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Abstract. The Navier-Stokes-Voigt (NSV) model of viscoelastic incompressible fluid has been
recently proposed as a regularization of the 3D Navier-Stokes equations for the purpose of direct
numerical simulations. In this work we investigate its statistical properties by employing phenomeno-
logical heuristic arguments, in combination with Sabra shell model simulations of the analogue of
the NSV model. For large values of the regularizing parameter, compared to the Kolmogorov length
scale, simulations exhibit multiscaling inertial range, and the dissipation range displaying low inter-
mittency. These facts provide evidence that the NSV regularization may reduce the stiffness of direct
numerical simulations of turbulent flows, with a small impact on the energy containing scales.
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1. Introduction

In this work, we study the statistical properties of the three-dimensional Navier-
Stokes-Voigt (NSV) (sometimes it is written as Navier-Stokes-Voight) equations, an
incompressible viscoelastic model introduced by Oskolkov in [28], and proposed in
[18] and [17] as a smooth regularization of the 3D Navier-Stokes equations, for the
purpose of Direct Numerical Simulations (DNS).

Throughout the work we consider the NSV model subject to periodic or no-slip
boundary conditions, and driven by a given force field f . The velocity vector field,
u(x,t), and the scalar kinematic pressure, p(x,t), are governed by the system of
equations















∂t(u−α2∆u)−ν∆u+u ·∇u+∇p= f , x∈Ω,
∇·u=0, x∈Ω,

u(x,0)=u0(x), x∈Ω,
u(x,t)=0 x∈∂Ω, or u(x,t) is periodic;

(1.1)

in the smooth domain Ω⊂R
3, in the case of no-slip Dirichlet boundary condition, and

with basic periodic domain Ω=[0,L]3⊂R
3, when equipped with periodic boundary

conditions. Here, α≥0 is a given length scale parameter, and ν >0 is a given kinematic
viscosity, such that α2/ν is the relaxation time of the viscoelastic fluid.

It is easy to see from (1.1) that besides having the same steady state solutions as
the Navier-Stokes equations (NSE), the NSV model satisfies formally the same infinite
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time Reynolds averaged equations as those for the NSE, suggesting a strong link with
the statistical properties of turbulent flows.

As it was observed above, the NSV model presents an extra length scale associated
to the viscoelasticity, the parameter α, besides the well known Kolmogorov length
scale, η, (see section 3 for its definition), which is usually associated to the smallest
scales of motion in turbulent flows. For large values of the parameter α, compared
to η, we observe two distinct regions associated to the inertial range of the energy
spectrum for the NSV model. The first one obeys the celebrated Kolmogorov k−2/3

power law (with anomalous correction), followed by a second range of length scales
where energy condensates and is simply equipartitioned.

The second power-law, however, vanishes as α is decreased, restoring the usual
Navier-Stokes inertial range regime. This claim is supported by the numerical investi-
gation of the regularized Sabra shell model of turbulence, as well as by rigorous results
reported in the companion paper, [30], concerning the weak convergence of invariant
measures of the NSV to strong stationary statistical solutions of the Navier-Stokes
equations.

We also present simulations of the Sabra shell model, with the NSV regularization
term, which displays strong damping of dissipation range intermittent effects as α is
increased, due to a slowdown of the energy transfer timescales; see section 3 for more
details. We suggest that by tuning this parameter we may attenuate the strong
velocity fluctuations related to the intermittent events, thus reducing the the stiffness
of DNS of turbulent flows, with only a small effect on the energy containing scales.

Another main advantage of the NSV model compared to other regularization and
sub-grid scale models used in ocean dynamics, like hyperviscosity [23] or α-models
[2, 3, 4, 9], is the fact that in the presence of physical boundaries the NSV model does
not require any additional artificial boundary conditions which cause difficulties and
possibly exhibit non-physical behavior in applications, such as non-physical boundary
layers; see, e.g., [26].

2. Some facts about the NSV model

The Navier-Stokes-Voigt (sometimes written as Navier-Stokes-Voight) model of
viscoelastic incompressible fluid, (1.1), was introduced by Oskolkov in [28], and
pointed out by O. Ladyzhenskaya as one of the reasonable modifications of the Navier-
Stokes equations; see [22]. In [28], A. P. Oskolkov studied and proved its solvability in
different functional spaces. We refrain from giving technical details about regularity
issues here, but we remark that these equations behave like a damped hyperbolic sys-
tem; see [18]. Therefore, solutions do not experience fast (instantaneous) smoothening
of the initial data, as it is for parabolic systems like the Navier-Stokes equations.

This fact could prevent the NSV model from being a reasonable modification
of the Navier-Stokes equations. However, since we are proposing it as a model for
direct numerical simulations of turbulent flows in statistical equilibrium, i.e., after
the solutions reach the global attractor, we are mainly interested in its long time
behavior. Indeed, it was proved in [17] that solutions in the global attractor are
smooth if the forcing field is smooth enough, even for initial data satisfying only
finite kinetic energy and finite enstrophy (i.e. bounded in the Sobolev H1-norm). In
particular, in [17] it is shown in the periodic case that if the forcing field is analytic,
then the global attractor consists of analytic functions. This result, in conjunction
with results proved in [30], proves that if the forcing field is smooth enough, then
averaged structure functions, with respect to an invariant measure for the NSV flow,
display an exponentially decaying tail. One of the main goals of this paper is also to



B. LEVANT, F. RAMOS AND E.S. TITI 279

present direct numerical simulations of the Sabra shell model analogue of the NSV
model, supporting this asymptotic smoothening behavior.

Let Ω=[0,L]3. We denote the usual Lebesgue and Sobolev spaces of the periodic
functions on Ω by Lp(Ω), for 1≤p≤∞, and Hm(Ω), respectively. The inner product
in the spaces L2(Ω), which will be of particular interest for us, is given by

(u,v)=

∫

Ω

u(x) ·v(x)dx,

and its associated norm is defined by

|u|=(u,u)1/2.

Let F be the set of all vector trigonometric polynomials on the periodic domain Ω,
and denote

V =
{

ϕ∈F : ∇·ϕ=0, and

∫

Ω

ϕ(x)dx=0
}

.

We set H and V to be the closures of V in the L2(Ω) and H1(Ω) topologies, respec-
tively. We equip the spaces H and V with the inner products (·,·) and ((·,·)), and
with the corresponding norms |·| and ||·||, respectively.

The NSV model satisfies the following energy equation for every t∈ [0,∞),

d

dt

(

1

2
|u(·,t)|

2
+

α2

2
|∇u(·,t)|

2

)

=(f ,u(·,t))−ν |∇u(·,t)|
2
. (2.1)

Therefore, a positive quadratic conserved quantity in the inviscid, ν =0, unforced,
f =0, and periodic or no-slip setting, which was proved rigorously in [3], is

Sα
2 =

1

2
|u|

2
+

α2

2
|∇u|

2
, (2.2)

which we call the α-energy. The quantity

S2 =
1

2
|u|

2
(2.3)

is the usual kinetic energy, and we remark that it is not conserved for the inviscid
unforced NSV equations.

Another conserved quadratic quantity is the α-helicity

Λα =(u−α2∆u,curl(u)). (2.4)

Because the kinetic energy is not a conserved quantity, the arguments used by Kraich-
nan in [20] (see also [8]) to study the turbulent cascade scenario cannot be employed
directly to the kinetic energy. However, all the investigation will be carried out in-
stead to the conserved α-energy, Sα

2 , and conclusions will be further recovered for the
kinetic energy, S2. This strategy was also used in [2, 3, 4, 10, 13, 24, 25] for studying
various α subgrid scale models of turbulence.

We denote the Helmholtz-Leray orthogonal projection operator by PLH :L2→H,
and denote the Stokes operator subject to the periodic boundary conditions with
domain D(A)=(H2(Ω))3∩V by A=−PLH∆=−∆. The operator A−1 is a positive
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definite, self-adjoint, compact operator from H into H. Therefore, there exists a com-
plete orthonormal basis of H formed by eigenvectors, {wj}j≥1 of A, with associated
eigenvalues satisfying 0<λj →∞, when j→∞ (see, e.g., [5, 11, 33] for details).

The term B(u,v)=PLH((u ·∇)v) is a bilinear form associated with the inertial
term. Taking the inner product in L2, i.e., in H, of the bilinear form with a third
variable yields a trilinear form

b(u,v,w)=(B(u,v),w).

An important relation for the trilinear form is the orthogonality property (see, e.g.,
[5, 11, 33])

b(u,v,v)=0. (2.5)

Let us define the component uk of a vector field u∈H, for a wavenumber k, by

uk =Pku :=
∑

λj=k2

ûjwj ,

where wj , j≥1, are the eigenvectors of the operator A with the corresponding eigen-
values λj , j≥1. We also define the component uk′,k′′ by

uk′,k′′ =
∑

k′≤k<k′′

uk.

Then, we can write the projected NSV equations

d

dt
(uk′,k′′ +α2Auk′,k′′)+νAuk′,k′′ +B(u,u)k′,k′′ = fk′,k′′ . (2.6)

Let us now obtain the α-energy budget. Taking the inner product in the space
H of equation (2.6) with uk′,k′′ , we obtain

1

2

d

dt
(|uk′,k′′ |

2
+α2 |∇uk′,k′′ |

2
)+ν |∇uk′,k′′ |

2

=−b(u,u,uk′,k′′)+(f ,uk′,k′′)

= [eα
k′ −eα

k′′ ]+(f ,uk′,k′′), (2.7)

where

eα
k (u)=eα,→

k (u)−eα,←
k (u) (2.8)

is the net rate of α-energy transfer at k, and

eα,→
k (u)=−(B(uk1,k,uk1,k),uk,∞)

represents the net rate of α-energy from the lower modes to the higher modes, while

eα,←
k (u)=−(B(uk,∞,uk,∞),uk1,k)

represents the net rate of α-energy from the higher modes to the lower modes.
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3. Averaged Energy Budget

In this section, we follow [8, 10] and [11] to investigate the energy distribution
scale-by-scale for the 3D NSV equations. Let 〈·〉 denote the average with respect
to an invariant measure, µα, for the NSV semigroup (such a measure is known to
exist for the NSV, see [30]). For the Navier-Stokes equations, assuming that there
exists an extensive range of wavenumbers where the viscous dissipation does not
play a significant role, one can show that the energy simply cascades through these
length scales with a rate equaling the mean energy dissipation rate for the NSV,
ǫα =ν〈|∇u|

2
〉. For the NSV equations, a similar scenario holds for the α-energy

Sα
2 =

1

2
|u|

2
+

α2

2
|∇u|

2
.

3.1. Energy distribution scale-by-scale. In the course of investigation of
the Sα

2 scaling, we will follow methods previously used in [2, 3, 4, 10, 24, 25]. As it
is usual in the studies of homogeneous turbulence, we will consider the forcing f with
finite number of the eigenmodes, i.e.

f =
∑

k≤k≤k̄

fk. (3.1)

Let k′′≥k′>k̄. If we take averages in (2.7) with respect to an invariant measure, µα,
we obtain the following balance equation

ν〈|∇uk′,k′′ |
2
〉= 〈eα

k′(u)〉−〈ek′′(u)〉+〈(f ,uk′,k′′)〉= 〈eα
k′(u)〉−〈eα

k′′(u)〉, (3.2)

where eα
k (u) was defined in (2.8).

The expression on the right-hand side of the last equality is the mean net α-energy
transfer in the energy shell [k′,k′′]. In particular, if we choose k′′=∞, we obtain

ν〈|∇uk,∞|
2
〉= 〈eα

k (u)〉. (3.3)

This expression shows that the net α-energy transfer is positive for every k > k̄. More-
over, if we assume that there exists a range of wavenumbers, [k′,k′′], where the left-

hand side of (3.2), ν〈|∇uk′,k′′ |
2
〉, is very small, then the α-energy transfer is near

constant within this range, i.e.,

〈eα
k′(u)〉∼〈eα

k′′(u)〉. (3.4)

Defining kτ =(〈|∇u|
2
〉/〈|u|

2
〉)1/2, we can follow [11] to derive

0≤1−
〈eα

k′′(u)〉

〈eα
k′(u)〉

≤

(

k′′

kτ

)2
(

1−

(

k′

kτ

)2
)−1

.

Indeed,

1−
〈eα

k′′(u)〉

〈eα
k′(u)〉

=
〈
∑

k′≤k<k′′ k2 |uk|
2
〉

〈
∑

k′≤k k2 |uk|
2
〉

≤
(k′′)2〈

∑

k′≤k<k′′ |uk|
2
〉

〈
∑

k′≤k k2 |uk|
2
〉

≤
(k′′)2〈

∑

k |uk|
2
〉

〈
∑

k′≤k k2 |uk|
2
〉
=

(

k′′

kτ

)2
〈
∑

k k2 |uk|
2
〉

〈
∑

k′≤k k2 |uk|
2
〉
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≤

(

k′′

kτ

)2
(

1−
〈
∑

k≤k′ k2 |uk|
2
〉

〈
∑

k k2 |uk|
2
〉

)−1

≤

(

k′′

kτ

)2
(

1−

(

k′

kτ

)2
)−1

.

Therefore, if k′′≪kτ , then 〈eα
k′′(u)〉∼〈eα

k′(u)〉, which means that there is no leak of
energy in this range. Of course, we cannot expect this condition to be fulfilled for
every forcing term f . In the last section, where we numerically investigate the NSV
spectrum scenario, we provide Sabra shell model simulations satisfying an analogue
condition, assuring the cascade scenario.

We denote ǫα to be the total energy dissipation rate for the NSV,

ǫα =ν〈|∇u|2〉.

Now, we want to investigate the distribution of the inviscid conserved quantity, the
α-energy, scale-by-scale. We define the following characteristic velocities at scale k:

U
(0)
k = 〈|uk|

2〉1/2,

and

U
(α)
k =(1+α2k2)〈|uk|

2〉1/2.

We denote the characteristic α-energy at scale k by

Sα
2 (k)=

1

2
U

(0)
k U

(α)
k , (3.5)

the characteristic kinetic energy at scale k by

S2(k)=
1

2
(U

(0)
k )2.

With this notation, we can write the α-energy as

Sα
2 =

∑

k

Sα
2 (k)=

1

2

∑

k

U
(0)
k U

(α)
k ,

and the kinetic energy as

S2 =
∑

k

S2(k)=
1

2

∑

k

(U
(0)
k )2.

In the inertial range the α-energy transfer time-scale can be defined as

ttransf
k =

Sα
2 (k)

ǫα
. (3.6)

Following arguments used by Kraichnan in [20], (see also [8, 10] and [31]), in the
inertial range, the eddies of size k−1, in average, transfer their characteristic α-energy

to neighboring eddies in the time, ttransf
k , it takes to travel their own length, k−1,

i.e.,

ttransf
k =

1

kUk
, (3.7)
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where Uk is the characteristic velocity at scale k. Substituting (3.7) in (3.6), and set-
ting α=0, we recover the k−2/3 scaling for the inertial range of the S2 structure func-
tion that was theoreticaly predicted for the Navier-Stokes equations by Kolmogorov
in [19] (we remark that the κ−2/3 scaling for the structure function is commonly
quoted in terms of its correspondent energy spectrum density, which obeys a κ−5/3

power law). This sort of argument also leads to the double cascading scenario for 2D
turbulence described in [20] (see also [8]).

For the NSV case, the situation is complicated by the fact that we have two differ-

ent characteristic velocities, U
(0)
k and U

(α)
k . And, in fact, any log-convex combinations

of them would give us a possible characteristic velocity; see, e.g., [2, 3, 4, 16].
Real world turbulent flows, however, present anomalous scaling, i.e., structure

functions deviate significantly from the Kolmogorov predictions in [19], see, e.g., [12,
27, 32]. This anomalous behavior is present in some phenomenological models, such as
the Sabra shell models introduced in [27]. For example, in [27], the scaling computed
for the S2 structure function was 0.72, slightly deviating from the Kolmogorov −2/3
scaling. The nature of inertial range intermittency is a topic of current intense research
in the turbulence community; see, e.g., [7] for more details.

Simulations of the Sabra-NSV shell model, presented in the coming section, clearly
display two distinct power-laws for Sα

2 . For large values of α compared to the Kol-
mogorov dissipation length scale, η := (ν3/ǫα)1/4, we observe a range with scaling
slightly deviating from the k−2/3 Kolmogorov scaling (see section 4 for more details),
and another range with a nearly power zero scaling, see figures 4.1 and 4.2. This

distribution can be explained if we set up the transfer time-scale, ttransf
k , in equation

(3.7) as a function of the translational velocity, Uk ∼U
(0)
k :

ttransf
k =

1

kU
(0)
k

∼
(1+α2k2)1/2

k(U
(0)
k )1/2(U

(α)
k )1/2

. (3.8)

In fact, substituting the expression above into (3.6), we obtain

Sα
2 (k)∼ ǫ2/3

α k−2/3(1+α2k2)1/3, (3.9)

and therefore for k≪α−1 we have a k−2/3 range, while for α≈k−1 we have a power
zero range, just as it is observed in the shell model simulations in the next section.

We remark that this scenario of two power laws in the inertial range was first
proposed in [10] for the NS-α model, and then for the rest of the α models in [2, 3, 4,
16, 24, 25].

3.2. Smallest scales of motion. The idea of a smallest scale of motion in
turbulent flows was introduced by Kolmogorov in [19]. This can be obtained by simple
dimensional analysis, but can also be obtained by comparing the energy transfer time

scale, ttransf
k and the dissipative timescale, t

dissip
k := 1

νk2 , leading to the Kolmogorov

length scale η =
(

ν3/ǫα

)1/4
(see, e.g., [12]).

In the same spirit, for the NSV case we define the smallest scale of motion, ηNSV ,

as the scale where energy transfer time scale, ttransf
k , equals the dissipative time

scale, t
dissip
k . In order to estimate it, we first explicitly obtain the transfer time scale.

Comparing (3.5) with (3.9), we obtain the following expression for the characteristic
velocity at scale k:

U
(0)
k ∼ ǫ1/3

α k−1/3(1+α2k2)−1/3. (3.10)
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Therefore,

ttransf
k =

1

kU
(0)
k

=
(1+α2k2)1/3

ǫ
1/3
α k2/3

. (3.11)

Thus, when we equate (3.11) with t
dissip
k , we see that for α<η the smallest scale of

motion, ηNSV , is exactly the Kolmogorov length scale, i.e., ηNSV =η. However, when
α>η, it is easy to see that

ηNSV

η
∼

(

α

η

)1/3

. (3.12)

equation (3.12) shows that if we choose η≪α, the degrees of freedom of the NSV
flow are significantly reduced in comparison to the NSE flow, which is also a great
advantage concerning direct numerical simulations. Figure 4.3 supports this fact for
Sabra-NSV simulations.

3.3. Comparison with previous works. There is no consensus about the
correct transfer time scale in previous works. In the first studies on the subject, for
example in [10], in the context of the NS-α model, it was argued that the time scale,

ttransf
k , should be setup by the translational velocity, i.e., Uk ∼U

(0)
k . This argument

was reinforced by new large scale simulations by Graham et al. in [15], although the
numerical results are mostly inconclusive, due to a resolution that is still too low.

Recently, Lunasin et al. in [25] and [24] argued that the time-scale should be set
up by the combination of velocities appearing at the conservation law. This leads
to the observed power laws for DNS of the 2D Leray-α, in [25], and of the 2D NS-α
model, in [24].

So far, there is no clear phenomenological explanation for the scaling described
here for Sα

2 . It is in consonance with the arguments for the 3D NS-α, obtained in [10],
where DNS simulations are still inconclusive, but in dissonance with the arguments
of the 2D simulations in [24, 25], where high resolution DNS were employed, and
clear power laws were presented. It is reasonable that the form of the nonlinear term
responsible for the energy transfer mechanism should play a role in the transfer time
scale of the conserved quantity. However, none of the former arguments contemplate
it, and a robust explanation for the observed scaling is still lacking.

We also observe that in the shell model simulations in the next section, the dis-
tribution of kinetic energy scale by scale, S2, presents an inertial range with three
distinct power laws. Indeed, the log-log plot of S2 in figure 4.2 follows the shape of
Sα

2 , with its two power laws, until it reaches wavenumbers obeying a third power law,
with scaling k−3, just before the dissipation range takes place. We remark that this
intermediate range, with a power zero spectrum, which is reminiscent of the α-energy
spectrum, has never been theoretically predicted or numerically computed in any of
the former works about α models; see, e.g., [2, 3, 4, 10, 16, 24, 25].

4. Sabra-NSV shell model simulations

Due to the extraordinary complexity of the hydrodynamic equations, many sim-
plified models, based on the phenomenological theories of turbulence, have been pro-
posed in order to investigate the statistical scenario of complex flows. In this section,
we use a modification of the Sabra shell model of turbulence, which describes the evo-
lution of complex Fourier-like components of a scalar velocity field denoted by un ∈C.
The associated one-dimensional wavenumbers are denoted by kn, where the discrete
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index n is referred to as the “shell index”. The equations of motion of the Sabra shell
model of turbulence were introduced in [27], and they have the following form

dun

dt
= i(akn+1un+2u

∗
n+1 +bknun+1u

∗
n−1−ckn−1un−1un−2)−νk2

nun +fn, (4.1)

for n=1,2,3,... , with the boundary conditions u−1 =u0 =0. The wave numbers kn

are taken to be

kn =k0λ
n, (4.2)

with λ>1 being the shell spacing parameter, and k0 >0. Although the equation
does not capture any geometry, the scale L=k−1

0 is frequently considered as a fixed
typical length scale of the model. In an analogy to the Navier-Stokes equations ν >0
represents a kinematic viscosity and fn are the Fourier components of the forcing.

We consider the following regularization of the model associated to the NSV
equations, which we denominate as the Sabra-NSV shell model

dun

dt
=

i

1+α2k2
n

(akn+1un+2u
∗
n+1 +bknun+1u

∗
n−1−ckn−1un−1un−2)

−
νk2

n

1+α2k2
n

un +
fn

1+α2k2
n

, (4.3)

for n=1,2,3,... and for fixed α>0. The three parameters of the model a,b, and c
are real. Following [27], we require that in the inviscid (ν =0) and unforced (fn =0,
for all n) case, the model should have at least one formal quadratic positive definite
quantity to be invariant. Such a quantity will represent the α-energy in the system.
Indeed, in order to require that the α-energy

E=

∞
∑

n=1

(1+α2k2
n)|un|

2, (4.4)

will be formally conserved, we assume the following relation between the parameters
of the model, which we will refer as an “energy conservation assumption”

a+b+c=0. (4.5)

Moreover, in the inviscid and unforced case the model possesses another formal
quadratic invariant

W=
∞
∑

n=1

(

a

c

)n

(1+α2k2
n)|un|

2. (4.6)

For a
c <0 this quantity is not sign definite and thus it is common to associate it with

the “helicity” – in an analogy to the three-dimensional turbulence, (2.4).

Remark 4.1. For α=0, that is, when we are in the pure Sabra regime, the above
mentioned conservation laws are only formal, due to a possible lack of regularity of
solutions of the inviscid Sabra shell model. However, by following [3] (see also [6]),
we can prove, when α>0, global existence and uniqueness for the inviscid Sabra-NSV
shell model, and therefore, it can be proved that E and W are rigorously conserved
in the inviscid and unforced case.
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Fig. 4.1. Log-log plot of Sabra-NSV simulation with parameters ν =10−9 and α=10−5. (+)
Sα

2 (k) - Characteristic α-Energy at scale k. (◦) S2(k) - Characteristic Kinetic Energy at scale k.

Without lost of generality we may assume that k0 =1. Next, by rescaling the
time

t→at,

and using the “energy conservation assumption” (4.5) we may set

a=1, b=−θ, c=θ−1. (4.7)

Therefore, the Sabra shell model is in fact a three-parameter family of equations with
parameters ν >0, θ, and λ. We are interested in the case where the shell sizes grow
geometrically (see (4.2)), therefore we limit ourselves to λ>1.

The three-dimensional parameter regime corresponds to 0<θ <1, as W is not
sign definite (see, e.g., [6, 27]). In that regime we can rewrite relation (4.6) in the
form

W=

∞
∑

n=1

(−1)nkβ
n(1+α2k2

n)|un|
2, (4.8)

for

β =−logλ |θ−1|. (4.9)
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Fig. 4.2. Log-log plot of the Sabra-NSV simulation with parameters ν =10−9 and α=10−6.

(+) Sα

2 (k) - Characteristic α-Energy at scale k. (◦) S2(k) - Characteristic Kinetic Energy at scale

k.

In our simulations, we set θ =1/2, λ=2, k0 =1, and with constant forcing, of
order one, in both real and imaginary parts of the second and third modes.

We first comment on the results derived in the last section for the characteristic
energy distribution scale by scale. In shell models, we refer to these quantities as the
second order structure function, and define them by

S2(kn)= 〈|un|
2
〉,

and

Sα
2 (kn)= 〈|un|

2
+α2k2 |un|

2
〉.

Figure 4.1 and figure 4.2 show the results of simulations for ν =10−9, and for α=10−5,
and α=10−6, respectively. They show two clear distinct power-laws, one with a
scaling of k−0.66

n , and another one with a constant scaling.
Figure 4.3 shows the effect of varying the parameter α for fixed ν =10−9. As

expected, the secondary power law becomes less prominent as α is decreased.
Now, we comment on some issues about intermittency. One of the main char-

acteristics of turbulent fluid flows, that is present in the Sabra shell model, is its
dissipation-range intermittency. This is characterized by violent fluctuations of very
short duration in the energy dissipation rate,

ǫα = 〈
∑

n

k2
n |un|

2
〉.



288 STATISTICAL PROPERTIES OF THE NAVIER-STOKES-VOIGT MODEL

Fig. 4.3. Log-log plot of the characteristic kinetic energy scale-by-scale for the Sabra-NSV

simulations with ν =10−9, and different values of the parameter α.

Fig. 4.4. Log-log plot of the energy dissipation fluctuation ǫ′
α

/ǫα. Parameters: ν =10−9, α=0.
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Fig. 4.5. Log-log plot of the energy dissipation fluctuation ǫ′
α

/ǫα. Parameters: ν =10−9,

α=10−7.

Fig. 4.6. Log-log plot of the energy dissipation fluctuation ǫ′
α

/ǫα. Parameters: ν =10−9,

α=10−6.

Small velocity fluctuations in high wavenumbers play a key role in this phenomenon,
see, e.g. [12], and the rise of such fluctuations imposes severe challenges to the direct
numerical simulations of turbulent flows. Therefore, the attenuation of its effects finds
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Fig. 4.7. Log-log plot of the structure functions, S2, S3, S4 and S6 for a simulation with

ν =10−9, and α=10−7. One can also find the corresponding scaling of the structure functions in

the inertial range.

many applications.
Looking carefully at equation (4.3), we observe that as kn becomes large, the

term 1+α2k2
n in the denominator will damp the velocity fluctuations. Therefore,

the energy dissipative intermittency must be significantly attenuated for large val-
ues of the relaxation time parameter. Figures 4.4, 4.5 and 4.6 present the energy
dissipation fluctuation signal, ǫ′α/ǫα =(

∑

n≥1k2
n |un(t)|

2
)/〈
∑

n≥1k2
n |un(t)|

2
〉, for dif-

ferent settings. The intermittency becomes strongly attenuated as we increase the
length parameter α. This fact might find real world applications, and is worth further
investigation.

Another main characteristic of the Sabra model, as observed in [27], is that it
exhibits an inertial range, with moments of the velocity depending on kn as power

laws with nontrivial exponents, i.e., 〈|un|
q
〉∼k

−ξq
n , where ξq depends nonlinearly on

q. From now on, we refer to these moments as structure functions. For even q =2m,
we use the usual definition

S2m(kn)= 〈|un|
2m

〉.

For odd q =2m+1, we use the following definition

S2m+1(kn)= Im〈un−1unun+1 |u|
2m−1

〉.

For small values of the length parameter α, i.e., for α≪η, where η is the Kolmogorov
length scale, we do not observe any significant deviations for the exponents of the
structure functions from the pure Sabra model, with α=0. In figure 4.7, we show
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some structure functions for a simulation with ν =10−9, and α=10−7. The values of
the anomalous exponents are listed in the figure.

For larger values of the length parameter α compared to knd
, the analysis of

the anomalous exponents is complicated by the presence of the double power law,
and since we are concerned with the small relaxation time regularization, we will not
present any detailed analysis of it here.

However, we want to announce an interesting fact that we plan to investigate
in a forthcoming work. Self-similarity is a crucial hypothesis in K41 theory; see,
e.g., [12]. Intermitent dynamics in turbulence, however, is inconsistent with the self-
similarity hypothesis, leading to several modifications of this hypothesis; see, e.g., [12],
for more details. One can measure the departure from self-similarity in the inertial
range by looking at the flatness of the signal in this range; see [12]. The flatness is
defined as F (k)= 〈S4(k)〉/〈S2(k)2〉, and a departure from a constant value means a
lack of self-similarity. For turbulent-fluid flows, like in shell models, this term deviates
significantly from a constant as k =kn increases, even within the inertial range.

The nature of inertial range intermittency in shell models is not well understood.
The influence of strong velocity fluctuations on high wavenumbers might play a role,
just like in real turbulent flows, as suggested by Landau in his famous criticisms of
K41 theory; see, e.g., [12]. Because for the NSV model, we have strong damping of
high wavenumbers velocity fluctuations, we calculated the flatness of the Sabra NSV
model to investigate the relationship between the two kinds of intermittency.

We observe that the inertial range intermittency is significantly reduced as the
parameter α becomes large when compared to the Kolmogorov dissipation length
scale, η. For example, for the pure Sabra model with ν =10−9, we observe a flatness of
the order F (kn)∼k0.14

n , while that for the Sabra-NSV with same viscosity, and values
of α=10−6, and α=10−5, the flatness is, respectively, F (kn)∼k0.09

n and F (kn)∼k0.05
n .

For ν =10−8, the departure was from F (kn)∼k0.14
n , for the pure Sabra model, to

F (kn)∼k0.09
n , for α=10−5 and to F (kn)∼k0.002

n for α=10−4. Another interesting
remark is that we fit the first power law, and we observed a trend towards the K41
scaling with less and less anomaly, as the relaxation time was increased.

Genuine fluctuations for odd order structure functions; see [27], prevented us from
performing more detailed analysis of this pattern, and we are currently investigating
it by using a special stochastic forcing that eliminates this complication. We expect
to report the results of this investigation soon.

We also remark that for the 2D inviscid Navier-Stokes-Voigt, i.e., Euler-Voigt,
equations the circulation is not conserved following material loops. Motivated by this
fact we plan in future work to investigate the statistical properties of the 2D NSV
model and to compare them to those of other turbulence models. Moreover, we also
plan to study the statistics of the dynamics of point vortices in 2D Euler-Voigt model
and to compare it to the statistics of the dynamics of point vortices of the 2D Euler
equations.
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