
COMMUN. MATH. SCI. c© 2009 International Press

Vol. 7, No. 2, pp. 471–488

ABOUT THE LINK BETWEEN THE DETAILED DESCRIPTION OF

TRANSITIONS IN AN ION AND THE AVERAGE-ION MODELS∗
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Abstract. We study the link which exists between microscopic (detailed) models for the evolu-
tion of the electronic configurations in a population of ions and the macroscopic (average ion) models.
Rigorous asymptotics are presented in situations where they exist (large temperature; almost empty
or almost full shells), and numerical simulations are presented.
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1. Introduction

In the last few years, the extension of average-ion models to the modeling of
plasmas in off-equilibrium conditions has been considered (cf. [5, 3]). The validity
of this class of models, which are meant to give a simplified macroscopic statistical
description of the state of a large set of ions as an alternative to the more complex
detailed description based on evolution equations associated to microscopic processes
in the plasma, is in general justified on the basis of heuristic arguments, since a
priori the average-ion models can strictly be used only when the local thermodynamic
equilibrium approximation is valid.

In this paper we study the link connecting the microscopic detailed description of
a set of ions and its average-ion description in off-equilibrium conditions through the
analysis of a toy model involving only simple processes in the plasma. The analysis can
be considered somehow complementary to the analysis performed in papers dealing
with the validation problem for linear Boltzmann type equations (like [9, 2] or [6],
just to give a very short list), where the goal is to find a correct simplified description
for a set of particles, which in our case would be the sea of free particles (electrons
or photons) surrounding the ions. We shall give for our toy model some rigorous
(asymptotic) equivalence results and we shall present numerical simulations.

In what follows, we shall consider a set of ions which belong to the same species
of atoms in a bath of particles (electrons) at Maxwellian equilibrium at a given tem-
perature T . We denote by Z the charge of the nucleus of the considered atomic
species.

We consider the set of bound electrons in each ion and we collect the electrons in
subsets which we shall call levels.

Levels are defined by grouping electrons with about the same energy, and usually
the grouping is built in such a way that the number of levels N for bound electrons
is finite. In our simulations, the levels will be indexed according to the principal
quantum number n (up to the number N which is a priori fixed), so that they will
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correspond to the atomic shells, and we shall use indifferently both words (shells or
levels) to denote the same object.

A configuration ~k =(k1,... ,kN ) of an ion is specified by the occupation number
(i.e. the number of electrons) ki ∈N of each level i in the ionic configuration.

Each bound electron shell can accommodate a finite number of electrons; we shall
denote by Di the maximal number of electrons which can be accommodated in the
shell i (Di =2i2 in the numerical example that we present). We shall denote as C the

set of all ionic configurations ~k.
Electrons can switch their energy to a value corresponding to a different level

(bound-bound transitions), and be expelled or absorbed by the ion (continuum-bound
transitions). We shall include this last kind of transition by modeling the set of
free-electrons as the N +1-st shell; we write then DN+1 =∞ for coherence.

At what we shall call the microscopic level, the set of ions is described by the
probability to find an ion in the configuration ~k at time t, which we denote by g~k

(t).
We have of course

∑

~k
g~k

(t)=1, and the evolution equation for g~k
(t) is:

∂tg~k
(t)=

∑

~k
′∈C

B~k
′→~k

g~k
′ (t)−

∑

~k
′∈C

B~k→~k
′ g~k

(t), (1.1)

where B~k
′→~k

is the rate of the transition ~k
′ →~k. We notice that, because we included

among the allowed transitions the processes of ionization and recombination, the
transition ~k

′ →~k does not necessarily preserve the total number of electrons in the
configuration ~k.

The description of the system can be simplified thanks to the use of a macroscopic
model in which the set of ions in different electronic configurations is replaced by a
set of ions all in the same electronic configuration (average ions). The electronic
configuration of each (and every) ion in this last system is such that the occupation
number of each shell of the average ion is the average of the occupation numbers of
the corresponding shell of the ions in the original system.

At this macroscopic level, the set of ions is described by the collection of
populations of levels for the average ion, which we shall denote by {Ph}h≥1 or
~P =(P1,... ,PN ), where Ph ∈ [0,Dh] denotes the (non necessarily integer) population

of the h-th level of the average ion. In this model, given the level populations ~P at
any time t, the probability G~k

to find an ion in the configuration ~k is then computed
as

G~k
=

N
∏

h=1

(

Dh

kh

)(

Ph

Dh

)kh
(

1− Ph

Dh

)Dh−kh

, (1.2)

as if ions would be in what we shall call a local equilibrium.
In the average ion description, ~P satisfies the following evolution equation (for

n=1,... ,N):

d

dt
Pn =An({Pm}m≥1, 6=n)

(

1− Pn

Dn

)

−Bn({Pm}m≥1, 6=n)Pn, (1.3)

where we denote by An the total transition rate to the level n from other levels
(including the continuum) and by Bn the total transition rate to other levels (including
the continuum) from level n. In general, the rates An and Bn are functions of the
population of the levels in the form of a sum of coefficients (themselves depending
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on ~P ) multiplied by Pm or (1−Pm/Dm) for m 6=n plus a term coming from the
ionization-recombination processes.

We would like to get an equation of the form (1.3) as a consequence (in a certain
asymptotics) of an evolution equation for the probability g~k

of the form (1.1), anal-
ogous (even though not strictly in the same sense) to the reduction of hierarchies of
equations which describe many particle systems to a single equation for a one particle
density (cf. for instance [4]). To this purpose, we shall compare the evolution of the

populations of the shells ~f(t)=(f1(t),... ,fN (t)) defined for h=1,... ,N by

fh(t)=
∑

~k∈C

khg~k
(t), (1.4)

where g~k
satisfies equation (1.1), with the evolution of ~P , the solution of equation

(1.3).
In order to keep things as simple as possible, we consider the evolution of the level

populations in ions where the only transition processes between levels involved are
excitation and de-excitation (concerning only one bound electron) which are due to
collisions with particles in the bath (including the continuum-bound transitions which
may change the total number of electrons in an ionic configuration). As a consequence,
we do not take into account the radiative transitions (cf. [8] for the physics of such
transitions, and for example [1] for a mathematical study of the radiative transfer
equations) and the two-electron collisional transitions. In section 2, we describe in
detail the microscopic model that we shall study, and in Section 3 we write a non
closed equation for the populations ~f of the shells. This equation can be closed
under a factorization assumption which is related to the equilibrium. In section 4 we
rigorously study the asymptotics which enable passage from the macroscopic model
to the average ion model. Numerical illustrations are then provided in section 5.

2. Definition of the microscopic model

When needed, we shall use the following notation for sums of vectors:

~k+(h,l)ij =







(k1,... ,ki +h,...,kj + l,... ,kN ) 1≤ i<j≤N

(k1,... ,ki +h,...,kN ) 1≤ i≤N, j =N +1.

Given the assumption on the kind of transitions we are going to consider, the tran-
sition probability B~k→~k

′ will be nonzero only when ~k
′

=~k+(±1,∓1)ij , for some
i,j∈{1,..,N}.

We shall now describe the quantities and the rates of transition corresponding
to our microscopic model, which is built in order to be as close as possible to the
macroscopic atomic model in [5].

2.1. Effective charges and energy levels. With respect to the choice
of the effective charge Z∗

n, which models the part of the nucleus charge effectively
interacting with an electron in the n-th shell, we shall analyze the following (two)
different models:

• In the first model (macroscopically screened model), we shall assume

Z∗
n =Z∗

n(~f). (2.1)

With this choice the screening is not a microscopic quantity, since it does
not correspond to a single atom. It has the advantage that it makes the
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comparison between microscopic and macroscopic evolutions easier in a way
that we shall make explicit later on.

• In the second model (microscopically screened model), we shall assume

Z∗
n =Z∗

n(~k). (2.2)

Here, the screening due to an electron in the h-th shell on an electron in the
n-th shell is taken into account in each atom independently.

We shall then consider the energy levels corrected by the screening effect defined
above:

En =En(Z∗
n). (2.3)

The effective charge of the ion Z∗ is given by the formula

Z∗ =Z∗(~f)=Z−
N

∑

h=1

fh. (2.4)

We avoid choosing a microscopic dependence in the effective charge Z∗ (although this
would be in principle possible) because this is rarely used in the applications.

We shall denote in general the effective charge of the ion by Z∗, and sometimes
Z∗(~f), when we wish to stress the dependence with respect to ~f .

2.2. Transition probabilities and transition rates. In our first model,
we assume that (for n 6=m and ~k

′

=~k+(±1,∓1)min(n,m),max(n,m)),

B~k→~k
′ =Rc

nmkn

(

1− km

Dm

)

, (2.5)

where Rc
nm depends on (m,n), En−Em and T . Here, (Em)m=1,..,N is function

(through Z∗
n) of ~f (cf. equations (2.3) and (2.1)), and T is the temperature of the

bath.
The microscopic transition probability Rc

nm ≥0 is associated to the excitation
process when n<m or to its inverse process (de-excitation) when n>m, and to the
ionization process when m=N +1 or to its inverse process (recombination) when n=
N +1. For the continuum-bound, bound-continuum transitions, we define kN+1 =Z∗,
DN+1 =∞, EN+1 =0.

As a consequence of the detailed balance principle, the microscopic transition
probabilities satisfy the following conditions: for n<m, n,m=1,... ,N ,

Rc
mn =

Dn

Dm

e
En−Em

T Rc
nm, (2.6)

and for n=1,... ,N ,

Rc
N+1n =DnCT e

En
T Rc

nN+1, (2.7)

where CT is a positive constant (depending only on T ).
In our second model, we assume the microscopic transition probabilities to be

of the form (2.5), where Rc
nm depends on (m,n), En(~k)−Em(~k

′

), and T . We write

Rc
nm(~k,~k

′

) for the sake of simplicity in the following.
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As a consequence of the detailed balance principle, the microscopic transition
probabilities satisfy the following conditions: for n<m, n,m=1,... ,N ,

Rc
mn(~k,~k+(1,−1)nm)=

Dn

Dm

e
En(~k+(1,−1)nm)−Em(~k)

T Rc
nm(~k+(1,−1)nm,~k), (2.8)

and for n=1,... ,N ,

Rc
N+1n(~k)=DnCT e

En(~k+(1,−1)nN+1)

T Rc
nN+1(

~k+(1,−1)nN+1), (2.9)

where CT is the positive constant which also appeared in the first model.

2.3. Evolution microscopic equations. According to these transition prob-
abilities, we can write down the evolution equation (for our different models) of the
probability g~k

(t).
We begin with our first model:

∂tg~k
=

N
∑

j=1

N
∑

m=j+1

[

(kj +1)

(

1− km−1

Dm

)

1{kj 6=Dj ,km 6=0}g~k+(1,−1)jm

−km(1− kj

Dj

)
Dj

Dm

e
Ej−Em

T g~k

]

×Rc
jm

+

N
∑

m=1

N
∑

j=m+1

[

(kj +1)

(

1− km−1

Dm

)

Dm

Dj

e−
Ej−Em

T 1{kj 6=Dj ,km 6=0}g~k+(−1,1)mj

−km

(

1− kj

Dj

)

g~k

]

×Rc
mj

+

N
∑

j=1

[

(kj +1)1kj 6=Dj
g~k+(1,−1)jN+1

−Z∗(~f)CT

(

1− kj

Dj

)

Dje
Ej
T g~k

]

Rc
jN+1

+

N
∑

j=1

[

Z∗(~f)CT

(

1− kj −1

Dj

)

Dje
Ej
T 1kj 6=0g~k+(−1,1)jN+1

−kjg~k

]

Rc
jN+1. (2.10)

We recall that in this formula, the rates Rc
jm, etc., depend on the energy levels Ej .

Those levels depend on ~f through equation (2.1) and (2.3).
Then, we write the corresponding formula for our second model:

∂tg~k
=

N
∑

j=1

N
∑

m=j+1

[

(kj +1)

(

1− km−1

Dm

)

1{kj 6=Dj ,km 6=0}g~k+(1,−1)jm

−km

(

1− kj

Dj

)

Dj

Dm

e
Ej(~k+(1,−1)jm)−Em(~k)

T g~k

]

×Rc
jm(~k+(1,−1)jm,~k)

+

N
∑

m=1

N
∑

j=m+1

[

(kj +1)

(

1− km−1

Dm

)

Dm

Dj

e−
Ej(~k+(−1,1)mj)−Em(~k)

T 1{kj 6=Dj ,km 6=0}g~k+(−1,1)mj

−km

(

1− kj

Dj

)

g~k

]

×Rc
mj(

~k,~k+(−1,1)mj)

+

N
∑

j=1

[

(kj +1)1kj 6=Dj
g~k+(1,−1)jN+1
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−Z∗(~f)CT

(

1− kj

Dj

)

Dje
Ej(~k+(1,−1)jN+1)

T g~k

]

Rc
jN+1(

~k+(1,−1)jN+1)

+

N
∑

j=1

[

Z∗(~f)CT

(

1− kj −1

Dj

)

Dje
Ej(~k)

T 1kj 6=0g~k+(−1,1)jN+1
−kjg~k

]

Rc
jN+1(

~k).(2.11)

3. Reduction of the microscopic equations to macroscopic equations

and their closure

3.1. Non closed equations. When we consider our first model, it is pos-
sible to write a simplified (non closed) equation for the quantities fh, starting from
equation (2.10) and making a suitable change of indices, by summing over all possible
configurations. It reads as

d

dt
fh =

h−1
∑

j=1

∑

~k

[

kj

(

1− kh

Dh

)

−kh

(

1− kj

Dj

)

Dj

Dh

e
Ej(~f)−Eh(~f)

T

]

g~k
Rc

jh(~f)

+
N

∑

j=h+1

∑

~k

[

kj

(

1− kh

Dh

)

Dh

Dj

e−
Ej(~f)−Eh(~f)

T −kh

(

1− kj

Dj

)]

g~k
Rc

hj(
~f)

+
∑

~k

[

Z∗(~f)CT

(

1− kh

Dh

)

Dhe
Eh(~f)

T −kh

]

g~k
Rc

hN+1(
~f).

(3.1)

The corresponding equation for our second model is

d

dt
fh =

h−1
∑

j=1

∑

~k

[

kj

(

1− kh

Dh

)

Rc
jh(~k,~k+(−1,1)jh)

−kh

(

1− kj

Dj

)

Dj

Dh

e
Ej(~k+(1,−1)jh)−Eh(~k)

T Rc
jh(~k+(1,−1)jh,~k)

]

g~k

+

N
∑

j=h+1

∑

~k

[

kj

(

1− kh

Dh

)

Dh

Dj

e
Eh(~k+(1,−1)hj)−Ej(~k)

T Rc
hj(

~k+(1,−1)hj ,~k)

−kh(1− kj

Dj

)Rc
hj(

~k,~k+(−1,1)hj)

]

g~k

+
∑

~k

[

Z∗(~f)CT

(

1− kh

Dh

)

Dhe
Eh(~k+(1,−1)hN+1)

T Rc
hN+1(

~k+(1,−1)hN+1)

−khRc
hN+1(

~k)

]

g~k
.

(3.2)

3.2. Factorized solutions. In the case of our first model, if there exists a
factorized solution of (2.11) on a certain interval of time, i.e., g~k

(t)=
∏N

h=1 ĝh(kh,t)

(and of course
∑Dh

kh=1 ĝh(kh,t)=1), equation (3.1) becomes closed:

d

dt
Ph =

h−1
∑

j=1

[

Pj

(

1− Ph

Dh

)

−Ph

(

1− Pj

Dj

)

Dj

Dh

e
Ej(~P )−Eh(~P )

T

]

Rc
jh(~P )
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+

N
∑

j=h+1

[

Pj

(

1− Ph

Dh

)

Dh

Dj

e−
Ej(~P )−Eh(~P )

T −Ph

(

1− Pj

Dj

)]

Rc
hj(~P )

+

[

Z∗(~P )CT

(

1− Ph

Dh

)

Dhe
Eh(~P )

T −Ph

]

Rc
hN+1(~P ),

(3.3)

where Pj(t) :=fj(t)=
∑Dj

kj=0kj ĝj(kj ,t). equation (3.3) coincides with equation (1.3)
for the average population on the h-th level in the corresponding average-ion model,
by defining A and B in a suitable way.

Notice that equation (3.3) cannot be obtained from a microscopic model (even
when a factorized solution is assumed) when a microscopic screening is imposed (that
is, for example, in the case of our second model). It also could not be obtained
from a microscopic model in which the effective charge would be microscopic (that is,

depending on ~k rather than ~f).

3.3. Equilibrium. We now analyze the existence of equilibrium solutions for
Equations (2.10), (2.11) and (3.3), and the connection between them.

Since this is the most relevant case in physical applications, we shall only look
for equilibrium solutions which do not depend on the choice of the transition rates
Rc

nm: this corresponds to looking for probability densities g~k
(t) or occupation numbers

Ph(t) such that each coefficient in the linear combination of transitions rates on the
right-hand side of (2.10), (2.11) or (3.3) is identically equal to 0.

In our second model, represented by equation (2.11), in order to satisfy all the
constraints, compatibility conditions will be required.

3.3.1. Microscopic equilibrium. We shall first look for an equilibrium
solution of equations (2.10) and (2.11).

Setting each coefficient of the linear combination of transitions rates on the right-
hand side of (2.11) equal to 0, we get a system of equations having the following
compatibility condition on the energy:

Ej(~k)−Ej(~k+(−1,1)sN+1)=Es(~k)−Es(~k+(−1,1)jN+1) (3.4)

for s 6= j. Whenever this condition is fulfilled, we can obtain a (non necessarily fac-
torized) microscopic equilibrium solution.

Assuming electron energies of the form presented in (5.2), condition (3.4) is un-
fortunately not satisfied for our second model.

For the first model (corresponding to equation (2.10)), the equilibrium (factorized)
solution is:

geq
~k

=

N
∏

h=1

(

Dh

kh

)

(Z∗(~feq)CT e
Eh(~feq)

T )kh

(1+Z∗(~feq)CT e
Eh(~feq)

T )Dh

. (3.5)

Note that this solution is given in implicit form. We shall see that (3.5) can be
connected in a simple way to the equilibrium solution of the macroscopic model.

3.3.2. Macroscopic equilibrium. Equation (3.3) has as equilibrium solution
the Fermi-Dirac distribution, given (implicitly) by:

P eq
h =Dh

Z∗(~P eq)CT e
Eh(~P eq)

T

1+Z∗(~P eq)CT e
Eh(~P eq)

T

. (3.6)
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When we consider the function

geq
~k

=

N
∏

h=1

(

Dh

kh

)(

P eq
h

Dh

)kh
(

1− P eq
h

Dh

)Dh−kh

, (3.7)

where P eq
h is given by formula (3.6), we find that geq

~k
is given by (3.5). This means

that for our first model the macroscopic equilibrium can be obtained as an average
of the microscopic equilibrium. We therefore expect that for large times the result of
the microscopic and macroscopic simulations coincide. This property is however not
shared by our second model, as we shall see in the fourth simulation of section 5.

One can verify that for our first model, the equilibrium solution is the only solution
of the microscopic equations which remains factorized on an interval of time (that is,
all other factorized initial data immediately lose the property of being factorized
in the evolution of equation (2.10)), so that the closure presented in subsection 3.2
cannot be considered to be consistent. As a consequence, we can in general deduce
the macroscopic equations from the microscopic ones only in some asymptotics that
will be detailed in next section.

4. Asymptotic analysis

We begin with a proposition based mainly on Gronwall’s lemma which enables us
to make explicit the evolution of the difference between the microscopic and macro-
scopic descriptions (for our first model) in terms of its initial value, the correlation
matrix

∑

~k
khkj g~k

(s)−fh(s)fj(s), and the temperature T of the bath.

Proposition 4.1. We consider N ≥2, an integer number, T >0, and a family
(Di)i=1,..,N of numbers of N. We denote D=max(Di). We also consider a func-

tion Z∗ of ~f and a sequence (En)n∈N of functions of ~f which all lie in W 1,∞ (that is,
the space of bounded and Lipschitz-continuous functions). Then, we take a family of

transition rates (Rc
ij)i=1,.,,N ;j=i+1,.,,N+1 which are functions of T and ~f and lie (for

all T ) in the space W 1,∞ with respect to the variable ~f . Finally, we take a constant
CT >0.

Then for all Tinf >0 and t1 >0, one can find a constant K depending only on
N,D,||Z∗||W 1,∞ ,supn=1,..,N ||En||W 1,∞ ,Tinf such that (for any T ≥Tinf >0 and t∈
[0,t1]) if ~P := ~P (t) is solution of equation (3.3) and (g~k

)~k∈C := (g~k
)~k∈C(t) is solution

of equation (2.10), then

∑

h=1,...,N

|fh(t)−Ph(t)|

≤
(

∑

h=1,...,N

|fh(0)−Ph(0)|+KT−1
∑

j,h

∫ t1

0

∣

∣

∣

∣

∑

~k

khkj g~k
(s)−fh(s)fj(s)

∣

∣

∣

∣

ds

)

eK ϕ(T )t,

where

ϕ(T ) :=sup
h,j

||Rc
hj(T,·)||W 1,∞ +(1+CT ) sup

h

||Rc
hN+1(T,·)||W 1,∞ , (4.1)

and fh is given (knowing g~k
) by formula (1.4).
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Proof. Since we are looking at our first model, we can write

d

dt
fh(t)=

N
∑

j=1

Ahj(~f)fj(t)

−
[ N
∑

j=1

Ajh(~f)+Rc
hN+1(

~f)(Z∗(~f)CT e
Eh(~f)

T +1)

]

fh(t)

−
N

∑

j=1

Bhj(~f)χhj +Rc
hN+1Z∗(~f)CT Dhe

Eh(~f)

T (4.2)

and

d

dt
Ph(t)=

N
∑

j=1

Ahj(~P )Pj(t)

−
[ N
∑

j=1

Ajh(~P )+Rc
hN+1(

~P )(Z∗(~P )CT e
Eh(~P )

T +1)

]

Ph(t)

−
N

∑

j=1

Bhj(~P )PhPj +Rc
hN+1(~P )Z∗(~P )CT Dhe

Eh(~P )

T , (4.3)

where

χhj(t)=
∑

~k

khkjg~k
(t),

Ahj =











Rc
jh j <h

Rc
hj

Dh

Dj
e−

Ej−Eh
T j >h,

0 j =h

Bhj =
(1−e

Ej−Eh
T )

Dh

Ahj ,

(4.4)

and the evolution of the quantity fh−Ph is given by

d

dt
(fh(t)−Ph(t))=

N
∑

j=1

[

Ahj(~f)fj(t)−Ahj(~P )Pj(t)

]

−
{

[

N
∑

j=1

Ajh(~f)+Rc
hN+1(

~f)
(

Z∗(~f)CT e
Eh(~f)

T +1
)]

fh(t)

−
[

N
∑

j=1

Ajh(~P )+Rc
hN+1(~P )

(

Z∗(~P )CT e
Eh(~P )

T +1
)]

Ph(t)

}

−
N

∑

j=1

[

Bhj(~f)χhj(t)−Bhj(~P )PhPj

]

+CT Dh

[

Rc
hN+1(

~f)e
Eh(~f)

T Z∗(~f)−Rc
hN+1(

~P )e
Eh(~P )

T Z∗(~P )
]

.

(4.5)
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We can rewrite (4.5) as

d

dt
(fh(t)−Ph(t))

=
N

∑

j=1

Ahj(~f)(fj(t)−Pj(t))

−[
N

∑

j=1

Ajh(~f)+Rc
hN+1(

~f)(Z∗(~f)Ce
Eh(~f)

T +1)](fh(t)−Ph(t))

−
N

∑

j=1

Bhj(~f)(χhj(t)−PhPj)

+

N
∑

j=1

[Ahj(~f)−Ahj(~P )]Pj(t)

+
{

N
∑

j=1

[

Ajh(~P )−Ajh(~f)
]

+
[

Rc
hN+1(~P )(Z∗(~P )CT e

Eh(~P )

T +1)−Rc
hN+1(

~f)(Z∗(~f)CT e
Eh(~f)

T +1)
]

}

Ph(t)

+

N
∑

j=1

[

Bhj(~P )−Bhj(~f)
]

PhPj +CT Dh

[

Rc
hN+1(

~f)e
Eh(~f)

T Z∗(~f)−Rc
hN+1(

~P )e
Eh(~P )

T Z∗(~P )
]

.

(4.6)

Therefore,

∑

h

|fh(t)−Ph(t)|≤
∑

h

|fh(0)−Ph(0)|+2N sup
h,j

||Ahj(T,·)||∞
∫ t

0

∑

j

|fj(s)−Pj(s)|ds

+sup
h

||Rc
hN+1(T,·)(Z∗CT e

Eh
T +1)||∞

∫ t

0

∑

j

|fj(s)−Pj(s)|ds

+sup
h,j

||Bhj(T,·)||∞
N

∑

j,h=1

∫ t

0

∣

∣

∣

∣

∑

~k

[khkj −fh(s)fj(s)]g~k
(s)

∣

∣

∣

∣

ds

+2ND sup
h,j

||Ahj(T,·)||Lip

∫ t

0

∑

j

|fj(s)−Pj(s)|ds

+Dsup
h

||Rc
hN+1(T,·)(Z∗CT e

Eh
T +1)||Lip

∫ t

0

∑

j

|fj(s)−Pj(s)|ds

+ND2 sup
h,j

||Bhj(T,·)||Lip

∫ t

0

∑

j

|fj(s)−Pj(s)|ds

+Dsup
h

||Rc
hN+1(T,·)Z∗CT e

Eh
T ||Lip

∫ t

0

∑

j

|fj(s)−Pj(s)|ds,

so that

∑

h

|fh(t)−Ph(t)|≤
∑

h

|fh(0)−Ph(0)|+
(

2ND sup
h,j

||Ahj(T,·)||W 1,∞



G. CAVALLARO, L. DESVILLETTES, V. RICCI 481

+2D sup
h

||Rc
hN+1(T,·)Z∗CT e

Eh
T ||W 1,∞ +D sup

h

||Rc
hN+1(T,·)||W 1,∞

+ND2 sup
h,j

||Bhj(T,·)||Lip

)
∫ t

0

∑

j

|fj(s)−Pj(s)|ds

+sup
h,j

||Bhj(T,·)||∞
N

∑

j,h=1

∫ t

0

∣

∣

∣

∣

∑

~k

[khkj −fh(s)fj(s)]g~k
(s)

∣

∣

∣

∣

ds.

Then, we observe that

sup
h,j

||Ahj(T,·)||W 1,∞ ≤D sup
h,j

||Rc
hj(T,·)||W 1,∞ e

suph

||Eh||∞
Tinf

(

1+2
suph ||Eh||Lip

Tinf

)

,

||Bhj(T,·)||∞≤2
suph ||Eh||∞

T
e
2 suph

||Eh||∞
Tinf ,

||Bhj(T,·)||Lip

≤2||Ahj(T,·)||W 1,∞

suph ||Eh||W 1,∞

T
e
suph

||Eh||∞
Tinf

≤2D sup
h,j

||Rc
hj(T,·)||W 1,∞

suph ||Eh||W 1,∞

T
e
2 suph

||Eh||∞
Tinf

(

1+2
suph ||Eh||Lip

Tinf

)

,

||Rc
hN+1(T,·)Z∗CT e

Eh
T ||W 1,∞ ≤CT ||Z∗||W 1,∞ ||Rc

hN+1(T,·)||W 1,∞

×
(

1+
suph ||Eh||Lip

Tinf

)

e
suph

||Eh||∞
Tinf .

As a consequence, for some constant K which depends only on N,D,Tinf , ||Z∗||W 1,∞

and suph ||Eh||W 1,∞ ,

∑

h

|fh(t)−Ph(t)|≤
∑

h

|fh(0)−Ph(0)|

+Kϕ(T )

∫ t

0

∑

j

|fj(s)−Pj(s)|ds+KT−1
N

∑

j,h=1

∫ t

0

∣

∣

∣

∣

∑

~k

[khkj −fh(s)fj(s)]g~k
(s)

∣

∣

∣

∣

ds,

where

ϕ(T )=sup
h,j

||Rc
hj(T,·)||W 1,∞ +(1+CT )||Rc

hN+1(T,·)||W 1,∞ .

Then, thanks to Gronwall’s lemma (and for all t∈ [0,t1]):

∑

h

|fh(t)−Ph(t)|

≤
(

∑

h

|fh(0)−Ph(0)|+KT−1
N

∑

j,h=1

∫ t1

0

∣

∣

∣

∣

∑

~k

[khkj −fh(s)fj(s)]g~k
(s)

∣

∣

∣

∣

ds

)

eK ϕ(T )t,

and Proposition 4.1 is proven.

We can deduce from this proposition the equivalence of the microscopic and
macroscopic descriptions when the temperature is large, under conditions which are
satisfied by the rates (which are those of [5]) taken in the simulations of section 5.
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Corollary 4.2 (High Temperature limit). Under the same assumption as in
Proposition 4.1, and for initial data such that Ph(0)=fh(0) (that is, “well prepared”
initial data), h=1,... ,N , if

lim
T→∞

sup
n,m

‖Rc
nm(T,·)‖W 1,∞ <+∞ (4.7)

lim
T→∞

CT sup
n

‖Rc
nN+1(T,·)‖W 1,∞ <+∞, (4.8)

then, for large T and for any t1 >0

sup
t∈[0,t1]

N
∑

j=1

|fj(t)−Pj(t)|=O(T−1). (4.9)

Proof. Since Proposition 4.1 is valid and fh(0)=Ph(0) for all h,

N
∑

j=1

|fj(t)−Pj(t)|≤N2D2KT−1 t1eKϕ(T )t, (4.10)

where ϕ is given by (4.1), so that, from (4.7) and (4.8), we get (4.9). This ends the
proof of Corollary 4.2.

Remark 4.3. Though we also have (thanks to the analysis of equilibria in section
3) limt→∞

∑

j |fj(t)−Pj(t)|=0, it doesn’t seem possible to take t1 =+∞ in estimate
(4.9).

We now turn to another type of asymptotics, namely the situation in which all
shells are almost full or almost empty during the evolution of the plasma.

Corollary 4.4. Under the assumptions of Proposition 4.1, if, for all t∈ [0,t1],
fhi

(t)

Dhi

<ε, for i=1,... ,N1 and 1− fhi
(t)

Dhi

<ε for i=N1 +1,... ,N (for some N1∈
{1,..,N}), and if

∑

h=1,...,N |fh(0)−Ph(0)|≤C1ε, then for all t∈ [0,t1],

N
∑

h=1

|fh(t)−Ph(t)|≤C2ε, (4.11)

where

C2 =

(

C1 +N2KT−1D3 t1

)

eK ϕ(T )t,

and K, ϕ are the constants appearing in Proposition 4.1 (and formula (4.1)).

Proof. We first observe that under our assumption, for i=1,..,N1 (and any δ∈
]0,Dhi

[),

∑

~k:khi
≥δ

g~k
(t)≤ Dhi

δ
ε,

and for i=N1 +1,..,N ,

∑

~k:khi
≤Dhi

−δ

g~k
(t)≤ Dhi

δ
ε.
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Then, for t∈ [0,t1], h,j =1,..,N ,

∑

~k

(khkj −fh(t)fj(t))g~k
(t)=1h∈{1,..,N1}

∑

kjh
≥1

(kj −fj)kjh
g~k

(t)

+1h∈{N1+1,..,N}

∑

kjh
≤Djh

−1

(kj −fj)(kjh
−Djh

)g~k
(t),

(4.12)

so that thanks to the estimate above,

∣

∣

∣

∣

∑

~k

(khkj −fh(t)fj(t))g~k
(t)

∣

∣

∣

∣

≤D3ε. (4.13)

From (4.1) and (4.13) we then obtain

∑

h=1,...,N

|fh(t)−Ph(t)|≤
(

∑

h=1,...,N

|fh(0)−Ph(0)|+N2KT−1D3εt1

)

eK ϕ(T )t.

(4.14)
This ends the proof of Corollary 4.4.

It is of course difficult to guarantee that the shells will remain almost full or
almost empty on a long interval of time, it is however at least possible to show that
for a small interval of time, it remains so if it is true initially. This is the point of the
following proposition:

Proposition 4.5. Under the same hypothesis as in Proposition 4.1, and for initial
data such that Ph(0)=fh(0), h=1,... ,N (that is, “well prepared” initial data), if

Phi
(0)

Dhi

<ε for i=1,... ,N1 (4.15)

1− Phi
(0)

Dhi

<ε for i=N1 +1,... ,N (4.16)

for some N1∈{1,..,N}, then

N
∑

h=1

|fh(t)−Ph(t)|≤C (εt+ t2)eK ϕ(T )t, (4.17)

where K and ϕ are the constants appearing in Proposition 4.1 (and formula (4.1)), and
the constant C depends on T , supn,m‖Rc

nm(T,·)‖W 1,∞ , ||Z||W 1,∞ , N , suph‖Eh‖W 1,∞

and D.

Remark 4.6. We can in particular consider as initial datum g~k
(0) the microscopic

equilibrium solution (3.7) for a temperature T ∗ such that for each P eq
h , either

P
eq

h
(T∗)

Dh
<

ε or 1− Ph(T∗)
Dh

<ε, with ε small. This is what is done in the two first simulations of
section 5.

Proof of Proposition 4.5.

Proof. We have for the correlation matrix (for any h,j =1,..,N):
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|
∑

~k

(khkj −fh(t)fj(t))g~k
(t)−

∑

~k

(khkj −fh(0)fj(0))g~k
(0)|

≤t sup
s∈[0,t]

∣

∣

∣

∑

~k

(khkj −fh(s)fj(s))ġ~k
(s)−

(

ḟh(s)fj(s)+ ḟj(s)fh(s)
)

g~k
(s)

∣

∣

∣

≤sup
n,m

‖Rc
nm(T )‖∞

[

4D2N (1+ND)e
suph ‖Eh‖∞

T

+(4ND3 +2D2)(1+ ||Z∗||∞CT e
suph ‖Eh‖∞

T )
]

t

:=c1 t,

(4.18)

and c1 depends on supn,m‖Rc
nm(T,·)‖∞, T , ||Z∗||∞, D, N ,suph‖Eh‖∞.

According to the proof of Corollary 4.4, for h=1,... ,N ,
∣

∣

∣

∣

∑

~k

(khkj −fh(0)fj(0))g~k
(0)

∣

∣

∣

∣

≤D3ε.

Therefore, we obtain the bound

∫ t

0

∣

∣

∣

∣

∑

~k

(khkj −fh(t)fj(s))g~k
(s)

∣

∣

∣

∣

ds≤D3εt+
c1

2
t2. (4.19)

We use then Proposition 4.1 to obtain

N
∑

h=1

|fh(t)−Ph(t)|≤KT−1N2

(

D3εt+
c1

2
t2

)

eK ϕ(T )t.

Finally, Proposition 4.5 is proven.

Remark 4.7. Of course, both Corollary 4.4 and Proposition 4.5 are valid (with
obvious changes in the proof) when all shells are almost empty ( Pi

Di
, fi

Di
<ε for i=

1,... ,N) or all shells are almost full (1− Pi

Di
,1− fi

Di
<ε for i=1,... ,N).

5. Numerical simulations

In this section we present some figures in order to illustrate the rigorous results
of the previous section. For each figure, we represent (for some h) the functions fh

(obtained by solving the microscopic equation (2.10) or (2.11)) and Ph (obtained by
solving the macroscopic equation (3.3)).

The results have been obtained using a standard second order explicit scheme for
ODEs (note that for the microscopic model, the number of ODEs to solve is very
large: 16929).

Here are the values of the functions and parameters used in the simulations.
The shells are built according to the first quantum number, so that Dn =2n2.

Only N =4 shells (plus the continuum) are introduced, so that the computation time
remains reasonable.

The screening effect (that, is, the effective charge of the nucleus seen by an elec-
tron) is modeled by

Z∗
n =

{

Z−∑

h<nfh− 1
3 fn first(macro−screened) model

Z−∑

h<nkh− 1
3 kn second(micro−screened) model.

(5.1)
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Fig. 5.1. Occupation numbers f1(t) and P1(t) for our first model with T0 =4.3keV and T =
4.5keV . The curve ’fichierbrut1m’ corresponds to f1(t) while the curve ’fichierbrut1M’ corresponds

to P1(t).
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Fig. 5.2. Occupation numbers f2(t) and P2(t) for our first model with T0 =1.7keV and T =
1.9keV . The curve ’fichierbrut2m’ corresponds to f2(t) while the curve ’fichierbrut2M’ corresponds

to P2(t).

Then the energy of each level is that of the hydrogenic atom corrected by the
screening effect defined above:

En =0.0136
(Z∗

n)2

n2
keV. (5.2)
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Fig. 5.3. Occupation numbers f2(t) and P2(t) for our first model with T0 =0.6keV and T =
0.9keV . The curve ’fichierbrut2m’ corresponds to f2(t) while the curve ’fichierbrut2M’ corresponds

to P2(t).
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Fig. 5.4. Occupation numbers f2(t) and P2(t) for our third model with T0 =1.7keV and T =
1.9keV . The curve ’fichierbrut2m’ corresponds to f2(t) while the curve ’fichierbrut2M’ corresponds

to P2(t).

The rates of transition (for n<m) are given in our first model by

Rc
nm =

Rnm

En−Em

e−
En−Em

T , (5.3)

Rc
nN+1 =RnN+1

[1−e−
En
T ]

E2
n

e−
En
T , (5.4)
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and in our second model by

Rc
nm(~k,~k+(−1,1)nm)=

Rnm

En(~k)−Em(~k+(−1,1)nm)
e−

En(~k)−Em(~k+(−1,1)nm)
T ,

Rc
nm(~k+(1,−1)nm,~k)=

Rnm

En(~k+(1,−1)nm)−Em(~k)
e−

En(~k+(1,−1)nm)−Em(~k)
T ,

Rc
nN+1(

~k)=RnN+1
[1−e−

En(~k)
T ]

E2
n(~k)

e−
En
T

(~k),

Rc
nN+1(

~k+(1,−1)nN+1))=RnN+1
[1−e−

En(~k+(1,−1)nN+1))

T ]

E2
n(~k+(1,−1)nN+1))

e−
En(~k+(1,−1)nN+1)

T .

In those formulas, we have used the following values for Rnm (taken from [5]):

Rnm =
4.99×10−10f(n,m)gnmNe√

T
, (5.5)

RnN+1 =3.45×10−11Ne

√
T Γn, (5.6)

with the Gaunt factor gnm =0.361, and the values f(1,2)=0.4161, f(1,3)=0.0792,
f(1,4)=0.029, f(2,3)=0.637, f(2,4)=0.119, f(3,4)=0.8408. Moreover, we take

Γn =2.8014 e−
n

n+5 , (5.7)

and for the electron number density:

Ne =
6.02×1023ρ

M
Z∗, (5.8)

where ρ is the plasma mass density (taken as 5×10−2gcm−3), Z∗ is given by formula
(2.4), Z is the atomic number of the atom (taken as 50) and M is the mass number of
the atom (taken as 120). Note that the value of Z is such that all the denominators
appearing in the rates Rc

nm defined above are nonzero (and are in fact bigger than a
strictly positive constant).

Finally, the constant CT appearing in the process of ionization is taken to be

CT =
ρ

317M T
3
2

, (5.9)

and the temperature T of the bath (in keV ) is chosen in a different way for the
different numerical simulations.

In all simulations, we take as initial datum the formulas (3.6), (3.7), at a given
temperature T0, which differs from the temperature T of the bath.

We begin by showing a figure corresponding to the case T0 =4.3keV and T =
4.5keV , for our first model. This range of temperature is quite high: the levels are all
almost empty. We show the evolution of the occupation numbers for the first shell,
its order of magnitude is 10−2. As can be seen on the figure, the curves for f1(t) and
P1(t) are indistinguishable: we are in the regime where we can apply Corollary 4.2,
which deals with the high temperature asymptotics.

Next, we present a figure corresponding to the case T0 =1.7keV and T =1.9keV ,
for our first model. In this temperature range, the first shell is almost full while the
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other shells are almost empty. We show the evolution of the occupation numbers
for the second shell, its order of magnitude is 10−1−10−2. The curves for f2(t) and
P2(t) are once again indistinguishable: we are in the regime where we can apply
Corollary 4.4, which deals with shells which are almost empty or almost full. One can
also compute the correlations appearing between the occupation numbers of different
shells: along the evolution, they never grow over orders of magnitude of 10−7.

Our third figure corresponds to the case T0 =0.6keV and T =0.9keV , for our first
model. In this temperature range, the occupation number for the second shell is far
from 0 and D2 =8. As a consequence, the evolution of f2 differs somewhat (as can be
seen on the graph) from the evolution of P2. Correlations involving the second shell
(in particular χ23−P2P3) grow up to order of 10−3.

Finally, we show a figure corresponding to our second model (that is, with the
microscopic screening), for T0 =1.7keV and T =1.9keV (those are the same temper-
atures as that of Fig. 5.2). We see that (especially for large times), the curves f2(t)
and P2(t) are becoming different: this is due to the fact that there is no microscopic
equilibrium in this case which is compatible with the macroscopic equilibrium.
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Mathematics (Paris) 2, Éditions Scientifique et Médicales Elsevier Paris - North Holland
Amsterdam, 1998.

[5] A. Djaoui, S.J. Rose, Calculation of the time-dependent excitation and ionization in a laser-

produced plasma, J. Phys. B: At. Mol. Opt. Phys., 25, 2745–2762, 1992.
[6] F. Golse, On the periodic Lorentz gas and the Lorentz kinetic equation, Ann. Fac. Sci. Toulouse,

in press.
[7] R.M. More, J. Quant. Spectroscop. Radiat. Transfer, 27, 345, 1982.
[8] D. Mihalas and B. Mihalas, Foundations of Radiations Hydrodynamics, Oxford University Press,

1984, Reprint Dover, 1999.
[9] H. Spohn, The Lorentz process converges to a random flight process, Commun. Math. Phys.,

60(3), 277–290, 1978.


