 and Ro=Fr =0.05. The system does not equilibrate as it
did when forced by method 1. However, due to the presence of the interactions among the vortical
modes it does a better job at moving energy to small scales than the identically forced GGG model
does. It is possible that both systems are under-resolved in this parameter regime.

the full system move energy toward small scales. But, much like the GGG model the
(w,w,w) interactions are incapable of a robust forward transfer — possibly due to
their being under-resolved in this set of parameters.

The notion that the GGG model supports a forward transfer of energy, albeit an
inefficient one, but does not yield a steady state, is somewhat unsatisfactory. There
is nothing intrinsically wrong with such a state of affairs, but given the possibility of
their being under-resolved in the previous simulation, to gain more confidence in the
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Fig. 3.6. The total, vortical and wave-mode energy vs. time for the full model and the GGG
model in an aspect ratio of 1/3 with Ro=Fr =0.1. Left : 144×432×432. Right : 162×486×486.
The behavior of the full model is similar to figure (3.1). In contrast to figure (3.4), now the GGG
energy does level-off. Notice the agreement for both the full system and GGG between the two
resolutions.

Fig. 3.7. Wave-mode energy spectra for full and GGG models in an aspect ratio 1/3 with
Ro=Fr =0.1. Left : 144×432×432 (≈ t=17.5s). Right : 162×486×486 (≈ t=15.5s). These
are spectra from a single time snapshot of the models in the quasi-statistically steady range. Quite
clearly, both may be interpreted as fairly clear power-laws with the GGG model spectrum being
considerably steeper than the full system’s wave-mode spectrum which scales between −1 and −5/3.

GGG model we repeated the aforementioned experiment at higher Fr,Ro (i.e., under
weaker rotation and milder stratification) and in a less skewed domain. Specifically,
settingH/L=1/3 and Ro=Fr=0.1, we performed simulations at resolutions of 144×
432×432 and 162×486×486. Note that the aspect ratio 1/3 case allows us to use
a higher numerical resolution as compared to the aspect ratio 1/5 case. Figure (3.6)
shows the energy in time for the GGG model forced by method 2 and the full model
forced by method 1. In contrast to figure (3.4), now the GGG energy levels-off fairly
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Fig. 3.8. The GGG and full system wave, vortical and total energy in an aspect ratio 1/3 and
Ro=Fr =0.1 setting in which identical forcing by the IG modes was used. Left : 144×432×432.
Right : 162×486×486. Quite clearly, both systems attain an energetically steady state. Notice the
agreement for both the full system and GGG between the two resolutions.

Fig. 3.9. The GGG and full system wave-mode energy spectrum in an aspect ratio 1/3 and
Ro=Fr =0.1 setting in which identical forcing by the IG modes was used. Left : 144×432×432
(≈ t=18.65s). Right : 162×486×486 (≈ t=17.7s). These are spectra from a single time snapshot
of the models. Quite clearly, both may be interpreted as fairly consistent power-laws.

rapidly. Furthermore, as is shown in figure (3.7), the spectral distribution of the GGG
energy is in the form of a smooth power-law. It is interesting to note, from figure
(3.7), that the GGG spectrum is steeper than the full system’s wave-mode spectrum.
In fact, this steepness is qualitatively consistent with the resonant kinetic equation
solutions [17, 18].

As the GGG model equilibrates in these milder conditions, it is of interest to
explore the response of the full rotating Boussinesq system with the same forcing as
the GGG model by method 2. Note that when the full system is forced by method 1
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there is a natural flow of energy into the vortical mode that allowed the vortical mode
to mediate energy transfer between two wave modes by means of wave-vortical-wave
interactions. Given that wave to vortical transfers are weak (i.e., only due to near-
resonances), forcing only the wave-modes allows us to see if the (w,w,w) interactions
in the full system behave in accord with the GGG model. This is precisely the case,
and along with the attainment of a steady state (figure (3.8)), both simulations yield
almost identical power-law wave-mode spectra for Ro=Fr=0.1 with H/L=1/3 (see
Fig (3.9)).

In essence, this confirms our speculation that that the wave-mode interactions
were under-resolved in our numerical simulations of rapid rotation and strong strat-
ification (specifically, Ro,Fr≤0.05) in the more skewed domain (H/L<1/5). Quite
naturally, the wave-mode energy distribution in the full rotating Boussinesq system
is then primarily controlled by the (w,w,v) interactions [30]. As also noted by Waite
and Bartello [30], our computations suggest the possibility that present-day numerical
models may be deficient in their representation of (w,w,w) interactions when trying to
work in geophysically relevant parameter regimes. Furthermore, in milder conditions
(i.e., Ro,Fr=0.1 and H/L=1/3), the GGG model resulted in a steady state with
a well-defined power-law energy distribution. This leads us to the possibility that,
on proper resolution, the (w,w,w) interactions may play a role in the wave-mode en-
ergy transfer and distribution in realistic parameter regimes. Future work with better
computational resources will inquire into this possibility as well as universality in the
GGG spectral scaling.

4. Conclusions

In rotating and stratified flows, the forward transfer and distribution of energy
among wave modes is controlled primarily by wave-vortical-wave (w,w,v) and wave-
wave-wave (w,w,w) interactions. However, the relative importance of these two classes
of interactions is somewhat unclear. On one hand, prior analytical [19] and numerical
[13, 14] work suggests that the wave-vortical-wave class of interactions is of primary
importance — when 1/2≤f/N ≤2, this is immediately evident [30]. On the other
hand, especially outside the range 1/2≤f/N ≤2 (as is true in most geophysical sce-
narios), the kinetic equation approach considering only resonant IG wave-mode in-
teractions yields solutions that are consistent with certain observations [17, 18]. In
order to inquire into this somewhat dichotomous situation, we constructed a reduced
model consisting only of wave-mode interactions (resonant and non-resonant). This
GGG model is given by a PDE that conserves energy in the inviscid, unforced case.
We studied the GGG model in an idealized periodic setting, though its applicability
is not limited to such idealized domains.

We compared the GGG model to the full system in a geophysically relevant pa-
rameter regime. Specifically, with a skewed aspect ratio H/L<1, we chose f,N
such that Ro=Fr⇒Bu=1. Furthermore, the flow was rapidly rotating and strongly
stratified, i.e., Fr=Ro≪1. In the full system, as anticipated we observed an inverse
transfer of energy among the vortical modes accompanying by a power-law that was
consistent with a k−3 scaling for kf <k<kd. The wave-mode energy was transferred
to small scales, and these modes equilibrated quite rapidly. In accord with prior work
[13, 14, 36], the wave-mode energy distribution was consistent with a power law with
scaling between a k−1 to k−5/3 form for kf <k<kd.

For the GGG model, we also anticipated a statistically steady wave-mode en-
ergy spectrum with power-law scaling. This expectation follows from previous results
establishing that (i) power-law solutions are supported by the kinetic equations gov-



372 NONLINEAR INERTIA-GRAVITY WAVE-MODES

erning resonant wave-mode interactions, and (ii) the GGG model is a 3D extension
of the 2D stratified problem (known to support a robust forward transfer of energy).
A clear power law was indeed observed for “mild” conditions with H/L=1/3 and
Fr=Ro≈0.1. Consistent with the kinetic equations for resonant wave interactions,
the GGG energy spectra were observed to be steeper than the wave-mode energy
spectra associated with the full equations when all modes were forced with equal
weight. When the forcing was restricted to excite only wave modes, then the GGG
and full systems yielded wave-mode spectra with essentially identical power-law scal-
ing. The results indicate that (w,w,w) interactions can play a significant role in
the transfer of energy from forced scales to smaller scales, especially when the wave
modes are preferentially excited. However, the energy did not equilibrate for the GGG
flow in the smaller aspect ratio H/L=1/5 with stronger rotation and stratification
(Fr=Ro=0.05), suggesting an inefficient forward transfer of energy. Furthermore,
the full system also did not equilibrate for these parameter values when only the wave
modes were excited at large scales. These results serve as a caution that improper
resolution of wave-mode interactions may be a significant issue in present-day nu-
merical models that attempt to work in geophysically relevant parameter regimes,
consistent with [30]. Finally, there are a number of issues raised herein that we feel
merit further examination. For example, we plan to investigate universality in the
wave-mode spectrum from the GGG model (with respect to decreasing Fr=Ro in
a fixed aspect ratio). Similarly, with better numerical resources, an important issue
to be addressed is the difference between scaling of the wave-mode energy spectra
from full model simulations (with forcing of type 1) and the GGG model. The latter
comparison is the key to understanding energy distribution resulting from (w,v,w)
and (w,w,w) interactions, respectively — indeed, the intriguing possibility that the
scaling from these two scenarios may converge with progressively stronger rotation
and stratification provides adequate motivation for such an exploration.
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the DOE Multiscale Mathematics program (DE-FG02-05ER25703).

Appendix A. Here we present the GGG model by utilizing the eigenfunction
decomposition suggested in (2.3). For the general case, i.e., kx,ky,kz 6=0, the eigen-
functions are
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here (·)∗ denotes complex-conjugate. The special case, kh =0,kz 6=0 (the VSHF mode)
is treated separately. Here σ0 =0, σ±(k)=±f and
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or,
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Substituting in (2.3) and using the orthogonality of the modes, with ψ as the stream-
function, we have

• For kx,ky,kz 6=0 :
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• For kh =0,kz 6=0 :
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where (·) denotes a horizontal average.
Using (A.1) and (A.4), the GGG model (retaining only IG mode interactions) for the
kx,ky,kz 6=0 case is
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and
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The VSHF contributions to be added to the above are
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and
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and finally, using (A.2) and (A.7), the evolution of the VSHF modes themselves is
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given by
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and
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It can be verified that inverse transforming these equations leads to exactly the set
specified in Section IIB.
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