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MINIMAX VARIATIONAL PRINCIPLE FOR STEADY BALANCED
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Abstract. Two well-known variational principles for geophysical flows are combined into a single
minimax principle that characterizes distinguished steady solutions of the rotating shallow water
(RSW) equations. On the one hand, in the limit of small Rossby number ǫ, in which the dynamics
becomes quasi-geostrophic and closes terms of the potential vorticity field Q, steady coherent states
are characterized as minimizers of (generalized) enstrophy A at a given value of total energy H. On
the other hand, for small amplitude motions at finite ǫ balanced states resulting from geostrophic
adjustment are characterized as minimizers of the total energy H subject to a given potential vortic-
ity Q. Moreover, the organization into a coherent state through potential vorticity mixing occurs on
a slow time scale relative to the fast time scale of adjustment through inertia-gravity wave radiation.
These two complementary principles suggest a variational characterization of steady balanced states
for the RSW equations at finite ǫ. Namely, the functional A+θH, where θ <0 is a parameter, is first
maximized over all RSW fields with given Q, and then minimized over all Q. Any such minimax crit-
ical point of A+θH is an exact steady solution of the RSW equations, which represents a physically
relevant equilibrium state at finite Rossby number. This minimax principle is implemented numer-
ically for zonal shear flows, and branches of solutions are computed to first-order in ǫ. The results
quantify the breakdown of quasi-geostrophy and the asymmetry between cyclonic and anticyclonic
structures. In addition, the O(ǫ)-correction is computed for a model of the zonally-averaged winds
in Jupiter’s weather layer.
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1. Introduction

The Rotating Shallow Water (RSW) equations constitute the simplest equations
in geophysical fluid dynamics that govern both slow vortical motions and fast inertia-
gravity waves. While they greatly simplify the vertical structure and thermodynamics
of a stratified fluid, they provide a physically realistic model of key phenomena de-
scribed by the full primitive equations [20, 29, 35]. In the limit of small Rossby
number, the RSW equations become the quasi-geostrophic (QG) equations, which
close in terms of the potential vorticity (PV) field and filter the inertia-gravity waves.
In this limit there is an extensive modern theory of nonlinear coherent structures
— organized flows, such as shear layers or vortices, that emerge and persist within
geostrophic turbulence. A comprehensive presentation of this theory and its applica-
tions is given in the monograph by Majda and Wang [25]. The most complete part of
this theory characterizes the statistical equilibrium states of quasi-geostrophic flows.
Using the conservation properties of the PV transport equation as a basis, equilibrium
states are realized as maximizers of the entropy of PV mixing subject to constraints on
total energy and circulation. Such constrained entropy maximizing states are distin-
guished steady flows in two senses. First, they are most probable states with respect
to fine-grained PV fluctuations; second, they are nonlinearly stable states with re-
spect to coarse-grained perturbations [15, 16]. This modern equilibrium statistical
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theory has been successful in predicting the properties of the long-lived, large-scale
structures that are observed in geophysical fluid dynamics [9]. For instance, it has
been implemented to model the formation of intense jets or spots in the weather layer
of Jupiter’s atmosphere [4, 33].

The present work is motivated by the desire to extend these mature variational
characterizations of coherent structures for the QG equations to the RSW equations.
That is, we seek to understand the influence of a small but finite Rossby number on
the long-time organization of a turbulent flow. A completely satisfactory statistical
equilibrium theory of RSW flows is not yet available, although the maximum entropy
formalism has been applied to the RSW system [7, 37]. The fundamental difficulty to
be confronted in making the desired extension from QG dynamics to RSW dynamics
at finite Rossby number is the presence of inertia-gravity waves and their coupling
with vortical motions. At finite Rossby number, there are two distinct physical mech-
anisms that underlie the organization of the flow into a coherent state. On a fast time
scale, the radiation of inertia-gravity waves tends to minimize energy over a fixed PV
field, through a well-known mechanism called geostrophic adjustment [20, 34]. On a
slow time scale, PV mixing tends to maximize entropy subject to fixed energy [26, 15].
Our central result is a synthesis of these two extremization principles into a varia-
tional characterization of physically relevant steady states of the RSW equations. The
distinguished states that we characterize are minimax critical points of a functional
constructed from the total energy and a generalized enstrophy, which is identical with
a negative entropy in the statistical theory.

Our construction may be outlined as follows.
Let (u,v) be the horizontal velocity field of a RSW flow with free-surface height

perturbation η. In the shallow vertical direction, z=0 denotes the undisturbed free-
surface, while z=−H(x,y) is the underlying bottom topography. The fluid column
height is therefore H+η. Let D denote the mean depth scale. The RSW equations
with constant Coriolis parameter f and gravitational acceleration g are

Du

Dt
−fv=−g ∂η

∂x

Dv

Dt
+fu=−g ∂η

∂y

D

Dt
(H+η)+(H+η)

(

∂u

∂x
+
∂v

∂y

)

=0.

The unknowns u,v,η are functions of the horizonal coordinates (x,y) and time t; the
material derivative is D/Dt=∂/∂t+u∂/∂x+v∂/∂y. Associated with these equations
is the remarkable conservation of potential vorticity, namely,

DQ

Dt
=0, where Q=

f+ζ

H+η

in which ζ=∂v/∂x−∂u/∂y is the relative vorticity. This equation describes the
advection of the potential vorticity Q along fluid parcels and puts a strong constraint
on the RSW dynamics.

The governing equations have the integral invariants

H=
1

2

∫

[

(H+η)(u2 +v2)+gη2
]

dxdy
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A=

∫

(H+η)a(Q)dxdy.

H is the total energy, while A denotes a family of invariants called generalized enstro-
phies, in which a(Q) is any (sufficiently regular) real function of the PV; the particular
case a=Q2/2 is used in most phenomenological studies of turbulence. All other RSW
invariants are associated with symmetry under spatial translation or rotation, and
they depend upon the invariance of the topography H. For the sake of clarity in this
introduction, we suppress them here.

We are concerned with regimes of motion in which the Rossby number ǫ=U/fL
is small; L and U denote characteristic horizontal length and velocity scales. In
real applications, typically ǫ is on the order of 0.1. We are especially interested in
extending to finite ǫ the theory of coherent states for the quasi-geostrophic (QG)
dynamics, which pertain to the limit ǫ→0. To motivate our minimax principle, we
therefore recall some of the results known in the QG theory. The standard QG
limit is obtained for a scaling in which λ=Ld/L is fixed, where Ld =

√
gD/f is the

Rossby deformation scale, and, if bottom topography is present, H=D−ǫb(x,y), for
a fractional bottom height b [29]. Then, in the singular limit as ǫ→0, the asymptotic
dynamics aer governed by the single advection equation

Dq

Dt
=0, where q=△ψ−λ−2ψ+b

in which q is the QG potential vorticity and ψ is the geostrophic streamfunction which
determines the velocity field according to u=−∂ψ/∂y, v=∂ψ/∂x. In this asymptotic
analysis, the RSW PV is related to the QG PV by Q=(f/D)[1+ǫq+O(ǫ2)].

The QG invariants, total energy and generalized enstrophy, take the form

H0 =
1

2

∫

[

|∇ψ|2 +λ−2ψ2
]

dxdy

A0 =

∫

a(q)dxdy.

In modern statistical equilibrium theory the functional A0 is identified as a negen-
tropy (negative entropy) of fine-scale PV mixing [15]. Associated with any given
probability distribution of fine-grained PV fluctuations is a unique convex function
a(q) which defines the integrand of the negentropy functional A0. For instance, if the
PV fluctuations are Gaussian, then a(q) is quadratic, and A0 coincides with the clas-
sical enstrophy of phenomenological turbulence theory. Given a statistical model of
fine-grained PV fluctuations, and hence an associated convex function a(q), the most
probable coarse-grained PV field is the minimizer of A0 subject to the energy con-
straint H0 =E (and a circulation constraint, as appropriate). The resulting minimizer
is a steady solution of the QG equations, and it represents the coherent structure that
forms and persists within a turbulent PV field.

This modern perspective supercedes earlier approaches in which Gibbsian sta-
tistical mechanics was applied to the quadratic invariants that are preserved under
spectral truncation of the governing dynamics [30, 36]. In those earlier statistical
models, the distributions are Gaussian and the mean-field equations for the coher-
ent states are linear. From the point of view of general equilibrium statistics, the
quadratic enstrophy integral is precisely the negentropy of the coarse-grained PV
field when a Gaussian prior distribution is imposed on fine-grained PV fluctuations.
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Accordingly, classical theory is just a special case of modern theory. Moreover, the
variational principle for equilibrium states in the Gaussian model coincides with the
so-called minimum enstrophy principle [5, 23, 26], which may be motivated by cascade
arguments.

With the goal of extending the QG variational principle to finite ǫ, let us instead
consider the associated unconstrained variational principle, namely,

min
q

A0(q)+θH0(q)

in which we introduce a Lagrange multiplier θ. When A0 is interpreted as a negen-
tropy, the parameter θ plays the role of an inverse temperature. Throughout this
paper we impose the restriction that the parameter θ be negative, and we assume
that a is strictly convex. For θ<0, the QG variational principle produces isolated co-
herent structures, such as vortices or free shear layers, which are the most interesting
coherent structures in QG turbulence. For θ>0, the structures tend to organize near
boundaries.

A minimizer q of L0 =A0 +θH0 defines a steady QG flow. This basic fact is
readily verified by calculating the first variation

δL0 =

∫

[a′(q)−θψ ]δq dxdy.

At a minimizer q, δL0 =0, which implies that there is a functional dependence, a′(q)=
θψ, between PV and streamfunction; hence ψ defines an exact steady QG flow [15, 25].
Moreover, an analysis of the second variation, δ2L0, shows that a nondegenerate
minimizer is nonlinearly stable, because L0 is an exact conserved quantity of the QG
dynamics and hence supplies a Lyapunov functional. This nonlinear stability result
is equivalent to the so-called second Arnold stability theorem [15, 25].

With these QG principles in mind, we return to the RSW equations and seek an
analogous principle for distinguished steady flows at finite Rossby number. Intuitively,
we conceive of relaxation into equilibrium as a two time-scale process: fast geostrophic
adjustment coupled with slow PV mixing. For the variational characterization of the
fast process, we appeal to the principle articulated by Vallis [34, 35], in which the
end state of the geostrophic adjustment process is taken to be the state of “extreme
balance” — that is, the energy-minimizing state at fixed Q. But Vallis’s principle
is only an approximation for finite amplitude RSW motions, and so we modify it
slightly by including the generalized enstrophy. Namely, we introduce the constrained
variational principle

max
(u,v,η)

A(u,v,η)+θH(u,v,η) subject to
f+ζ

H+η
=Q.

For given θ<0 and given Q, the solution of this maximization problem defines a field
(u∗,v∗,η∗) analogous to the extreme balance state.

Our minimax principle for RSW dynamics synthesizes the two variational prin-
ciples described above. The objective functional is L=A+θH, a linear combination
of exact RSW invariants. The RSW potential vorticity Q is related to the primitive
variables (u,v,η) pointwise by Π(u,v,η) = (f+ζ)/(H+η). We propose the minimax
variational principle

min
Q

max
Π(u,v,η)=Q

L(u,v,η) (1.1)
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in which the inner maximization is over all RSW fields (u,v,η) with a given Q and
appropriate boundary conditions (free slip velocity along boundary walls), while the
outer minimization is over all PV fields Q. Any such minimax state, being a critical
point of L, is an exact steady RSW flow. This fact follows by verifying that the
vanishing of the first variation, δL=0, implies the RSW steady flow equations. Fur-
thermore, any minimax solution produces a distinguished steady state in the sense
that it is optimized with respect to both potential vorticity advection and inertia-
gravity wave radiation. In essence, the inner maximization realizes fast geostrophic
adjustment, while the outer minimization achieves slow PV mixing.

The saddle point nature of these solutions combined with the necessary restric-
tion that θ<0 does not allow us to infer stability by using the exact invariant L as a
Lyapunov functional. Nonetheless, the separation of time scales between fast adjust-
ment and slow PV mixing suggests that these minimax states have special physical
significance. Indeed, they represent a natural extension to finite ǫ of the steady, stable
coherent states in the QG theory, to which they tend in the limit ǫ→0.

We refer to these distinguished critical points of L as steady, balanced solution of
the RSW equations, even though the term “balance” is normally understood to pertain
to time-varying states that do not excite gravity waves. Indeed, previous investigations
of the influence of gravity waves on vortical motions have focused on multiple-scale
asymptotics to derive balanced dynamics for the RSW equations [1, 2, 3], or on direct
numerical simulations of RSW flows [8, 17, 22, 28]. To the best of our knowledge a
direct characterization of steady balanced flows in the context of RSW equations has
not been articulated, and therefore our minimax principle partly fills a lacuna in the
literature. An understanding of these distinguished steady states may throw some
light on the coupling of inertia-gravity wave activity and potential vorticity mixing,
especially over very long time intervals.

The paper is organized as follows. We begin in section 2 by verifying that the
minimax critical points are exact steady flows. In section 3 we motivate and formulate
our minimax variational principle from the appropriately nondimensionalized RSW
equations. In section 4 we solve the inner maximization problem by means of an
asymptotic expansion in Rossby number ǫ, thereby obtaining the first-order correction
to QG fields for finite ǫ. We implement a numerical optimization method to solve
the resulting outer minimization problem. In section 5 we present some computed
solutions in the simplest physically relevant setting — namely, zonal shear flows in a
channel domain with flat topography. These results quantify the deviation from quasi-
geostrophy and the cyclone-anticyclone asymmetry of RSW flows as Rossby number
is increased. Finally, in section 6 we adapt our method to compute zonal shear flows
for the same model of Jupiter’s weather layer as was used in the QG model in [33],
thereby quantifying the effects of a finite Rossby number on those predictions.

2. Exact steady RSW flows

Before proceeding with a detailed physical motivation for our minimax principle
(1.1), we establish in this section the fact that any critical point of the functional L is
an exact steady solutions of the RSW equations of motion. In the following section,
we explain why the minimax critical points have a special significance, which is related
to the notion of balance in asymptotic models.

To do so we calculate the first variations of the functions A and H that make up
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the objective functional L=A+θH. For the generalized enstrophy, we obtain

δA=

∫

(H+η)a′(Q)δQ+ a(Q)δη

=

∫

a′(Q)δζ + [a(Q)−Qa′(Q)]δη

=

∫

∂

∂y
a′(Q)δu− ∂

∂x
a′(Q)δv + [a(Q)−Qa′(Q)], δη (2.1)

using δQ=(H+η)−1 [δζ−Qδη ], and then δζ=∂(δv)/∂x−∂(δu)/∂y. For the energy,
we have

δH =

∫

(H+η)(uδu+vδv ) + [
1

2
(u2 +v2)+gη ]δη. (2.2)

To proceed further with the calculation we introduce the Legendre transform of
the convex real function a(Q). Namely, let

Ψ=a′(Q), a∗(Ψ)=QΨ−a(Q)=max
Q̃

[Q̃Ψ−a(Q̃), ]

where prime denotes d/dQ. In terms of Ψ and a∗(Ψ), the vanishing of the first
variation, δL=0, gives the following three equations:

0=
δL
δu

=
∂Ψ

∂y
+θ(H+η)u (2.3)

0=
δL
δv

= −∂Ψ

∂x
+θ(H+η)v (2.4)

0=
δL
δη

= −a∗(Ψ)+θ [
1

2
(u2 +v2)+gη ]. (2.5)

Also, using (f+ζ)/(H+η)=Q=da∗/dΨ, where the second equality expresses the
involutive property of the Legendre transform, (2.3, 2.4) are equivalent to the pair of
equations

−(f+ζ)v=−θ−1 ∂

∂x
a∗(Ψ)

(f+ζ)u=−θ−1 ∂

∂y
a∗(Ψ). (2.6)

To verify that a critical point (u,v,η) of L defines a steady solution of the RSW
equations, we write the steady flow equations in the form:

−(f+ζ)v = − ∂

∂x
[
1

2
(u2 +v2)+gη ]

(f+ζ)u= − ∂

∂y
[
1

2
(u2 +v2)+gη ]

∂

∂x
[(H+η)u] +

∂

∂y
[(H+η)v] = 0.

This alternative form of the governing equations displayed in the introduction follows
from the vector analysis identity V ·∇V =∇( 1

2V
2)−V ×(∇×V ). The momentum
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equations follow from (2.6, 2.5), and the continuity equation is a consequence of (2.3,
2.4). This establishes the claim that every critical point of L defines an exact steady
flow.

In the above derivation of the steady RSW equations from the variational principle
we use variations in u and v that are supported in the fluid domain. If we allow general
variations δu and δv satisfying the free slip boundary condition (δu,δv) ·N =0, where
N is the unit normal to the boundary, then we obtain a′(Q)=0 on the boundary;
this results from a boundary integral term in the integration by parts of the δA
expression. This variational boundary condition is equivalent to the usual requirement
that Q=const. on the boundary, and the arbitrary constant can be included in the
variational formulation by replacing a(Q) with a(Q)+αQ for a constant α. In turn,
α can be identified with a Lagrange multiplier for a constraint on the total circulation
C =

∫

ζ.
We remark that the formal Hamiltonian structure of the RSW equations furnishes

a quick proof that any solution of the minimax problem (1.1) is an exact steady flow
[31]. Indeed, the fact that H is a Hamiltonian and that all functionals A are Casimirs
implies that for any θ 6=0, H+θ−1A is a Hamiltonian. Consequently, all critical points
of L are fixed points of the Hamiltonian dynamics.

3. Motivation of the minimax principle

In nondimensionalized form, the Rotating Shallow Water equations are

ǫ
Du

Dt
−v=−∂η

∂x
, ǫ

Dv

Dt
+u=−∂η

∂y
(3.1)

ǫ
D

Dt
(λ−2η−b)+[1+ǫ(λ−2η−b)]

(

∂u

∂x
+
∂v

∂y

)

=0, (3.2)

where u and v represent the velocities in the x and y directions respectively, η the free
surface elevation, and b the scaled bottom topography. The dimensionless parameters

ǫ=
U

fL
, λ=

√
gD

fL

are the Rossby number and the nondimensionalized Rossby deformation radius, re-
spectively; the Froude number is ǫ/λ. In order to connect the RSW dynamics with
its QG limit (ǫ→0), we utilize the potential vorticity q defined by

1+ǫq=
1+ǫζ

1+ǫλ−2η−ǫb .

Being a rescaled version of Ertel potential vorticity, q is advected by the flow:

Dq

Dt
=0. (3.3)

In these variables, the total energy H and generalized enstrophy A take the form

H=
1

2

∫

[(

1+ǫλ−2η−ǫb
)

(u2 +v2) + λ−2η2
]

dxdy (3.4)

A=

∫

(

1+ǫλ−2η−ǫb
)

a(q) dxdy. (3.5)
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For the purposes of motivating our minimax principle, which distinguishes certain
steady solutions of the RSW equations, let us recall the classical analysis of the
geostrophic adjustment problem [20]. Consider small amplitude motions governed by
the linearized RSW equations, meaning that |u|,|v|,|η|≪1 over the fluid domain, and
set b=0. This linearized dynamics are reducible to an inhomogeneous Klein-Gordon
equation for the height perturbation, namely,

ǫ2
∂2η

∂t2
−λ2△η+η = −λ2q, (3.6)

where q is necessarily constant in time according to the linearization of (3.3). The
general solution of (3.6) is η= η̄+η′, where η̄ corresponds to the steady state and η′

denotes a general solution of the corresponding homogeneous equation. In physical
terms, the transient component η′ of this solution is a field of inertia-gravity (Poincaré)
waves having the dispersion relation ω(k)= ǫ−1

√

1+λ2|k|2, where k is the horizontal
wave vector. The steady component η̄ is uniquely determined by the given PV field
q. More precisely, there is a unique steady state (ū, v̄, η̄) defined by

ū=−∂ψ
∂y

, v̄=
∂ψ

∂x
, η̄=ψ, where △ψ−λ−2ψ= q

along with appropriate boundary conditions on the streamfunction ψ. This steady
state is geostrophically balanced, and so one can say that from general initial con-
ditions the linearized system relaxes to the balanced state through radiation of the
inertia-gravity waves.

The balanced state for linearized RSW dynamics can be characterized as the
minimizer of total energy over all fields with given linearized PV, namely, q= ζ−λ−2η.
In this variational principle, the streamfunction ψ arises as the Lagrange multiplier
for the PV constraint. The equations of first variation are

0=

∫

{

uδu+vδv+λ−2ηδη+ψ[δζ−λ−2δη]
}

dxdy

=

∫

{

(u+ψx)δu+(v−ψy)δv+λ−2(η−ψ)δη
}

dxdy. (3.7)

From this calculation it is evident that the minimizer is the steady geostrophic state
(ū, v̄, η̄) associated with streamfunction ψ.

This principle is emphasized by Vallis [34, 35], who also extends it to finite-
amplitude motions. With respect to the exact RSW dynamics he defines a state
of “extreme balance” to be a minimizer of H subject to a pointwise constraint on
potential vorticity q. His goal is to derive balanced dynamics for the RSW system, in
which an approximation to the exact flow evolves through states of extreme balance.
Our minimax principle modifies his principle slightly in the sense that we consider
minimization of the functional H+θ−1A over all RSW fields with a given q, rather
than the functional H. For small amplitude motions, the two principles coincide, but
the term A contains an additional order ǫ contribution for finite-amplitude motions.
We include this term so that our minimax principle produces exact steady solutions
of finite amplitude.

The potential vorticity constraint in our version of the principle of extreme balance
is the linear condition

(1+ǫq)(1+ǫλ−2η−ǫb)−(1+ǫζ) = 0 (3.8)
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with q given. The objective functional is L=A+θH, which we maximize over (u,v,η)
subject to the PV constraint. The parameter θ is a negative constant, which plays
the role of inverse temperature when the enstrophy is interpreted as a negentropy
of PV mixing. The negativity of θ implies the organization of the PV into coherent
structures, as in the QG theory [9, 15].

We now arrive at our minimax principle, which combines the two principles of
extreme balance and minimum enstrophy into a single variational characterization of
steady balanced states for the RSW equations. Namely, we solve the variational
problem

min
q

max
(u,v,η)

{

L(u,v,η) : (1+ǫq)(1+ǫλ−2η−ǫb)=(1+ǫζ)
}

. (3.9)

As proved in the preceding section, any critical point of L defines an exact steady
solution of the RSW equations. But these minimax critical points have the further
property that their PV fields are balanced with respect to geostrophic adjustment.
In this sense they represent the extension to finite Rossby number ǫ of the coherent
steady states for QG flow, which minimize L0 =A0 +θH0 over q.

It is important to clarify the relation between our minimax principle and the
notions of balanced dynamics and spontaneous emission of inertia-gravity waves by
time-dependent RSW flows. In physical experiments [38], numerical simulations [14,
18], and asymptotic theories [19, 39], many investigators have addressed the question
of how waves interact with vortical structures. While the phenomenon of adjustment
from an initially unbalanced state is relatively well understood, the construction of
a time-dependent balanced dynamics is more subtle. This issue becomes relevant to
our minimax principle when one interprets the inner maximization as a (nonlinear)
projection onto a “slow manifold” of (extreme) balanced states; that is, when one
views the maximizer (u∗,v∗,η∗) associated with an arbitrary q as the geostrophically
adjusted state relative to q. On the one hand, if q itself is not the solution to the
outer minimization problem, and therefore is an unsteady state, it could spontaneously
generate some inertia-gravity waves. On the other hand, a solution q to the minimax
principle as a whole produces an exact steady solution of the RSW equations, which
is necessarily free from any inertia-gravity wave emission. Nonetheless, the saddle
point nature of the minimax critical points of A+θH leaves open the possibility that
they could be unstable, and hence that the emission of waves could occur during the
evolution of an unstable perturbation. The separation of time scales between the
vortical and inertia-gravity wave motions suggests, however, that such instabilities
would be weak at least for small Rossby numbers.

In contrast to the asymptotic theories of balanced dynamics, our minimax prin-
ciple pertains to the very long time behavior of solutions — in particular to the effect
of finite Rossby number on distinguished steady solutions. These effects lie beyond
the time scale of validity of the asymptotic expansions used to decouple fast inertia-
gravity wave motions from slow vortical modes. Thus, even though we lack a full
stability theory, our minimax principle provides quantitative information that is not
accessible by other methods.

We draw attention to two points with regard to the the choice of a(q) in the
minimax principle. First, even though the generalized enstrophy functional A can be
defined by any continuous convex function a, for the sake of definiteness we choose a
to be quadratic in the numerical computations that we give below. Second, we include
the circulation constraint in the enstrophy expression. In statistical equilibrium theory
for QG flows, equilibrium states are characterized as the constrained minimum of a



330 VARIATIONAL STEADY FLOWS IN ROTATING SHALLOW WATER

generalized convex enstrophy functional subject to fixed energy and circulation [15].
For this reason, we add a linear term to the quadratic a in the minimax principle:

a(q)=
1

2
q2 +αq. (3.10)

The parameter α is the Lagrange multiplier for the circulation constraint and rep-
resents “chemical potential” in the statistical equilibrium interpretation. In all our
numerical examples we use this enstrophy expression. Hence our minimax solutions
are parameterized by ǫ, λ, θ and α.

4. Approximate Minimax solutions

The minimax principle produces exact steady solutions for finite ǫ, even though its
formulation is strongly motivated by the separation of RSW dynamics into fast inertia-
gravity waves and slow vortical modes, which relies on the smallness of ǫ. Accordingly,
we could attempt to find minimax critical points directly by invoking an numerical
method to solve the nonlinear steady flow equations. Instead we adopt a different
approach, which makes explicit the Rossby number-dependence of the approximate
solutions. Specifically, we construct approximate solutions of the minimax problem
in two steps. First, we solve the inner maximization problem analytically through
an asymptotic expansion in Rossby number, thereby obtaining first-order correction
to the QG fields. We then insert these first-order expressions into the objective
functional and solve the outer minimization problem by a numerical optimization
method. The computed solutions therefore haveO(ǫ2) errors resulting from truncation
of the asymptotic expansion, and whatever small numerical errors are associated with
the optimization algorithm.

Consider the inner constrained maximization problem in (3.9). Let µ(x,y)=
(θ/ǫ)ψ(x,y) denote the Lagrange multiplier for the pointwise PV constraint (3.8);
we introduce the scale factor so that ψ is the finite-ǫ analogue to the geostrophic
streamfunction. Then the Lagrange multiplier rule provides the first-order condition:

0= δ

∫

(1+ǫλ−2η−ǫb)a(q)+
θ

2

[

(1+ǫλ−2η−ǫb)(u2 +v2)+λ−2η2
]

+ δ

∫

θ

ǫ
ψ
[

(1+ǫζ)−(1+ǫλ−2η−ǫb)(1+ǫq)
]

. (4.1)

Calculating the independent variations with respect to δu, δv and δη, we derive the
following equations for the extremal (u,v,η) and its multiplier ψ:

(1+ǫλ−2η−ǫb)u=−ψy, (4.2)

(1+ǫλ−2η−ǫb)v=ψx, (4.3)

η+
ǫ

2
(u2 +v2)+ǫθ−1a(q)=ψ(1+ǫq). (4.4)

These three equations together with the PV constraint (3.8) determine the solution
of the inner maximization problem.

For small ǫ we can solve this system up to first order in ǫ by expanding the
unknowns in a power series in ǫ:

u(x,y,ǫ)=u0 +ǫu1 +ǫ2u2 + ...

v(x,y,ǫ)=v0 +ǫv1 +ǫ2v2 + ...

η(x,y,ǫ)=η0 +ǫη1 +ǫ2η2 + ...

ψ(x,y,ǫ)=ψ0 +ǫψ1 +ǫ2ψ2 + ...
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where the coefficients functions are independent of ǫ.
Equating the O(1) terms yields

u0 =−ψ0,y,

v0 =ψ0,x,

η0 =ψ0,

q=△ψ0−λ−2ψ0 +b.

We immediately see that at the lowest order we recover the geostrophic relations.
These O(1) relations completely determine the field (u0,v0,η0), once the streamfunc-
tion is calculated by solving the Helmholtz equation involving the elliptic operator
△−λ−2, which is potential vorticity constraint equation.

Since we are interested in departures from quasi-geostrophy we proceed to the
next order in ǫ. Equating the O(ǫ) terms yields after some calculations:

u1 =−ψ1,y +λ−2ψ0ψ0,y −bψ0,y,

v1 =ψ1,x−λ−2ψ0ψ0,x +bψ0,x,

η1 =ψ1 +qψ0−
1

2
(u2

0 +v2
0)−θ−1a(q)

where ψ1 is determined using the potential vorticity constraint through

△ψ1−λ−2ψ1 =λ−2

[

1

2
|∇ψ0|2 +3ψ0△ψ0−2λ−2ψ2

0 −θ−1a(q)

]

+3λ−2bψ0−2b△ψ0−∇b ·∇ψ0−b2.

With the appropriate boundary conditions, we find ψ1 by solving this Helmholtz
equation. Given ψ1, the O(ǫ) field (u1,v1,η1) is determined.

We now substitute the first-order solution of the inner maximization problem into
the objective functional, and thereby we generate the approximate objective functional
for the outer minimization problem. A lengthy calculation produces H and A to the
first order in ǫ, namely,

Hǫ(q)=
1

2

∫

|∇ψ0|2 +λ−2ψ2
0

+ǫ

∫
[

5

2
λ−2ψ0|∇ψ0|2 +λ−4ψ3

0 −
1

2
b|∇ψ0|2−2λ−2bψ2

0 +bψ0△ψ0 +ψ0b
2

]

Aǫ(q)=

∫

a(q) +ǫ

∫

(λ−2ψ0−b)a(q). (4.5)

In these integrals, ψ0 =(△−λ−2)−1(q−b).
The minimax principle can thus be reduced to the single minimization problem

min
q

Lǫ =Aǫ +θHǫ. (4.6)

While a solution of the minimax principle (3.9) is an exact steady state of the RSW
dynamics, a solution of (4.6) is an approximate steady state accurate up to O(ǫ).
These approximate solutions are the first-order corrections to the coherent states
obtained in the analogous QG theory. Moreover, this defining variational principle
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for small ǫ has exactly the same form as the corresponding QG variational principle,
which it tends to as ǫ→0.

The outer unconstrained minimization problem is solved numerically using a non-
linear optimization method. Specifically, in our computations of one-dimensional
solutions we use a well-known quasi-Newton method, namely, the Broyden-Fletcher-
Goldfarb-Shanno algorithm [21].

5. Steady balanced shear flows

In this section we present some solutions of the minimax principle in the one-
dimensional case. That is, we consider zonal shear flows u=u(y), v=0, η=η(y) in
a channel 0<y<1 with flat bottom topography b=0. As mentioned above, we use
the enstrophy function a(q) given by (3.10). These numerical experiments provide
some insight into first-order Rossby number effects in the simplest setting relevant to
geophysical problems.

In the displayed computations, we consider a range of values of the parameters ǫ
and λ chosen to be representative of the physical values in the atmosphere and the
oceans. We vary the Rossby number ǫ from 0 to 0.3 and we consider values of the
normalized deformation radius λ from 0.1 to 1 [6, 10, 27].

In our numerical experiments, we first compute the quasi-geostrophic states,
which are solutions to the minimization problem when ǫ=0. Then we construct a
branch of approximate solutions with finite ǫ using a continuation strategy. Namely,
we begin with very small ǫ and compute solutions with increasing ǫ, retaining the so-
lution for ǫ1 as an initial guess in the optimization algorithm for finding the solution
with a slightly larger ǫ2, and so forth.

In the special case that we consider in this section, the QG states are explicit,
being the solutions to a linear boundary-value problem on the interval 0<y<1. These
solutions are determined by minimizing the following functional of q,

∫ 1

0

[

1

2
q2 +αq+

θ

2

(

[

dψ0

dy

]2

+ λ−2ψ2
0

)]

dy

which implies that they satisfy

q=
d2ψ0

dy2
−λ−2ψ0 =θψ0−α, ψ0(0)=0=ψ0(1).

The boundary conditions on the streamfunction impose zero net flux through the
channel. These conditions reflect the fact that the linear impulse invariant is not
included in the variational principle; inclusion of the linear impulse produces a nonzero
translational speed, which can be included into the steady shear flow giving it a
nonzero net flux.

There are two cases. When λ−2 +θ>0, the geostrophic streamfunction is

ψ0(y)=
α

κ2

[

1− coshκ(y−1/2)

coshκ/2

]

with κ2 =λ−2 +θ.

When λ−2 +θ<0,

ψ0(y)=− α

κ2

[

1− cosκ(y−1/2)

cosκ/2

]

with κ2 =−(λ−2 +θ).

In the second case, the solution exists provided that κ is not an integral multiple of π.
The physical significance of the parameter α is revealed by these solutions: when α<0,
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Fig. 5.1. The flows with increasing ǫ for fixed parameters θ =−5,α=−1,λ−2 =15. As the
Rossby number ǫ varies from 0 to 0.3, a weak cyclonic shear develops into a strong anticyclonic
band.

the shear u0 =−dψ0/dy is cyclonic (meaning that the circulation is positive), and when
α>0 it is anticyclonic (the circulation is negative); we assume that λ−2 +θ>−π2.

In our computations we choose either α=−1 (cyclonic shear) or α=+1 (anticy-
clonic shear). We vary θ to cover both of the above cases, including the critical case
when θ approaches −λ−2−π2.

In figure 5.1 we display a typical branch of solutions to the minimax principle
with increasing Rossby number ǫ. In this set of computed solutions the deformation
radius is relatively small compared to the unit channel width, having λ−2 =15. The
breakdown of the QG solution, which is a weak cyclonic shear, is therefore anticipated
even for fairly small ǫ. Indeed, for ǫ=0.1, which is typical of many geophysical flow
regimes, the RSW flow is qualitatively different from the QG flow, in that it develops
an interior band of anticyclonic shear. The magnitude of the shear in this anticyclonic
band increases as ǫ is increased; the figure shows the solution for ǫ=0.3, which may
be at the limit of the validity of the asymptotics.

In figure 5.2, we examine the analogous effect, but now beginning with a QG flow
that is an anticyclonic shear flow. The normalized deformation radius is now λ=0.2,
which emulates a regime of weak stratification. In this regime the minimax solutions
depend less strongly on the Rossby number, and they retain the general anticyclonic
features of the QG flow for small ǫ. Nonetheless, when the Rossby number is increased
to ǫ=0.2, the minimax solution forms two cyclonic bands surrounding a band of nearly
uniform flow. In the anticyclonic case the qualitative features of the QG flow field are
substantially changed only for relatively large values ǫ.

The breakdown of symmetry between cyclones and anticyclones is an important
feature of RSW turbulence, which distinguishes it from QG turbulence. This phe-
nomenon has been investigated by a number of studies [6, 8, 22, 28]. A plausible



334 VARIATIONAL STEADY FLOWS IN ROTATING SHALLOW WATER

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

velocity

θ = −12 , ε = 0.2 , λ−2 =  25 , α =  1

ε = 0.2
 

ε = 0 

Fig. 5.2. An anticyclonic QG shear becomes cyclonic when the Rossby number is increased to
ǫ=0.2.

physical argument for the cyclone-anticyclone asymmetry is given by Polvani et al.
[28]. They note that cyclones correspond to the depression in the fluid layer, which
implies that the local value for the deformation is smaller than that of anticyclones.
This restricts the interaction of the small cyclonic eddies and thus inhibits their growth
into larger cyclones through merger. On the other hand, the anticyclones correspond
to expansion of the fluid layer, making the local radius of deformation larger, and
resulting in stronger interaction and hence an increased likelihood of merger. Conse-
quently, the distribution of coherent vortices in decaying RSW turbulence is skewed
toward the anticyclonic. This phenomenology is supported by our computations of
steady balanced flows, in that we observe finite-ǫ effects that preferentially enhance
anticyclonic shear flows. While the O(ǫ) corrections can create cyclonic structures as
in figure 5.2, these flows are typically weaker than the anticyclonic structures, such
as those displayed in figure 5.1.

In the solutions displayed in figures 5.1 and 5.2, the “inverse temperature” θ is
chosen in the range θ+λ−2>−π2. For such θ, the Lyapunov functional A0 +θH0

is positive-definite on the QG equilibrium state, and consequently the Arnold second
stability criterion is satisfied with respect to QG dynamics. It is interesting to consider
values of θ that are near or slightly beyond this critical value, especially since some
important geophysical shear flows are known to lie in this transitional regime. In
particular, Dowling has shown that the midlatitude zonal jet structure that is the
most prominent and permanent feature of Jupiter’s weather layer lies in this regime
[11]. In figure 5.3, we therefore take a negative θ lying beyond the critical value for
the Arnold sufficient condition for stability for QG flow. (We emphasize that the fact
that this stability condition is not satisfied does not necessarily imply that the QG
flows are unstable. In fact, refined stability theorems that utilize the independent
conservation of both A0 and H0 provide stability for minimum negentropy states
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Fig. 5.3. The emergence of bands on the scale of the Rossby deformation radius. The param-
eters ǫ=0.05, λ=0.2 are taken to represent a mid-latitude band in Jupiter, and θ is chosen to be
slightly beyond the quasi-geostrophic stability limit based on the Arnold criterion.

subject to constrained energy and circulation in this QG regime [15, 16]. Also, we
stress that these stability criteria apply to QG dynamics, not to finite-Rossby number
RSW dynamics.) At finite ǫ, steady balanced solutions continue to exist beyond the
QG critical value, and such a solution is displayed in figure 5.3. The key qualitative
feature of this shear flow is the reversing jet structure which emerges on the scale
of the deformation radius λ=0.2. Thus, the minimax principle is able to reproduce
prototypical flow structures that resemble Jupiter’s mean zonal winds, even in this
simple situation without bottom topography. However, the stability of any of these
approximate RSW flows is an open question for finite ǫ.

These numerical results show that the finite-Rossby number effect included in
our steady, balanced RSW flows is quantitatively significant, especially in the regime
of small deformation scale. This conclusion is consistent with some inferences from
physical data. Indeed, quasigeostrophy is believed to break down at small deformation
scales [4], and by analyzing the wind data in the band containing the Great Red Spot
of Jupiter, Dowling and Ingersoll [12, 13] estimated that the QG approximation makes
a 30 percent error.

6. Shear flows over bottom topography

As another illustration of the minimax principle, we now consider finite-Rossby
number corrections to a 1+1/2–layer model of Jupiter’s atmosphere [10]. In this
model, the upper layer is shallow and active, and it overlays a lower layer that is
deeper, denser and passive. The deep lower layer represents a neutrally stratified
deep atmosphere, the structure of which is only inferred from observations of the
upper layer. The upper layer is dynamically equivalent to a single shallow layer
with a bottom topography that includes the effect of the deep lower flow and the
β effect [10]. A detailed analysis of the effective RSW dynamics of observed eddies
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has demonstrated that there exists a strong zonal shear flow in the lower layer [11].
This effective bottom topography has been included in QG models of the upper layer
zonal shears and embedded vortices based on the statistical equilibrium theory [4, 33].
In terms of the geostrophic streamfunction for the lower layer ψ2(y) and the scaled
Coriolis gradient β, the effective bottom topography is b(y)=λ−2ψ2 +βy.

We compute minimax RSW solutions for exactly the same formulation and pa-
rameter choices used in the statistical equilibrium QG model in [33] (see also [25]). In
this way we quantify the departures from quasi-geostrophy in this specific physical sit-
uation. Namely, we consider two midlatitude bands on Jupiter, for which the latitude
Θ lies in the range Θ−<Θ<Θ+. Each band is selected to contain two belts (cyclonic
regions) and two zones (anticyclonic regions). The southern hemisphere band lies
between 36.6◦S and 13.7◦S; the northern hemisphere band lies between 23.1◦N to
42.5◦N . (We refer both these domains to northern hemisphere sign conventions to
make them isomorphic problems.)

The characteristic length scale L is defined to be half the channel width, L=(Θ−−
Θ+)r0/2, where r0 =7×107m represents the radius of Jupiter. The characteristic
velocity scale U is defined as the RMS velocity of the centered Limaye profile for the
permanent zonally averaged winds in the upper layer [24].

The nondimensionalized problem is posed on the domain −1<y<+1, and its
dimensionless groups are

ǫ=
U

f(Θ0)L
, λ=

c

f(Θ0)L
, β=

f ′(Θ0)L
2

r0U

where the Coriolis parameter f(Θ)=2ΩsinΘ, with the angular speed of rotation Ω=
1.76×10−4s−1, is evaluated at the central latitude Θ0 =(Θ+ +Θ−)/2, and c=454s−1

is the estimated gravity wave speed for Jupiter [11]. The Rossby number is found to
be ǫ≈0.014 for the southern hemisphere, and ǫ≈0.021 for the northern hemisphere.
The normalized deformation scale is roughly λ≈0.2 in both the northern and southern
bands. Thus, our problem lies in a range of parameters for which substantial departure
from quasi-geostrophy may be expected.

Following Dowling [11], the streamfunction ψ2 for the lower layer is inferred from
the observed zonally-averaged cloud-top Limaye profile in the upper layer ũ. That
is, ψ2 is determined so that the streamfunction ψ̃ of the observed zonal shear co-
incides with the minimum enstrophy state subject to fixed energy and circulation.
Specifically, the QG mean-field equation

d2ψ̃

dy2
−λ−2ψ̃+βy+λ−2ψ2 =θψ̃−α

where θ and α are the multipliers corresponding to the constraints on energy and
circulation, respectively, defines the profile ψ2(y). But the values of θ and α are not
known a priori, and so a selection procedure is needed to determine them. For any

θ, we set α so that
∫ 1

−1
ψ2dy=0, which centers the lower layer flow. We choose θ=

−λ−2−(π/2)2, the first eigenvalue of the operator (△−λ−2) in the band −1<y<1.
This choice puts the QG equilbrium state at the critical value with respect to Arnold’s
second stability criterion, in agreement with Dowling’s analysis of observations.

We find strikingly different results in the two bands when we compute the O(ǫ)
corrections to the QG predictions. In the southern hemisphere the RSW shear flow
provided by the minimax principle is substantially different from the QG equilibrium
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Fig. 6.1. Zonal shear flow with ǫ≈ 0 (dashed) and RSW shear with ǫ=0.014 (solid) in Southern
Hemisphere band from 36.6◦S to 13.7◦S. The QG flow changes substantially when O(ǫ) correction
is added.

state at ǫ≈0.014. These two zonally-averaged shear profiles are displayed in figure
6.1. The finite-ǫ shear is much stronger than the QG state and its peak velocities
are much larger. By contrast, the QG flows in the northern hemisphere are much
more robust with respect to the finite-ǫ correction. Figure 6.2 shows that there is
only a small difference between the QG shear flow and the corresponding RSW flow
at ǫ≈0.021.

In two-dimensional QG computations of most probable states [33], there is also
a qualitative difference between the northern and southern hemisphere bands. In
that model, the effects of the thermal forcing of the weather layer by convection is
parametrized by the skewness of the distributions of fine-grained potential vorticity.
When the skewness is increased toward the anticyclonic the shear flow in the southern
band transitions to a Great Red Spot vortex, centered around 23◦S, whereas the
flow in the northern band remains a zonal shear. In light of the fact that the large
coherent structures in Jupiter’s atmosphere are energized by small-scale convection,
this provides a plausible explanation of the formation of the GRS.

In our RSW model of steady balanced states, we find that there is a natural
cyclone-anticyclone asymmetry, and so the formation of coherent anticyclonic vortices,
such as the GRS, may be partially attributed to the free dynamics at finite Rossby
number and are not entirely dependent upon the nature of the forcing. Indeed, we find
that the shear flows in the northern band are well predicted by QG theory, but that
the zonally averaged shears in the southern band are not. Given the tendency for the
O(ǫ) corrections to QG to favor anticyclonic structures, it is reasonable to conjecture
that a two-dimensional computation of steady balanced RSW states might predict
the formation of a large anticyclone in the southern band. We leave this interesting
task to further research, since our numerical method is implemented only for one-
dimensional solutions of the minimax principle. Finally, we remark that possibly
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Fig. 6.2. Zonal shear flow with ǫ≈0 (dashed) and ǫ=0.021 (solid) in Northern Hemisphere
band from 23.1◦N to 42.5◦N . There is little change when O(ǫ) correction is added.

both the anticyclonic skewness of the the PV fluctuations due to thermal convection
and the cyclonic-anticyclonic asymmetry due to finite Rossby number dynamics may
be mechanisms that cause the preferential formation of coherent anticyclonic vortices
in the weather layer. Quantifying the relative importance of each of these effects is
another interesting question for future investigations.
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