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UNIQUENESS OF WEAK SOLUTIONS TO A MODEL OF

ELECTRO-KINETIC FLUID∗

JISHAN FAN† AND HONGJUN GAO‡

Abstract. In this paper we prove the uniqueness of weak solutions to a model of electro-kinetic
fluid which consists of a momentum equation together with transport equations of charges. Our result
is new in that it holds even when the momentum vanishes. The existence of weak solutions has been
proved in [P.Biler, W. Hebisch and T. Nadzieja, Nonlinear Anal. TMA, 23, 1189-1209, 1994], [R.
Ryham, C. Liu and Z-Q. Wang, Preprint, 2005], [R. Ryham, arXiv: 0810.2064 v1 (math.AP) 12, Oct
2008].
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1. Introduction

The equations governing the hydrodynamic transport of binary diffuse charge
densities are [1, 2, 3],

ut +u ·∇u+∇π−∆u=ε∆ϕ∇ϕ, (1.1)

divu=0, (1.2)

nt +u ·∇n=∇·(∇n−n∇ϕ), (1.3)

pt +u ·∇p=∇·(∇p+p∇ϕ), (1.4)

ε∆ϕ=n−p, in QT := (0,T )×Ω (1.5),

with boundary and initial conditions

u|∂Ω =0, (1.6)

(∇n−n∇ϕ) ·ν|∂Ω =(∇p+p∇ϕ) ·ν|∂Ω =∇ϕ ·ν|∂Ω =0, (1.7)

(u,n,p)|t=0 =(u0,n0,p0), div u0 =0, in Ω. (1.8)

Here Ω⊆R
d(d=2,3) is a bounded domain with smooth boundary ∂Ω, ν is the unit

outward normal to ∂Ω.
The first equation (1.1) is the linear momentum equation of incompressible flow,

and (1.1) and (1.2) are Navier-Stokes equation with the Lorentz force ε∆ϕ∇ϕ. u is
the velocity field and π is the pressure.

Equations (1.3), (1.4), and (1.5) are known as the electro-chemical equations [4,
5] or semiconductor equations [6, 7, 8, 9], and electrorheological systems [2, 3, 10,
11, 12] when formally setting u=0. Here, n and p are the charge densities of a
negatively and positively charged species, respectively, hence the sign difference in
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front of the convective term in either equations, ϕ is the electrostatic potential, and
ε is a small parameter, known as the Debye length, related to vacuum permittivity
and characteristic charge density.

Very recently, Ryham, Liu and Wang [13] studied the system (1.1)–(1.8) and
proved the global existence of weak solutions when u0∈L2(Ω) and n0,p0∈L2(Ω) and
studied the qualitative properties of solutions to the corresponding 1-d stationary
problem with the Dirichlet boundary condition as ε goes to zero in [14].

Kurokiba and Ogawa [6] considered the semiconductor device equation (1.3), (1.4)
and (1.5) when formally setting u=0 and Ω=R

d(d≥2) and proved the existence

and uniqueness of weak solutions with Lp initial data (n0,p0) when p=
d

2
(d≥4),

p>
d

2
(d=3), and p≥ 4

3
(d=2).

Note that the system (1.1)–(1.5) holds its form under the scaling (u,π,n,p,ϕ)→
(uλ,πλ,nλ,pλ,ϕλ) :=(λu(λ2t,λx),λ2π(λ2t,λx),λ2n(λ2t,λx),λ2p(λ2t,λx),ϕ(λ2t,λx)).

Under this scaling, the space Lθ(0,T ;Lp) is invariant for u when
2

θ
+

d

p
=1 and the

space Lθ(0,T ;Lp) is invariant for (n,p) when
2

θ
+

d

p
=2. Furthermore, Ld for u0 and

Ld/2 for (n0,p0) are invariant spaces under this scaling.
The aim of this paper is to study the uniqueness of weak solutions in critical

spaces. We will prove the following results.

Theorem 1.1. Let (n0,p0)∈LlogL,u0∈L2,n0,p0≥0 in Ω⊆R
2 and

∫

Ω

ϕdx=0.

Then there exists a unique weak solution (u,n,p,ϕ) to the problem (1.1)–(1.8) sat-
isfying

(n,p)∈L∞(0,T ;LlogL)∩L2(QT )∩L4/3(0,T ;W 1, 4

3 ), n,p≥0 in QT ,

(nt,pt)∈L4/3(0,T ;(W 1,4)∗),

ϕ∈L∞(0,T ;H1)∩L2(0,T ;H2), ∇ϕ∈L4(QT ),

u∈V2(QT ) :=L∞(0,T ;L2)∩L2(0,T ;H1)⊂L4(QT ),

ut ∈L4/3(0,T ;H−1).

(1.9)

Remark 1.2. We point out that the existence part of Theorem 1.1 is a slight modifi-
cation of the Theorem 1 in Ryham [15], where the author considered the same system,
but with the following boundary condition:

u=0, (∇n−n∇ϕ) ·ν =(∇p+p∇ϕ) ·ν =ϕ=0 on ∂Ω.

Here ν is the unit outward normal to the boundary ∂Ω. However, our method could
not be generalized to this case.

Theorem 1.3. Let (n0,p0)∈L3/2,u0∈L2,n0,p0≥0 in Ω⊆R
3 and

∫

Ω

ϕdx=0.

Assume further that

u∈Ls(0,T ;Lq,∞(Ω)) with
2

s
+

3

q
=1, 3<q≤∞. (1.10)

Here Lp,∞(Ω)≡Lp
w(Ω) denotes the standard Lorentz space [16]. Then there exists a
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unique weak solution (u,n,p,ϕ) to the problem (1.1)–(1.8) satisfying

(n
3

4 ,p
3

4 )∈V2(QT )⊂L10/3(QT ), n,p≥0 in QT ,

(n,p)∈L∞(0,T ;L3/2)∩L5/2(QT )∩L5/3(0,T ;W 1,5/3)∩L4(0,T ;L2),

(nt,pt)∈L5/3(0,T ;(W 1,3)∗),

ϕ∈L∞(0,T ;W 2,3/2)∩L5/2(0,T ;W 2,5/2),

∇ϕ∈L∞(0,T ;L3)∩L5/2(0,T ;L15),

u∈V2(QT ), ut ∈L2(0,T ;(W 1,3)∗).

(1.11)

Remark 1.4. Our result is new for equations (1.3), (1.4) and (1.5) when formally
setting u≡0, and hence (1.10) holds. When (1.10) holds, S. Dubois [17] proved the
uniqueness of weak solutions to the Navier-Stokes Equations (1.1), (1.2) when ϕ≡0.

Remark 1.5. The existence part of Theorem 1.3 can be proved by the Galerkin
method and thus we omit the details here. We only need to derive the estimates (1.9)
and (1.11) and prove the uniqueness.

Our proof will be be based on carefully using the low regularity estimates by
introducing two auxiliary functions N and P (see (2.10) and (2.11)).

Let p∈ [0,+∞] and q∈ [0,+∞]. We define the Lorentz space

Lp,q(Ω) :=
{

f :Ω→R,measureable
∣

∣

∣
‖f‖Lp,q <+∞

}

,

where

‖f‖Lp,q :=







(

q
p

∫ +∞

0

(

t
1

p f∗(t)
)q

dt
t

)

1

q

q <+∞,

supt>0
1
tp f∗(t), q =+∞.

Here

f∗(t) := inf {s>0|λf (s)≤ t},

λf (t) :=mes{|f |>s}.

It is well known that

Lp,p ≡Lp.

We will use the following generalized Hölder inequality [16]:

‖fg‖Lp,q ≤C‖f‖Lp1,q1‖g‖Lp2,q2 , (1.12)

with 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

. We will also use the following notation:

LLogL(Ω) :={f |
∫

Ω

|f |log(e+ |f |)dx<+∞}.
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2. Proofs of Theorem 1.1

First, we recall a technical lemma due to D. Chae [18].

Lemma 2.1 (18, Lem. 2.1)). For any bounded domain Ω⊆R
2 with a smooth

boundary we have a continuous imbedding

LlogL(Ω) →֒ (H1(Ω))∗. (2.1)

Lemma 2.2. n,p≥0 in QT , and

∫

Ω

nlogn+plogpdx+4

∫ T

0

∫

Ω

(∇
√

n)2 +(∇√
p)2dxdt

+ε

∫ T

0

∫

Ω

(∆ϕ)2dxdt=

∫

Ω

n0logn0 +p0logp0dx,

(2.2)

∇ϕ∈L∞(0,T ;L2). (2.3)

Proof. By the maximum principle, it is easy to prove that n≥0 and p≥0 in
QT .

Testing (1.3) by 1+logn and testing (1.4) by 1+logp respectively, and using the
divergence free property, summing up the resulting equality, we easily get (2.2).

Testing (1.5) by ϕ, we see that

ε‖∇ϕ‖2
L2 =−

∫

Ω

(n−p)ϕdx≤‖n−p‖(H1(Ω))∗‖ϕ‖H1

≤C‖n−p‖LLogL‖ϕ‖H1 (by (2.1))

≤C‖∇ϕ‖L2 .

Here, we used the Poincaré inequality

‖ϕ−
∫

Ω

ϕdx‖L2 ≤C‖∇ϕ‖L2 (2.4)

and the assumption

∫

Ω

ϕdx=0.

This proves (2.3).

Lemma 2.3.

u∈V2(QT )⊂L4(QT ). (2.5)

Proof. Testing (1.1) by u and taking into account the divergence-free property,
we find that

1

2

d

dt

∫

Ω

u2dx+

∫

Ω

|∇u|2dx=ε

∫

Ω

∆ϕ∇ϕ ·udx

≤ε‖∆ϕ‖L2‖∇ϕ‖L4‖u‖L4

≤ε‖∆ϕ‖2
L2 +ε‖∇ϕ‖2

L4‖u‖2
L4

≤ε‖∆ϕ‖2
L2 +Cε‖∇ϕ‖2

L4‖u‖L2‖∇u‖L2

≤ 1

2
‖∇u‖2

L2 +ε‖∆ϕ‖2
L2 +Cε‖∇ϕ‖4

L4‖u‖2
L2 ,
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and by the Gagliardo-Nirenberg inequality

‖v‖2
L4 ≤C‖v‖L2‖∇v‖L2 , for anyv∈H1

0 (Ω). (2.6)

Gronwall’s inequality gives (2.5).

Lemma 2.4.

(n,p)∈L2(QT )∩L4/3(0,T ;W 1,4/3), (2.7)

(nt,pt)∈L4/3(0,T ;(W 1,4)∗), (2.8)

ut ∈L4/3(0,T ;H−1). (2.9)

Proof. By the parabolic Sobolev imbedding theorem V2(QT )⊂L4(QT ), it is
easy to obtain (n,p)∈L2(QT ). Since ∇n=2∇√

n ·√n,∇√
n∈L2(QT ),

√
n∈L4(QT ),

we easily infer that ∇n∈L4/3(QT ) by the Hölder inequality.
This proves (2.7) by a similar calculations for p.
It is standard to prove (2.8) and (2.9) and thus we omit the details here.

Now we are in a position to prove the uniqueness. Let (ui,πi,ni,pi,ϕi)(i=1,2)
be two weak solutions to the problem (1.1)–(1.8). Also let us denote

u :=u1−u2, π :=π1−π2, n :=n1−n2, p :=p1−p2, ϕ :=ϕ1−ϕ2.

Now we can define N and P satisfying the following equations























∫

Ω

Ndx=0,

−∆N =n in Ω,
∂N

∂ν

∣

∣

∣

∣

∂Ω

=0

(2.10)

and






















∫

Ω

Pdx=0,

−∆P =p in Ω,
∂P

∂ν

∣

∣

∣

∣

∂Ω

=0.

(2.11)

From (1.5), (2.10), and (2.11), we know that

εϕ=−N +P. (2.12)

It is easy to infer that

nt +∇·(u1n+un2)=∆n−∇·(n∇ϕ1 +n2∇ϕ).

Testing this equation by N , we obtain

1

2

d

dt

∫

Ω

|∇N |2dx+

∫

Ω

|∆N |2dx=

∫

Ω

n∇ϕ1 ·∇N +n2∇ϕ ·∇N +u1n ·∇N

+un2 ·∇Ndx=: I1 +I2 +I3 +I4.
(2.13)
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Each term Ii(i=1,2,3,4) can be bounded as follows.

I1≤‖∆N‖L2‖∇N‖L4‖∇ϕ1‖L4

≤C‖∆N‖3/2
L2 ‖∇N‖

1

2

L2‖∇ϕ1‖L4 (by(2.6))

≤ 1

8
‖∆N‖2

L2 +C‖∇ϕ1‖4
L4‖∇N‖2

L2 ,

I2≤‖n2‖L2‖∇ϕ‖L4‖∇N‖L4

≤C‖n2‖L2 (‖∇N‖L4 +‖∇P‖L4)‖∇N‖L4 (by (2.12))

≤C‖n2‖L2

(

‖∇N‖2
L4 +‖∇P‖2

L4

)

≤C‖n2‖L2‖∇N‖L2‖∆N‖L2 +C‖n2‖L2‖∇P‖L2‖∆P‖L2

≤ 1

8
‖∆N‖2

L2 +C‖n2‖2
L2‖∇N‖2

L2 +
1

8
‖∆P‖2

L2 +C‖n2‖2
L2‖∇P‖2

L2 ,

I3≤‖u1‖L4‖∆N‖L2‖∇N‖L4

≤C‖u1‖L4‖∆N‖
3

2

L2‖∇N‖
1

2

L2 (by(2.6))

≤ 1

8
‖∆N‖2

L2 +C‖u1‖4
L4‖∇N‖2

L2 ,

I4≤‖n2‖L2‖u‖L4‖∇N‖L4

≤‖n2‖L2‖∇N‖2
L4 +‖n2‖L2‖u‖2

L4

≤C‖n2‖L2‖∇N‖L2‖∆N‖L2 +C‖n2‖L2‖u‖L2‖∇u‖L2

≤ 1

8
‖∆N‖2

L2 +
1

8
‖∇u‖2

L2 +C‖n2‖2
L2‖∇N‖2

L2 +C‖n2‖2
L2‖u‖2

L2 .

Substituting these estimates into (2.13), we find that

1

2

d

dt

∫

Ω

(∇N)2dx+
1

2

∫

Ω

|∆N |2dx

≤ C
(

‖∇ϕ1‖4
L4 +‖n2‖2

L2 +‖u1‖4
L4

)

‖∇N‖2
L2

+
1

8
‖∆P‖2

L2 +C‖n2‖2
L2‖∇P‖2

L2 +
1

8
‖∇u‖2

L2 +C‖n2‖2
L2‖u‖2

L2 .

(2.14)

Similarly for the p-equation, we obtain

1

2

d

dt

∫

Ω

|∇P |2dx+
1

2

∫

Ω

|∆P |2dx

≤ C
(

‖∇ϕ1‖4
L4 +‖p2‖2

L2 +‖u1‖4
L4

)

‖∇P‖2
L2

+
1

8
‖∆N‖2

L2 +C‖p2‖2
L2‖∇N‖2

L2 +
1

8
‖∇u‖2

L2 +C‖p2‖2
L2‖u‖2

L2 .

(2.15)

It is easy to find that u satisfies

ut +u1 ·∇u+u ·∇u2 +∇π =∆u+ε∆ϕ∇ϕ1 +ε∆ϕ2∇ϕ.

Testing this equation by u and using the divergence-free property, we obtain

1

2

d

dt

∫

Ω

u2dx+

∫

Ω

|∇u|2dx =

∫

Ω

ε∆ϕ∇ϕ1 ·u+ε∆ϕ2∇ϕ ·u−(u ·∇)u2 ·udx

=: J1 +J2 +J3,
(2.16)
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Each term Ji(i=1,2,3) can be bounded as follows.

J1≤ε‖∆ϕ‖L2‖∇ϕ1‖L4‖u‖L4

≤ 1

8
‖∆N‖2

L2 +
1

8
‖∆P‖2

L2 +C‖∇ϕ1‖2
L4‖u‖2

L4

≤ 1

8
‖∆N‖2

L2 +
1

8
‖∆P‖2

L2 +
1

8
‖∇u‖2

L2 +C‖∇ϕ1‖4
L4‖u‖2

L2 (by (2.6))

J2≤ε‖∆ϕ2‖L2‖∇ϕ‖L4‖u‖L4

≤ε‖∆ϕ2‖L2(‖∇N‖L4 +‖∇P‖L4)‖u‖L4 (by (2.12))

≤ε‖∆ϕ2‖L2(‖∇N‖2
L4 +‖∇P‖2

L4)+ε‖∆ϕ2‖L2‖u‖2
L4

≤ 1

8
‖∆N‖2

L2 +
1

8
‖∆P‖2

L2 +
1

8
‖∇u‖2

L2

+C‖∆ϕ2‖2
L2(‖∇N‖2

L2 +‖∇P‖2
L2 +‖u‖2

L2),

J3≤‖u‖2
L4‖∇u2‖L2 ≤C‖u‖L2‖∇u‖L2‖∇u2‖L2

≤ 1

8
‖∇u‖2

L2 +C‖∇u2‖2
L2‖u‖2

L2 .

Inserting the above estimate into (2.16), we arrive at

1

2

d

dt

∫

Ω

u2dx+
5

8

∫

Ω

|∇u|2dx≤ 1

4
‖∆N‖2

L2 +
1

4
‖∆P‖2

L2

+C
(

‖∇ϕ1‖4
L4 +‖∆ϕ2‖2

L2 +‖∇u2‖2
L2

)

‖u‖2
L2

+C‖∆ϕ2‖2
L2

(

‖∇N‖2
L2 +‖∇P‖2

L2

)

.

(2.17)

Adding up (2.14), (2.15), and (2.17) we conclude that

d

dt

∫

Ω

|∇N |2 + |∇P |2 + |u|2dx≤C(t)

∫

Ω

|∇N |2 + |∇P |2 + |u|2dx

with some C(t)∈L1(0,T ). Gronwall’s inequality gives N =0=P =u and thus n=p=
0=ϕ, which completes the proof. 2

3. Proof of Theorem 1.2

First, we derive the estimates (1.11).
Lemma 3.1.

∫

Ω

n
3

2 +p
3

2 dx+4

∫ T

0

∫

Ω

(∇n
3

4 )2 +(∇p
3

4 )2dxdt

+
1

2ε

∫ T

0

∫

Ω

(n−p)(n
3

2 −p
3

2 )dxdt=

∫

Ω

n
3

2

0 +p
3

2

0 dx,

(3.1)

(n,p)∈L∞(0,T ;L
3

2 )∩L
5

2 (QT )∩L
5

3 (0,T ;W 1,5/3)∩L4(0,T ;L2). (3.2)

Proof. Testing (1.3), (1.4) by
√

n,
√

p, respectively, using the divergence-free
property, and summing up the resulting equation, we obtain (3.1).

From (3.1), it follows easily that

(n
3

4 ,p
3

4 )∈V2(QT )⊂L
10

3 (QT )
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and thus

(n,p)∈L∞(0,T ;L
3

2 )∩L
5

2 (QT ).

On the other hand, ∇n=
4

3
(∇n

3

4 ) ·n 1

4 ,∇n
3

4 ∈L2(QT ),n
1

4 ∈L10(QT ), thus ∇n∈
L

5

3 (QT ) by the Hölder’s inequality.
By the interpolation inequality

‖n‖L2 ≤‖n‖
3

8

L
3
2

‖n‖
5

8

L
5
2

,

we obtain

n∈L4(0,T ;L2).

This proves (3.2).
Lemma 3.2.

ϕ∈L∞(0,T ;W 2, 3

2 )∩L5/2(0,T ;W 2,5/2)∩L4(0,T ;H2), (3.3)

ϕ∈L∞(0,T ;W 1,3)∩L5/2(0,T ;W 1,15). (3.4)

Proof. By the standard regularity theory of elliptic second order equations and
(3.2), we easily obtain (3.3) and (3.4) follows from the Sobolev embedding theorem

W 2, 3

2 ⊂W 1,3 and W 2, 5

2 ⊂W 1,15.

Lemma 3.3.

u∈V2(QT )⊂L10/3(QT ), (3.5)

ut ∈L2(0,T ;(W 1,3)∗), (nt,pt)∈L5/3(0,T ;(W 1,3)∗). (3.6)

Proof. Testing (1.1) by u and using (1.2), we see that

1

2

d

dt

∫

Ω

u2dx+

∫

Ω

|∇u|2dx=

∫

Ω

ε∆ϕ∇ϕ ·udx

≤ε‖∆ϕ‖L2‖∇ϕ‖L6‖u‖L3

≤C‖ϕ‖2
H2‖∇u‖L2 ≤ 1

2
‖∇u‖2

L2 +C‖ϕ‖4
H2 .

Using (3.3) and Gronwall’s inequality, we obtain (3.5).
The proof of (3.6) is standard and thus we omit the details here.

Now we are in a position to prove the uniqueness. We still use the same notation
as in section 2, and similarly we get (2.13). But each term Ii(i=1,2,3,4) can be
bounded as follows

I1 ≤ ‖∆N‖L2‖∇N‖
L

30
13
‖∇ϕ1‖L15

≤ C‖∆N‖
6

5

L2‖∇N‖
4

5

L2‖∇ϕ1‖L15

≤ 1

8
‖∆N‖2

L2 +C‖∇ϕ1‖
5

2

L15‖∇N‖2
L2 ,
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and by the Gagliardo-Nirenberg inequality

‖∇N‖
L

30
13

≤C‖∇N‖
4

5

L2‖∆N‖
1

5

L2 . (3.7)

I2≤‖n2‖L2‖∇ϕ‖L6‖∇N‖L3 ≤C‖n2‖L2 (‖∆N‖L2 +‖∆P‖L2)‖∇N‖L3

≤C‖n2‖L2 (‖∆N‖L2 +‖∆P‖L2)‖∇N‖
1

2

L2‖∆N‖
1

2

L2

≤ 1

8
‖∆N‖2

L2 +
1

8
‖∆P‖2

L2 +C‖n2‖4
L2‖∇N‖2

L2 ,

and by the Gagliardo-Nirenberg inequality

‖∇N‖2
L3 ≤C‖∇N‖L2‖∆N‖L2 . (3.8)

I3≤C‖u1‖Lq,∞‖∆N‖L2‖∇N‖
L

2q

q−2
,2

(by(1.12))

≤C‖u1‖Lq,∞‖∆N‖1+ 3

q

L2 ‖∇N‖1− 3

q

L2

≤ 1

8
‖∆N‖2

L2 +C‖u1‖
2q

q−3

Lq,∞‖∇N‖2
L2 ,

and by the Gagliardo-Nivenberg inequality ([16])

‖∇N‖
L

2q

q−2
,2
≤C‖∇N‖1− 3

q

L2 ‖∆N‖
3

q

L2 , q >3. (3.9)

I4≤‖n2‖L2‖u‖L6‖∇N‖L3 ≤C‖n2‖L2‖∇u‖L2‖∇N‖
1

2

L2‖∆N‖
1

2

L2 (by(3.8))

≤ 1

8
‖∇u‖2

L2 +
1

8
‖∆N‖2

L2 +C‖n2‖4
L2‖∇N‖2

L2 .

Inserting the above estimates into (2.13), we get

1

2

d

dt

∫

Ω

|∇N |2dx+
1

2

∫

Ω

|∆N |2dx

≤ C

(

‖∇ϕ1‖5/2
L15 +‖n2‖4

L2 +‖u1‖
2q

q−3

Lq,∞

)

‖∇N‖2
L2 +

1

8
‖∆P‖2

L2 +
1

8
‖∇u‖2

L2 .

(3.10)

Similarly for the p-equation, we obtain

1
2

d
dt

∫

Ω
|∇P |2dx+ 1

2

∫

Ω
|∆P |2dx

≤ C

(

‖∇ϕ1‖5/2
L15 +‖p2‖4

L2 +‖u1‖
2q

q−3

Lq,∞

)

‖∇N‖2
L2 +

1

8
‖∆N‖2

L2 +
1

8
‖∇u‖2

L2 .
(3.11)

As in section 2, we have (2.16).
Each term Ji(i=1,2,3) can be bounded as follows:

J1≤ε‖∇ϕ1‖L15‖∆ϕ‖L2‖u‖
L

30
13

≤C‖∇ϕ1‖L15 (‖∆N‖L2 +‖∆P‖L2)‖u‖
4

5

L2‖∇u‖
1

5

L2 (by(3.7))

≤ 1

8
‖∆N‖2

L2 +
1

8
‖∆P‖2

L2 +
1

8
‖∇u‖2

L2 +C‖∇ϕ1‖5/2
L15‖u‖2

L2 ,
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J2≤ε‖∆ϕ2‖L2‖∇ϕ‖L6‖u‖L3

≤C‖n2 +p2‖L2 (‖∆N‖L2 +‖∆P‖L2)‖u‖
1

2

L2‖∇u‖
1

2

L2 (by(3.8))

≤ 1

8
‖∆N‖2

L2 +
1

8
‖∆P‖2

L2 +
1

8
‖∇u‖2

L2 +C‖n2 +p2‖4
L2‖u‖2

L2 ,

J3 =

∫

Ω

(u ·∇)u ·u2dx≤C‖u2‖Lq,∞‖∇u‖L2‖u‖
L

2q

q−2
,2

(by(1.12))

≤C‖u2‖Lq,∞‖∇u‖1+ 3

q

L2 ‖u‖1− 3

q

L2 (by(3.9))

≤ 1

8
‖∇u‖2

L2 +C‖u2‖
2q

q−3

Lq,∞‖u‖2
L2 .

Substituting the above estimates into (2.16), we obtain

1
2

d
dt

∫

Ω
u2dx+ 5

8

∫

Ω
|∇u|2dx

≤ 1
4‖∆N‖2

L2 + 1
4‖∆P‖2

L2 +C

(

‖∇ϕ1‖5/2
L15 +‖n2 +p2‖4

L2 +‖u2‖
2q

q−3

Lq,∞

)

‖u‖2
L2 .

(3.12)

Adding up (3.10), (3.11), and (3.12), we arrive at

d

dt

∫

Ω

|∇N |2 + |∇P |2 + |u|2dx≤C(t)

∫

Ω

|∇N |2 + |∇P |2 + |u|2dx

with some C(t)∈L1(0,T ). Gronwall’s inequality gives N =P =0,u=0 and hence
n=p=ϕ=0, which proves u1 =u2,n1 =n2,p1 =p2,ϕ1 =ϕ2.

The proof is completed.
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