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FAST INTERFACE TRACKING VIA A MULTIRESOLUTION

REPRESENTATION OF CURVES AND SURFACES∗

OLOF RUNBORG†

Abstract. We consider the propagation of an interface in a velocity field. The initial interface
is described by a normal mesh [Guskov, et al, SIGGRAPH Proc., 259-268, 2000] which gives us a
multiresolution decomposition of the interface and the related wavelet vectors. Instead of tracking
marker points on the interface we track the wavelet vectors, which like the markers satisfy ordinary
differential equations. We show that the finer the spatial scale, the slower the wavelet vectors evolve.
By designing a numerical method which takes longer time steps for finer spatial scales we are able
to track the interface with the same overall accuracy as when directly tracking the markers, but at a
computational cost of O(logN/∆t) rather than O(N/∆t) for N markers and timestep ∆t. We prove
this rigorously and give numerical examples supporting the theory. We also consider extensions to
higher dimensions and co-dimensions.
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1. Introduction

Tracking the evolution of interfaces or fronts is important in many applications, for
instance, wave propagation, multiphase flow, crystal growth, melting, epitaxial growth
and flame propagation. The interface in these cases is a manifold of co-dimension one
which moves according to some physical law that depends on the shape and location
of the interface. We suppose for convenience that it can be parameterized, so that for
a fixed time t the interface is described by the function x(t,s) :R+×R

q →R
d, with

the parameterization s∈Ω⊂R
q and q =d−1. In this paper we consider the simplified

case when the interface is moving in a time-varying velocity field that does not depend
on the shape of the front, only its location. Then x(t,s) satisfies the parameterized
ordinary differential equation (ODE)

∂x(t,s)

∂t
=F (t,x(t,s)), x(0,s)=γ(s), s∈Ω, (1.1)

where F (t,x) :R+×R
d →R

d is a given function representing the velocity field and
γ(s) :Rq →R

d is the initial interface. We will mostly discuss curves in two dimen-
sions, d=2, q =1, but we will also discuss extensions to higher dimensions d=3, q =2
and co-dimensions d=3, q =1. Applications could include the tracking of physically
motivated interfaces, like wavefronts in high frequency wave propagation problems, or
“artificial” fronts of propagation paths parameterized by initial data, where a problem
has the structure of (1.1) even though the front has no direct physical interpretation.
This could be, for instance, iso-distance curves on a surface (front of geodesics), fiber
tract bundles in brain imaging, or the method of characteristics for the solution graph
of hyperbolic partial differential equations (PDEs). In many of these problems it is
better numerically to consider a front rather than a set of individual paths, since the
connectivity between paths is then maintained, which for example simplifies interpo-
lation between them.
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Numerical methods for this problem include the Lagrangian front tracking method
[15], which has been used extensively in e.g. multiphase flow [14, 40] and geophysics
[41, 27]. There are also Eulerian approaches like the level set [32, 31] and segment
projection [39, 12] methods. Related algorithms have been proposed for computing
invariant manifolds in dynamical systems [26, 17]. For flow problems we should also
mention the marker-and-cell (MAC) [42] and volume of fluid (VOF) [21] methods.

We focus here on front tracking, in which the interface is described by a set of
marker points that are connected in a known topology. In one dimension one would
approximate xj(t)≈x(t,sj) and use a numerical method for ODEs to solve

dxj(t)

dt
=F (t,xj(t)), xj(0)=γ(sj),

where s0 <s1 <...<sN is a discretization of Ω. For surfaces in three dimensions, the
markers on the interface are typically held together in a triangulation. Propagating
one marker numerically with a timestep ∆t to a fixed time costs O(1/∆t) operations.
Hence, if the interface is represented by N points the cost of standard front tracking
is O(N/∆t). As a comparison, the standard level set method costs O(N2/∆t) if
the full domain is discretized in 2D. There are, however, several clever versions that
localize the computations around the interface, e.g. local level set methods [33] and
tree methods [36, 37]. These bring the complexity down to O(N logN/∆t), which is
almost the same as front tracking.

In this article we describe an interface tracking algorithm that uses a multires-
olution representation of the interface instead of point values. The representation is
based on normal meshes [6, 18], which is an efficient way to describe curves and sur-
faces. Our main result is a proof, backed up by numerical experiments, that for fixed
small enough accuracy the cost of our method is only O(logN/∆t) or even O(1/∆t).
Thus, asymptotically the cost to propagate the whole curve is of the same order as
the cost of propagating just one point, i.e., an order better than for front tracking and
level sets. In the method, the interface is represented by wavelet vectors which corre-
spond to the details of the interface on different scale levels. It is well-known that for
a fixed curve or surface, the size of these vectors decays rapidly as the scale becomes
finer. In the dynamic setting we show that the time derivatives of the wavelet vectors
decay in a similar manner. This means that the fine scales evolve slower than the
coarse scales of the interface. Our method exploits this by taking shorter timesteps
for the coarse scales than for the fine scales. This greatly reduces computational cost
without affecting the overall accuracy.

Adaptivity is usually an important feature of front tracking algorithms. Marker
points on the interface will typically spread out which results in a badly resolved
interface. One then needs to adaptively add new points in between the old ones, when
the marker points gets too wide apart. This can be done via interpolation. We will,
however, not discuss adaptation strategies for the new method in this paper. We just
note in the conclusion that the multiresolution framework offers many opportunities
for such improvements. Let us also add that for level set and segment projection
methods, adaptivity is less of an issue since they use Eulerian grids. They are also
much better suitable for handling topological changes in the interface; like with other
front tracking based algorithms, this would be difficult with the proposed method.

For time-dependent differential equations there are a number of results similar in
style to the ones in this paper. They are related to what Demanet and Ying [7] call
time-upscaling: For a problem spatially discretized with N points in each coordinate
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direction, time upscaled methods are able to compute the solution at O(1) time levels
at a O(Nd) cost, for fixed accuracy, instead of O(Nd+1) needed by standard method
where the time step must be of the same order as the spatial mesh size for stability
and accuracy reasons. In our methods, if we discretize the interface with a mesh
size of the same order as the time step, N ∼1/∆t, then we can reduce the cost
of tracking a curve from O(N2) to O(N), and following this terminology we could
call our results time upscaling for interface tracking. Time-upscaled methods were
proposed for the advection and parabolic equations in one [11] and higher dimensions
[28, 16], for the wave equation in one dimension [35] and two dimensions [7] as well
as for the computation of the phase map for dynamical systems in the phase flow
method [43]. Techniques used in these methods to accelerate the computations include
transforming the problem into wavelet like bases [11, 35, 7], sparse grids [45, 1, 28, 16]
and repeated squaring of the solution operator [11, 7, 43]. This last idea has also
been used to speed up the time-independent problem of the Helmholtz equation in
waveguides with periodic structures [19, 44]. The technique introduced by Stolk in
[35] is closer to the one in this paper. After transforming one-way formulations of the
wave equation into wavelet bases he is able to reduce computational cost by using
multiscale timestepping; in much the same way as in the present paper he integrates
the fine (spatial) scales with longer time steps than the coarse scales. This also bears a
resemblance to a recent result by Giles [13] who uses a hierarchy of solutions obtained
with different time steps to reduce the computational cost for weak approximations
of stochastic ordinary differential equations.

This article is organized as follows. In section 2 the multiresolution representation
of the interface is presented and the governing ODEs are derived. The numerical
methods used to solve those ODEs are given in some detail in section 3 where also a
preliminary analysis and explanation of the advantages of those methods are given.
Precise analysis of the methods is carried out in section 4. Numerical experiments with
the basic methods are presented in section 5. Extensions to higher order, dimensions
and co-dimensions with additional numerical experiments are the topics of section 6.
section 7 concludes the paper and discusses some open problems.

2. Multiresolution description of the interface

In standard front tracking algorithms marker points are used to represent the
interface. We will instead consider a multiresolution representation, which is often
a more efficient way to describe curves and surfaces. Multiresolution meshes are
a popular tool used to approximate static curves and surfaces. They consist of a
hierarchy of increasingly detailed meshes. Each new mesh level is computed from the
previous one by first predicting a new point, for instance by using so-called subdivision
schemes, and then correcting the predicted point by a wavelet (or detail) vector. Only
the wavelet vectors need to be stored and because of the surface smoothness most
wavelet vectors will be small, lending the representation well to compression.

In our case we will use a special type of multiresolution mesh for the initial data.
These are called normal meshes. In the time-evolution of the interface, we relax the
constraints in the description but still use the basic multiresolution mesh setting.

2.1. Static case. Let us first consider a static curve in R
2 given by γ(s) :

[0,1]→R
2. We assume it to be twice continuously differentiable in s and non-self-

intersecting. In the normal approximation procedure proposed in [18] the original
curve γ is described by successively finer approximations, in the form of piecewise
linear curves γj which connect the vertices xj,k, k =0,... ,2j , on γ. The process is
illustrated in figure 2.1. The initial approximation γ0 is the line connecting the edge
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points x0,0 and x0,1. To construct the vertices at level j +1 from those at level j, we
first set xj+1,2k =xj,k; this makes the construction interpolating. We next compute a
point xj+1,2k+1 that lies in between the two old points xj,k and xj,k+1. This is done
by first computing a predicted point x∗

j+1,2k+1 as an average of the neighboring points,

x∗
j+1,2k+1 =

xj,k +xj,k+1

2
. (2.1)

We then add a detail offset by drawing a line from x∗
j+1,2k+1 in the direction orthogonal

to the line segment (xj,k,xj,k+1). This line is guaranteed1 to cross the curve segment
between xj,k and xj,k+1 and we call this corrected point xj+1,2k+1. As this procedure
continues, the polyline γj comes closer and closer to γ. We can interpret this as
a wavelet transformation similar to the notion of lifting [38], where x∗

j+1,2k+1 is a
prediction of the real point xj+1,2k+1 computed based only on coarser information.
Then the detail offset

wj,k :=xj+1,2k+1−x∗
j+1,2k+1 (2.2)

is a wavelet vector, which is what we will call it henceforth.
In order to reconstruct the polyline γj we only need to store the edge points x0,0,

x0,1, and the wavelet vectors wj′,k for j′ <j, since at each level the predicted point
is based only on coarser information. In fact, since also the normal to the segment
(xj,k,xj,k+1) again only depends on coarser data we just need to store the length |wj,k|
and one sign bit to characterize γj completely. The normal approximation thus allows
a purely scalar representation of the curve. We will call {wj,k} and {xj,k} a normal
multiresolution representation of γ(s). The construction also defines the break point
values {sj,k} in parameter space by the relation γ(sj,k)=xj,k.

As was shown in [6], the size of the wavelet vectors decays exponentially with
the level j. The prediction in (2.1) can be seen as the application of the simplest
of subdivision schemes, the “midpoint scheme.” The prediction can be improved by
using higher order subdivision schemes which take into account more neighboring
points, resulting in a faster decay rate of wj,k. We will need this when we construct
higher order schemes in section 6.1.

The fast decay of the wavelet vectors and the fact that one just needs to store
one floating point number for each vertex, instead of the standard 2- or 3-vector, give
normal meshes good compression properties [23, 29, 24]. The normal representation
permits the use of standard scalar compression codes. It also indirectly improves
compression rates since it contains little redundant parameterization information [24].

2.2. Dynamic case. We now consider the dynamic case when the curve
moves in a velocity field. The curve is then given by x(t,s) at time t, and satisfies the
parameterized ODE

∂x(t,s)

∂t
=F (t,x(t,s)), 0≤s≤1, t>0, x(0,s)=γ(s).

We assume that there is a normal approximation of the initial curve γ(s) given by the
wavelet vectors {wj,k} and parameter space break points {sj,k}. We then define the
time-dependent vertices on the curve

xj,k(t) :=x(t,sj,k), 0≤k≤2j ,

1There may be several points where the line segment crosses the curve. In that case we can take
any one of them.
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Fig. 2.1. Example of the normal mesh algorithm using the mean value of adjacent points as
predictor.

such that

dxj,k(t)

dt
=F (t,xj,k(t)).

At t=0 we have by the definitions in (2.1) and (2.2) that

xj+1,2k =xj,k, wj,k =xj+1,2k+1−
1

2
(xj,k +xj,k+1), (2.3)

where wj,k is normal to xj,k+1−xj,k. We take this expression as the definition of
wj,k also for t>0. We thus relax the strict normality condition and in general wj,k 6⊥
xj,k+1−xj,k for t>0. We obtain

dwj,k

dt
=F (t,xj+1,2k+1)−

1

2
(F (t,xj,k)+F (t,xj,k+1))

=F

(

t,
xj,k +xj,k+1

2
+wj,k

)

− 1

2
(F (t,xj,k)+F (t,xj,k+1)). (2.4)

Setting

G(t,y,z,w)=F

(

t,
y+z

2
+w

)

− F (t,y)+F (t,z)

2
,

we thus have the following alternative system of ODEs

dwj,k

dt
=G(t,xj,k,xj,k+1,wj,k),

dx0,0

dt
=F (t,x0,0),

dx0,1

dt
=F (t,x0,1), (2.5)
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which together with (2.3) describe the dynamics of the system.

Remark 2.1. When F is constant, corresponding to rigid motion, then all of the
{wj,k} are constant and the dynamics of the system is completely determined by the
motion of the edge points x0,0 and x0,1. When F =Ax is linear, then w′

j,k =Awj,k for
all j,k and the equations for the wavelet coefficients decouple completely.

Remark 2.2. Fine scales depend on coarser scales, but there is no dependence in the
other direction. This means that we can compute the different scale levels sequentially
from coarse to fine, one after the other.

Remark 2.3. It is not possible to write a closed ODE system for wj,k(t) which
maintains the normality of the wavelet vectors. To do this, more information about
the initial curve is needed then the location of the initial marker points xj,k(0).

3. Basic methods

In this section we will describe two basic methods for tracking the interface in a
rapid way, by solving (2.5) together with (2.3). The methods will be carefully analyzed
in section 4. It is well-known that for the normal approximation of curves described
above the wavelet coefficients wj,k decay as 2−2j when the curve is at least C2, see
Proposition 4.2 which was proved in [6]. The main motivation for the methods given
below is Theorem 4.3 in section 4.1 which shows that if the initial curve is described by
a normal approximation, then also the time derivatives of the wavelet vectors {wj,k}
decay as 2−2j over a fixed time interval. An interpretation of this is that the evolution
of the system takes place on different time scales. Fine spatial scales change slower
than coarse spatial scales. Since the rate of change in wj,k is much smaller at finer
than at coarser levels, we will use longer timesteps for the fine scales.

Let us define the methods more precisely. We denote the numerical approxima-
tions to be

xn
j,k ≈xj,k(tn), wn

j,k ≈wj,k(tn), tn =n∆t,

where ∆t is the reference timestep. We are interested in computing the solution up
to time T and we assume that there is a positive integer M such that T =M∆t.
We also assume that the number of points is an even power of two, N =2J for some
integer J >0. Letting Ij be the index set 0,... ,2j and Īj the index set 0,... ,2j −1,
then xj,k is defined for all k∈ Ij and wj,k for all k∈ Īj . These values are related via
the reconstruction

xn
j+1,2k+1 =

xn
j,k +xn

j,k+1

2
+wn

j,k, k∈ Īj , xn
j+1,2k =xn

j,k, k∈ Ij . (3.1)

At different refinement levels j we will use different timesteps, denoted ∆tj :=mj∆t,
where mj ∈Z

+ and m0 =1. We also require that mj+1 = qjmj for some positive integer
qj . (Typically in this method we take qj =2 to double the time step in each level, and
hence have mj =2j .) We then consider two methods.

Method 1: forward Euler. On the zeroth level, for tn+1≤T ,

xn+1
0,0 =xn

0,0 +∆tF (tn,xn
0,0), xn+1

0,1 =xn
0,1 +∆tF (tn,xn

0,1), (3.2)

and on level j >0, for t(n+1)mj
≤T and k∈ Īj ,

w
(n+1)mj

j,k =w
nmj

j,k +∆tjG
(

tnmj
,x

nmj

j,k ,x
nmj

j,k+1,w
nmj

j,k

)

, (3.3)

where {xj,k} are computed from {wj−1,k} and {xj−1,k} using (3.1).
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Method 2: Runge-Kutta 2. This method is also known as Heun’s method.
On the zeroth level, for tn+1≤T ,

k1 =F
(

tn,xn
0,0

)

, k1 =F
(

tn,xn
0,1

)

, (3.4)

k2 =F
(

tn+1,x
n
0,0 +∆tk1

)

, k2 =F
(

tn+1,x
n
0,1 +∆tk1

)

,

xn+1
0,0 =xn

0,0 +
∆t

2
(k1 +k2), xn+1

0,1 =xn
0,1 +

∆t

2
(k1 +k2).

At level j >0, for t(n+1)mj
≤T and k∈ Īj ,

k1 =G
(

tnmj
,x

nmj

j,k ,x
nmj

j,k+1,w
nmj

j,k

)

, (3.5)

k2 =G
(

t(n+1)mj
,x

(n+1)mj

j,k ,x
(n+1)mj

j,k+1 ,w
nmj

j,k +∆tjk1

)

,

w
(n+1)mj

j,k =w
nmj

j,k +
∆tj
2

(k1 +k2).

where, as in Forward Euler, {xj,k} are computed from results at the coarser level
using (3.1).

The methods above define the values of wn
j,k for n=0,mj ,2mj ,... ,n

′mj ≤M . If
we want to compute the shape of the curve at other time levels we need to add one
more reconstruction step. For nmj +r≤M , with 1≤ r<mj we define

w
nmj+r
j,k =w

nmj

j,k +
r

mj
∆tjG

(

tnmj
,x

nmj

j,k ,x
nmj

j,k+1,w
nmj

j,k

)

(3.6)

for both methods. In particular, this is the only step taken for large enough j, where
mj >M .

3.1. Complexity and accuracy. Let us now derive the time complexity of
the methods above and make a non-rigorous analysis of their approximation errors.
For the complexity we suppose that we want to find the solution at the fixed time T
which is of order O(1). We start by noting that the complexity of a standard method
for the front tracking problem is O(N/∆t), since there are N unknowns that are each
moved O(T/∆t) time steps. The accuracy is O(∆tp) for a p-th order method.

As was remarked above, in the fast methods the data for each level only depends
on the results from the previous level. Hence, once level j has been computed, the
results enter as a variable coefficient in level j +1. Method 1 and 2 can be implemented
in this way and the computational cost of the methods is therefore simply the sum of
the costs on each level. The number of unknowns on level j is 2j and the number of
timesteps needed is first ⌊T/∆tj⌋ of the type (3.3) or (3.5) and then for j >0 at most
one step with (3.6). Supposing N =2J , the total cost is then proportional to

J
∑

j=0

2j

(⌊

T

∆tj

⌋

+1

)

∼ T

∆t

J
∑

j=0

2j

mj
+N. (3.7)

We now consider the accuracy of the methods disregarding the final step (3.6). Letting
τn
j,k denote the local truncation error in time step n for wavelet coefficient k at level

j, we assume that τn
j,k is given by the (p+1)-th order derivative of the exact solution

for a p-th order method,

τn
j,k ∼∆tp+1

j

dp+1wj,k

dtp+1
.
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We define εj as the global truncation error at level j,

εj = sup
k∈Ij

0≤tn≤T

|xn
j,k−xj,k(tn)|.

Assuming stability, εj is bounded by the sum of all local truncation errors,

εj ≤
j

∑

j′=0

⌊T/∆tj′⌋
∑

n′=0

max
k∈Īj′

|τn′

j′,k|.

If we use the result from Theorem 4.3 and still assume N =2J , the global error can
then be estimated as

εJ ≤
J

∑

j=0

⌊T/∆tj⌋
∑

n=0

max
k∈Īj

∣

∣

∣

∣

∆tp+1
j

dp+1wj,k

dtp+1

∣

∣

∣

∣

≤T

J
∑

j=0

∆tpj

∣

∣

∣

∣

dp+1wj,k

dtp+1

∣

∣

∣

∣

∞

≤CT∆tp
J

∑

j=0

mp
j2

−2j .

(3.8)
This is in fact essentially what is proved rigorously in Theorem 4.1 in section 4 with
p=1 for Method 1 (Forward Euler) and p=2 for Method 2 (Runge-Kutta 2).

In the standard configuration of the methods we will double the timestep in each
level, giving mj =2j . Then, if T =O(1) and N =2J , by (3.7) the complexity for
Method 1 is O(J/∆t+N)=O(log2N/∆t+N) and by (3.8) the accuracy is O(∆t),
independent of N since the sum in (3.8) is convergent. Another possible choice is
to take mj =4j , quadrupling the timestep in each level. By the same arguments the
complexity is then a little better, O(1/∆t+N), and the accuracy is a little worse,
O(log2N∆t).

We note that it is in fact possible to turn both (3.7) and (3.8) into convergent sums
for Method 1. We can pick mj such that 2j <mj <22j ; for instance mj =3j , corre-
sponding to tripling the timestep in each level. This is not the only possibility though.
We recall the restriction that mj+1 = qjmj with qj ∈Z. One can thus use different
factors in each level to obtain an arbitrary growth rate of mj , e.g. if qj =2,3,2,3,...
then mj ≤6j/2≈21.29j , etc. These choices all give a complexity of O(1/∆t+N) and
an accuracy of O(∆t). Although asymptotically yielding better accuracy for a given
cost, it is not clear that these choices are superior in practice to the simple doubling
mj =2j strategy, however, see section 5.1.

We would like to stress that the fast methods above have a complexity that is
significantly improved as compared to the standard methods, while still achieving
the same order of accuracy. In fact, when ∆t<T/N the asymptotic cost of the fast
methods is of the same order as when computing the trajectory of only one marker
on the interface, despite the fact that we compute the dynamics of the whole curve.

Remark 3.1. Disregarding the final time step (3.6) the fast algorithms compute the
wavelet vectors wn

j,k for

j =0,... ,J k∈ Īj , n=0,mj ,... ,n
′
jmj ,

with n′
j = ⌊T/∆tj⌋. In total, if we take mj =2j , then

J
∑

j=0

2j

⌊

T

∆tj

⌋

∼O(log2N/∆t)
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wavelet vectors are computed. Given these, we want to construct an approximation
of the curve at a time level tn. We first reconstruct all xn

j,k corresponding to the
computed wn

j,k, then time step with (3.6) wherever necessary and finally reconstruct
the curve at the chosen time level. Each of these three steps has an O(N) complexity.
We can hence conclude that if we use O(log2N/∆t) memory to store the computed
values, we can, a posteriori, get the computed interface for any time level tn at a O(N)
cost, which is the optimal cost since there are N marker points on the interface. We
can therefore also think of the computed wavelet vectors as an efficient description of
the whole surface that the interface sweeps out in time, {x(t,s) : 0≤ t≤T, s∈Ω}⊂
R

+×R (the Lagrangian submanifold of phase space). In fact, the wavelet vectors are
obtained precisely on a sparse grid in (t,s)-space, which is known to be an efficient
format [45, 1].

4. Analysis of the method

In this section we analyze the errors in the methods proposed in section 3 and
derive an error estimate which confirms the simple analysis in section 3.1 when
the velocity field and initial curve is sufficiently smooth and bounded. The initial
curve x(0,s)=γ(s) thus has the normal multiresolution representation {wj,k(0)}, and
{xj,k(0)}. The total number of points N is an even power of two, and we define J
as the finest level so that N =2J . The time-evolution of {wj,k} and the node points
{xj,k} are approximated by Forward Euler (Method 1) or Runge-Kutta 2 (Method 2).
In the analysis we use the function spaces Cp(Ω1;Ω2), which denote all measurable
functions from Ω1 to Ω2 with continuous derivatives up to order p, and Cp

b (Ω1;Ω2),
where all derivatives are also bounded. We can then prove the following theorem.

Theorem 4.1. Suppose there are positive integers M and qj such that T =M∆t
and mj+1 = qjmj with m0 =1. We assume that there is a constant C independent of
J such that

J
∑

j=0

mp
j2

−2j ≤CJr,

for some r≥0, where p=1 for Forward Euler and p=2 for Runge-Kutta 2. If F ∈
Cp+2

b (R+×R
2;R2) and γ∈C2([0,1];R2) then there exist unique solutions wj,k(t) and

xj,k(t) in Cp+3(R+) to (2.5) together with (2.3) for all times. Moreover, there are
constants C ′,D independent of J and ∆t such that

sup
k∈IJ

0≤tn≤T

|xn
J,k−xJ,k(tn)|≤C ′∆tp

J
∑

j=0

mp
j2

−2j , 0≤J ≤ D

∆t
p

r+1

. (4.1)

In the proof of the theorem we will first derive some estimates of the exact solution
in section 4.1. These lead up to Theorem 4.3 that shows the fast decay of the wavelet
vectors and their time derivatives, as well as a Lipschitz type bound on the function
G(t,x,y,w). With this result and a lemma on growth in recursions, Lemma 4.8, we
can subsequently prove Theorem 4.1.

Remark 4.1. The condition on J in (4.1) is necessary in the proof to control the
effect of higher order spatial error terms in the reconstruction of the interface. These
could in principle become large when the numerical time stepping is underresolved.

It is, however, a mild restriction. We can take on the order O(2D∆t
−p
r+1

) points before
violating it. Arguably the restriction is technical; we never see any problems related
to it in our numerical computations.
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4.1. Estimates of the exact solution. In this section we will derive es-
timates of the exact solutions to (2.5) together with (2.3). The estimates are based
on a result from [6, 34] on the decay of the wavelet coefficients for a fixed normal
multiresolution description of a smooth curve:

Proposition 4.2. Suppose {xj,k} and {wj,k} is a normal multiresolution rep-
resentation of the non-selfintersecting curve γ(s) based on the prediction (2.1). If
γ∈C2([0,1];R2) then

|wj,k|≤C2−2j , |xj,k+1−xj,k|≤C ′2−j , ∀k∈ Īj ,

where the constants C and C ′ depend on γ(s) but are independent of j,k.

Proof. This is essentially the result from Lemma 1 and Theorem 2 in [34]. We just
need to note that the shortest distance |xj,k+1−xj,k| is majorized by the arclength
between the points, which is considered in [34].

Our main result is that the time derivative of wj,k satisfies the same estimate
in j as the wavelet coefficient itself, and that these estimates can be extended to a
finite time interval. From this we also get a Lipschitz type bound on the function
G(t,x,y,w). The results are summarized in the following theorem.

Theorem 4.3. Suppose {xj,k} and {wj,k} is a normal multiresolution representation
of the non-selfintersecting curve γ(s) based on the prediction (2.1). If γ∈C2([0,1];R2)
and F ∈Cp+1

b (R+×R
2;R2), then there exist unique solutions wj,k(t) and xj,k(t) in

Cp+2(R+) to (2.5) together with (2.3) for all times. For 0≤ t≤T and k∈ Īj,
∣

∣

∣

∣

dℓwj,k

dtℓ

∣

∣

∣

∣

≤C(T )2−2j , 0≤ ℓ≤p. (4.2)

Moreover, if F ∈C2
b (R+×R

2;R2), then for 0≤ t≤T , and k∈ Īj,

|G(t,xj,k +ε0,xj,k+1 +ε1,w+εw)−G(t,xj,k,xj,k+1,w)|
≤C ′(T )

[

(|w|+2−j)(|ε0|+ |ε1|)+ |εw|+(|ε0|+ |ε1|)2
]

. (4.3)

The constants C(T ) and C ′(T ) do not depend on j, k and ℓ, but may depend on T ,
p, and bounds on the derivatives of F and γ.

We first present a lemma on the time derivatives of the wavelet coefficients.

Lemma 4.4. Suppose F ∈Cp+1
b (R+×R

2;R2). Then there exist unique solutions
w(t), x(t) and y(t) in Cp+2(R+) for all times to the system of ODEs

dx

dt
=F (t,x),

dy

dt
=F (t,y),

dw

dt
=G(t,x,y,w).

Moreover,
∣

∣

∣

∣

dℓw

dtℓ

∣

∣

∣

∣

≤Cℓ(|w|+ |x−y|2), 1≤ ℓ≤p,

where the constant Cℓ only depends on bounds on the derivatives of F .

Proof. We note first that by the assumptions on F , standard ODE theory ensures
the stated existence, uniqueness and regularity of solutions. Next, let F1(t,x)=F (t,x)
and recursively define for ℓ≥1

Fℓ+1(t,x)=DxFℓ(t,x) ·F (t,x)+∂tFℓ(t,x).
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Then Fℓ ∈C2+p−ℓ
b (R+×R

2;R2). Moreover, we claim that

dℓw

dtℓ
=Fℓ

(

t,
x+y

2
+w

)

− Fℓ(t,x)+Fℓ(t,y)

2
, 1≤ ℓ≤p.

This is true for ℓ=1 and, if it is true for ℓ≤ r<p, then

dr+1w

dtr+1
=

d

dt

(

Fr

(

t,
x+y

2
+w

)

− Fr(t,x)+Fr(t,y)

2

)

=DxFr

(

t,
x+y

2
+w

)

·
(

dx
dt + dy

dt

2
+

dw

dt

)

− DxFr(t,x) · dx
dt +DxFr(t,y) · dy

dt

2

+∂tFr

(

t,
x+y

2
+w

)

− ∂tFr(t,x)+∂tFr(t,y)

2
.

Using the fact that

dx
dt + dy

dt

2
+

dw

dt
=

F (t,x)+F (t,y)

2
+G(t,x,y,w)=F

(

t,
x+y

2
+w

)

,

we obtain

dr+1w

dtr+1
=DxFr

(

t,
x+y

2
+w

)

·F
(

t,
x+y

2
+w

)

− DxFr(t,x) ·F (t,x)+DxFr(t,y) ·F (t,y)

2

+∂tFr

(

t,
x+y

2
+w

)

− ∂tFr(t,x)+∂tFr(t,y)

2

=Fr+1

(

t,
x+y

2
+w

)

− Fr+1(t,x)+Fr+1(t,y)

2
,

which shows the claim by induction. For 1≤ ℓ≤p we note that Fℓ ∈C2
b (R+×R

2;R2).
Setting ∆=(x−y)/2 we then obtain

∣

∣

∣

∣

Fℓ

(

t,
x+y

2

)

− Fℓ(t,x)+Fℓ(t,y)

2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Fℓ

(

t,
x+y

2

)

− Fℓ

(

t, x+y
2 +∆

)

+Fℓ

(

t, x+y
2 −∆

)

2

∣

∣

∣

∣

∣

≤ 1

2
|∆|2|D2

xFℓ(t,·)|∞.

This means that
∣

∣

∣

∣

Fℓ

(

t,
x+y

2
+w

)

− Fℓ(t,x)+Fℓ(t,y)

2

∣

∣

∣

∣

≤
∣

∣

∣

∣

Fℓ

(

t,
x+y

2
+w

)

−Fℓ

(

t,
x+y

2

)∣

∣

∣

∣

+

∣

∣

∣

∣

Fℓ

(

t,
x+y

2

)

− Fℓ(t,x)+Fℓ(t,y)

2

∣

∣

∣

∣

≤|DxFℓ(t,·)|∞ |w|+ 1

2
|∆|2

∣

∣D2
xFℓ(t,·)

∣

∣

∞
.

This shows the lemma with Cℓ =supt≥0max(
∣

∣D2
xFℓ(t,·)

∣

∣

∞
/8,|DxFℓ(t,·)|∞).

We next show the Lipschitz type bound on G(t,x,y,w), which also includes a
quadratic term.
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Lemma 4.5. Suppose F ∈C2
b (R+×R

2;R2). Then,

|G(t,x+εx,y+εy,w+εw)−G(t,x,y,w)|
≤C

[

(|w|+ |x−y|)(|εx|+ |εy|)+ |εw|+(|εx|+ |εy|)2
]

,

where the constant C only depends on bounds on the derivatives of F .

Proof. Throughout this proof the time t is held constant; we will drop it from
most of the notation and simply let D=Dx denote spatial differentiation. We start
by introducing x̃(s) :=x+sεx, ỹ(s) :=y+sεy and w̃(s) :=w+sεw. Furthermore, let

x̄(s)=
x̃(s)+ ỹ(s)

2
, ∆x(s)=

x̃(s)− ỹ(s)

2
, ε̄=

εx +εy

2
, ∆ε =

εx−εy

2
.

Then

G(x+εx,y+εy,w+εw)−G(x,y,w)

=

∫ 1

0

d

ds
G(x̃(s), ỹ(s),w̃(0))ds+

∫ 1

0

d

ds
G(x̃(1), ỹ(1),w̃(s))ds

=

∫ 1

0

DF (x̄(s)+w) · ε̄− DF (x̃(s)) ·εx +DF (ỹ(s)) ·εy

2
+DF (x̄(1)+ w̃(s)) ·εwds

=

∫ 1

0

DF (x̄(s)+w) · ε̄−DF (x̄(s)) · ε̄ds

+

∫ 1

0

DF (x̄(s)) · ε̄− DF (x̄(s)+∆x(s))+DF (x̄(s)−∆x(s))

2
· ε̄ds

+

∫ 1

0

DF (x̄(s)−∆x(s))−DF (x̄(s)+∆x(s))

2
·∆εds

+

∫ 1

0

DF (x̄(1)+ w̃(s)) ·εwds

=:E1 +E2 +E3 +E4.

We now note that when F ∈C2
b , then

|DF (x1 +δ1) ·δ2−DF (x1) ·δ2|=
∣

∣

∣

∣

∫ 1

0

D2F (x1 + tδ1)(δ1,δ2)dt

∣

∣

∣

∣

≤
∣

∣D2F
∣

∣

∞
|δ1||δ2|,

for any vectors x1,δ1,δ2. Applying this to E1,... ,E3 we obtain the bounds

|E1|≤C1|ε̄||w|, |E2|≤C1 sup
s∈[0,1]

|ε̄||∆x(s)|,

|E3|≤C1 sup
s∈[0,1]

|∆ε||∆x(s)|, |E4|≤C2|εw|,

where C1 =supt≥0

∣

∣D2
xF (t,·)

∣

∣

∞
and C2 =supt≥0 |DxF (t,·)|∞. The result then follows

from the additional estimates

|∆ε|≤
|εx|+ |εy|

2
, |ε̄|≤ |εx|+ |εy|

2
, sup

s∈[0,1]

|∆x(s)|≤ 1

2
|x−y|+ |∆ε|,
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and taking C =max(C1/2,C2).

We can now finally extend the result of Proposition 4.2 to a fixed time interval
[0,T ].

Lemma 4.6. Suppose F ∈C2
b (R+×R

2;R2). Then there exist unique solutions w(t),
x(t) and y(t) in C3(R+) for all times to the system of ODEs

dx

dt
=F (t,x),

dy

dt
=F (t,y),

dw

dt
=G(t,x,y,w).

Moreover, there are constants C̄1 and C̄2, which only depend on bounds on the deriva-
tives of F , such that

|x(t)−y(t)|≤ |x(0)−y(0)|etC̄1 , |w(t)|≤
(

|w(0)|+ |x(0)−y(0)|2
)

etC̄2 . (4.4)

Proof. Existence, uniqueness, and regularity follows from Lemma 4.4. For the
difference x−y we have

d|x−y|2
dt

=2(x−y)T (F (t,x)−F (t,y))≤2C ′(t)|x−y|2,

with C ′ =supt≥0 |DxF (t,·)|∞. By Grönwall’s lemma,

|x(t)−y(t)|2≤|x(0)−y(0)|2e2C′t.

This shows the left estimate in (4.4) with C̄1 =C ′. For w(t), from Lemma 4.4,

d|w|2
dt

=2wT G(t,x,y,w)≤2C1(|w|2 + |w||x−y|2)≤3C ′′|w|2 +C ′′|x−y|4,

where we can take C ′′ =max(C1,2C ′) with C1 being as in Lemma 4.4. Again by
Grönwall,

|w(t)|2≤e3C′′t|w(0)|2 +C ′′e3C′′t

∫ t

0

e−3C′′s|x(s)−y(s)|4ds

≤e3C′′t|w(0)|2 +C ′′|x(0)−y(0)|4e3C′′t

∫ t

0

e(4C′−3C′′)sds

≤e3C′′t|w(0)|2 +C ′′|x(0)−y(0)|4e3C′′t

∫ t

0

e−C′′sds

=
(

|w(0)|2 + |x(0)−y(0)|4(1−e−C′′t)
)

e3C′′t.

By taking square roots of both sides we obtain the right estimate in (4.4) with
C̄2 =3C ′′/2.

We can now conclude the proof of Theorem 4.3. Since F ∈Cp+1
b (R+×R

2;R2)
there are unique solutions xj,k(t) and wj,k(t) in Cp+2(R+) for all times by Lemma
4.4. From Lemma 4.6 combined with Proposition 4.2 we get the estimates

|wj,k(t)|≤C2−2j , |xj,k+1(t)−xj,k(t)|≤C ′2−j , ∀k∈ Īj , 0≤ t≤T,

since p+1≥2 and {xj,k(0)} and {wj,k(0)} are a normal multiresolution representation
of the non-selfintersecting initial curve γ∈C2([0,1];R2). The estimate (4.2) then
follows from Lemma 4.4 and (4.3) from Lemma 4.5.
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4.2. Proof of Theorem 4.1. For the remaining proof we note that Theorem
4.3 ensures the stated existence, uniqueness and regularity of solutions xj,k(t) and
wj,k(t). We also introduce some additional notation. Throughout this section C will
denote an arbitrary constant independent of j, k and n, although it may depend on
for instance T , p as well as bounds on F and the initial curve. The error in the wavelet
vectors is denoted by

δn
j,k :=wj,k(tn)−wn

j,k, δn
j = sup

k∈Īj

|δn
j,k|,

and we recall that the maximum error in the node points on level j is called

εj = sup
k∈Ij

0≤tn≤T

|xj,k(tn)−xn
j,k|.

The relation between wavelet errors and node point error is given by the following
lemma.

Lemma 4.7. Under the assumptions of Theorem 4.1 there are constants c, c′ and c′′,
depending on T and p, but independent of j and n, such that

δ
(n+1)mj

j ≤ (1+c∆tj)δ
nmj

j +c′∆tj
(

2−jεj +ε2
j +∆tpj2

−2j
)

, 0≤ t(n+1)mj
≤T,

(4.5)
and, when 1≤ r<mj,

δ
nmj+r
j ≤ c′′(δ

nmj

j +2−jεj +ε2
j )+c′∆tpj2

−2j , 0≤ tnmj+r ≤T, (4.6)

for both methods.

Proof. We use the following shorthand notation:

Gj,k(t)=G(t,xj,k(t),xj,k+1(t),wj,k(t)), Gn
j,k =G(tn,xn

j,k,xn
j,k+1,w

n
j,k).

Forward Euler. Suppose 1≤ r≤mj . For the Forward Euler scheme and the
reconstruction step (3.6) we obtain

δ
nmj+r
j,k =wj,k

(

tnmj
+

r

mj
∆tj

)

−w
nmj+r
j,k

= δ
nmj

j,k +
r

mj
∆tj

[

Gj,k(tnmj
)−G

nmj

j,k

]

+τ
nmj

j,k , (4.7)

where τ
nmj

j,k is the local truncation error for Forward Euler. It is well-known that
this can be estimated by the second order Taylor remainder term of the solution, and
therefore by Theorem 4.3,

sup
k∈Īj

0≤tn≤T

|τn
j,k|≤

1

2

(

r

mj
∆tj

)2

sup
k∈Īj

0≤t≤T

∣

∣

∣

∣

d2wj,k

dt2

∣

∣

∣

∣

≤C

(

r

mj
∆tj

)2

2−2j .

Moreover, also using the second result in Theorem 4.3 we obtain

|Gj,k(tnmj
)−G

nmj

j,k |
≤C(|wj,k(tnmj

)|+2−j)(|xj,k(tnmj
)−x

nmj

j,k |+ |xj,k+1(tnmj
)−x

nmj

j,k+1|)
+ |δnmj

j,k |+(|xj,k(tnmj
)−x

nmj

j,k |+ |xj,k+1(tnmj
)−x

nmj

j,k+1|)2

≤C
(

2−jεj +δ
nmj

j +ε2
j

)

. (4.8)
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Taking the supremum over k in (4.7) with r=mj now gives (4.5) with p=1. After
noting that r∆tj/mj = r∆t≤T and that (r∆tj/mj)

2≤max(1,T )∆tpj for p=1,2 we
also prove (4.6).

Runge-Kutta 2 . For the Runge-Kutta 2 scheme we obtain

δ
(n+1)mj

j,k =wj,k(tnmj
+∆tj)−w

(n+1)mj

j,k = δ
nmj

j,k +∆tj
∆k1 +∆k2

2
+τ

nmj

j,k ,

where τ
nmj

j,k is the local truncation error for Runge-Kutta 2, and

∆k1 =Gj,k(tnmj
)−G

nmj

j,k ,

∆k2 =G
(

t(n+1)mj
,xj,k(t(n+1)mj

),xj,k+1(t(n+1)mj
),wj,k(tnmj

)+∆tjGj,k(tnmj
)
)

−G
(

t(n+1)mj
,x

(n+1)mj

j,k ,x
(n+1)mj

j,k+1 ,w
nmj

j,k +∆tjG
nmj

j,k

)

.

The truncation error can be estimated as follows (see Appendix A):

sup
k∈Īj

0≤tn≤T

|τn
j,k|≤∆t3j sup

k∈Īj

0≤t≤T

( |w′′′
j,k(t)|
12

+
|w′′

j,k(t)|
4

[

sup
0≤t≤T

|DwGj,k(t)|∞
])

≤C∆t3j2
−2j ,

again using Theorem 4.3 and the boundedness of DxF ,

|DwGj,k(t)|=
∣

∣

∣

∣

DxF

(

t,
xj,k(t)+xj,k+1(t)

2
+wj,k(t)

)∣

∣

∣

∣

≤C.

For ∆k2 we have from Theorem 4.3

|∆k2|≤C
[

(|wj,k(tnmj
)+∆tjGj,k(tnmj

)|+2−j)

×
(

|xj,k(t(n+1)mj
)−x

(n+1)mj

j,k |+ |xj,k+1(t(n+1)mj
)−x

(n+1)mj

j,k+1 |
)

+ |δnmj

j,k +∆tj∆k1|

+
(

|xj,k(t(n+1)mj
)−x

(n+1)mj

j,k |+ |xj,k+1(t(n+1)mj
)−x

(n+1)mj

j,k+1 |
)2]

≤C
[

(|wj,k(tnmj
)|+T |Gj,k(tnmj

)|+2−j)εj +δ
nmj

j +T |∆k1|+ε2
j

]

,

since ∆tj = tmj
≤T . Now, using the fact that |Gj,k(t)|= |w′

j,k(t)|≤C2−2j by Theorem
4.3, we have

|∆k2|≤C
(

2−jεj +δ
nmj

j +ε2
j

)

+ |∆k1|.

We already estimated |∆k1| in (4.8) above and the result (4.5) with p=2 follows.

For the remaining part of the proof we need a lemma on the growth in recursions.

Lemma 4.8. Suppose

yn+1≤ (1+an)yn +αy2
n +bn, n≥0.

Then, if α=0,

yn+1≤ bn +

n−1
∑

j=0

bj

n
∏

k=j+1

(1+ak)+y0

n
∏

k=0

(1+ak). (4.9)
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If an =a, bn = b for all n and α=0, then

yn+1≤ b

n
∑

j=0

(1+a)j +y0(1+a)n+1 = b
(1+a)n+1−1

a
+y0(1+a)n+1. (4.10)

Suppose {an} and {bn} are positive real numbers whose sums have a bounded growth
rate,

An :=

n
∑

k=0

ak ≤A, Bn :=

n
∑

k=0

bk ≤B(n+1)r, q≥0,

for all n≥0. Then if α>0

yn+1≤eA+1(Bn +y0), 0≤n≤
(

e−(A+1)

α(B+y0)

)

1
r+1

. (4.11)

Proof. Suppose (4.9) holds for n<p. Then

yp+1≤ (1+ap)yp +bp ≤ (1+ap)



bp−1 +

p−2
∑

j=0

bj

p−1
∏

k=j+1

(1+ak)+y0

p−1
∏

k=0

(1+ak)



+bp

=

p−1
∑

j=0

bj

p
∏

k=j+1

(1+ak)+y0

p
∏

k=0

(1+ak)+bp.

Since (4.9) obviously holds for n=0 the first result follows by induction. The second
result (4.10) is a direct consequence of (4.9).

For the last estimate, we define B−1 =0 and let N(β), with β≥1, denote the
largest n for which yj ≤β(Bj−1 +y0) whenever 0≤ j≤n. Then

yn+1≤ (1+an +(Bn−1 +y0)βα)yn +bn, 0≤n≤N(β).

Consequently, from (4.9), when 0≤n≤N(β),

yn+1≤ bn +

n−1
∑

j=0

bj

n
∏

k=j+1

(1+ak +(Bk−1 +y0)βα)+y0

n
∏

k=0

(1+ak +(Bk−1 +y0)βα).

Since 1+x≤ex,

yn+1≤ bn +

n−1
∑

j=0

bje
Pn

k=j+1
(ak+(Bk−1+y0)βα) +y0e

Pn
k=0

(ak+(Bk−1+y0)βα)

≤ (Bn +y0)e
Pn

k=0
(ak+(Bk−1+y0)βα)≤ (Bn +y0)e

A+βα
Pn

k=0
(Bk−1+y0)).

Moreover,

n
∑

k=0

(Bk−1 +y0)≤B

n
∑

k=0

kr +y0(n+1)≤ (B+y0)(n+1)r+1,

and we finally obtain

yn+1≤eA+βα(B+y0)(n+1)r+1

(Bn +y0).
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Thus, by construction,

β(BN(β) +y0)<yN(β)+1≤eA+βα(B+y0)(N(β)+1)r+1

(BN(β) +y0).

Taking β =exp(A+1) and abbreviating N =N(exp(A+1)) we obtain

1< (B+y0)(N +1)r+1eA+1α ⇒ N >

(

e−(A+1)

α(B+y0)

)

1
r+1

−1.

Since, by construction, yn ≤ exp(A+1)(Bn−1 +y0) for 0≤n≤N(exp(A+1)) the esti-
mate (4.11) follows.

We are now ready to finish the proof of Theorem 4.1. Taking yn as δ
nmj

j in

Lemma 4.8 we obtain from (4.5), (4.10) and the fact that δ0
j,k =0,

δ
(n+1)mj

j ≤ c′∆tj
(

2−jεj +ε2
j +∆tpj2

−2j
) (1+c∆tj)

n+1−1

c∆tj

≤ c′
(

2−jεj +ε2
j +∆tpj2

−2j
) ec∆tj(n+1)−1

c

≤C
(

2−jεj +ε2
j +∆tpj2

−2j
)

,

for (n+1)∆tj ≤T . Thus, for any tn := tn′mj+r ≤T , with 0≤ r<mj we then get from
(4.6),

δn
j ≤ c′′(δ

n′mj

j +2−jεj +ε2
j )+c′∆tpj2

−2j ≤C
(

2−jεj +ε2
j +∆tpj2

−2j
)

.

For odd points we have

sup
k∈Īj

0≤tn≤T

|xj+1,2k+1(tn)−xn
j+1,2k+1|

= sup
k∈Īj

0≤tn≤T

∣

∣

∣

∣

xj,k(tn)−xn
j,k +xj,k+1(tn)−xn

j,k+1

2
+wj,k(tn)−wn

j,k

∣

∣

∣

∣

≤ sup
k∈Īj

0≤tn≤T

|xj,k(tn)−xn
j,k|+ |xj,k+1(tn)−xn

j,k+1|
2

+ |wj,k(tn)−wn
j,k|

≤εj + sup
0≤tn≤T

δn
j .

Since even points are the same on consecutive levels, xn
j+1,2k =xn

j,k for all k∈ Ij ,
the same holds for the error, εn

j+1,2k =εn
j,k and the above estimate therefore trivially

extends to all points,

εj+1≤εj + sup
0≤tn≤T

δn
j ≤εj +C

(

2−jεj +ε2
j +∆tpj2

−2j
)

.

We can then use (4.11) in Lemma 4.8 with an =C2−n, α=C, and bn =C∆tpn2−2n.
Since then

A=

∞
∑

n=0

C2−n =2C.



382 FAST INTERFACE TRACKING

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8

10
−4

10
−3

10
−2

10
−1

10
0

j

|w
j,k

| ∞

t=0,0.25,…,2

Fig. 5.1. Left: Solution example; curve plotted at t=0 and t=1. Right: Decay of wavelet
coefficients at t=0,0.25,... ,2. Dashed line: 2−2j .

and

Bn =
n

∑

k=0

C∆tpk2−2k =∆tpC
n

∑

k=0

mp
k2−2k ≤C∆tpnr,

then

εn+1≤e2C+1

(

∆tpC

n
∑

k=0

mp
k2−2k +ε0

)

, 0≤n≤
(

e−(2C+1)

C(C∆tp +ε0)

)

1
r+1

.

For both methods the edge points are solved with a standard p-th order method and
therefore ε0≤C∆tp. The result in the theorem then follows.

5. Numerical examples

In this section we will verify the theoretical results obtained above with a few
numerical examples. We consider the following test case. We take the velocity field
given by

F (x,y)=

(

y sin(x)− 1
2

(x+0.2)cos(y)+0.4

)

, (5.1)

and we let the initial curve be a circle,

xj,k(0)=

(

cos(2πk2−j)
sin(2πk2−j)

)

, wj,k(0)=
[

1−cos
(

2−jπ
)]

xj+1,2k+1(0). (5.2)

The result from a well resolved direct simulation of this problem at t=1 is shown
in the left frame of figure 5.1, where the vector field (5.1) is overlaid. In the right
frame the decay of the wavelet coefficients are plotted for various times, up to t=2.
It confirms the theoretical decay rate of 2−2j at every fixed time, and also indicates
that the constant in the estimate grows with time.

All computations below were done in MATLAB with little effort spent on opti-
mizing the implementation of the fast method. Timings shown are wall clock timings
obtained by the tic and toc commands in Matlab on a standard desktop computer.
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Fig. 5.2. Error and timing for a fixed time t=1 and reference timestep ∆t=5 ·10−4, doubling
in each refinement, mj =2j . Error (left) and wall clock timing (right) as a function of N , for the
Fast Interface Tracking (FIT) and basic Forward Euler (FE).
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Fig. 5.3. Error for a fixed time t=1 and number of points N =512, doubling the timestep in
each refinement, mj =2j . Error as a function of ∆t, for the Fast Interface Tracking (FIT) and
basic Forward Euler (FE).

5.1. First order method. We begin to test the first order Method 1, based
on Forward Euler (3.2, 3.3). In figure 5.2 we show the error and wall clock timing as
a function of N , the number of marker points on the interface. The plots compare the
fast method with a direct Forward Euler simulation. In the left frame of figure 5.2 one
can see that the error of the fast method is around five times larger than the direct
method, but importantly, it is bounded as N grows. Meanwhile, in the right frame the
the timings of the methods are compared showing that the fast method has almost
constant execution time while it grows linearly with N for the direct method. In
figure 5.3 the first order accuracy of the fast method is confirmed for a fixed problem
size N =512.

In figure 5.4 the error as a function of time is studied for varying N and ∆t.
In each frame N is constant and the result for different ∆t is plotted. As expected
from the theory, for sufficiently large N the fast interface tracking will generate an
approximation with smaller error in shorter time compared to the direct Forward
Euler method. For this example the break even point is around N =256. This is of
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Interface Tracking (FIT, solid line) and Forward Euler (FE, dashed line). In each frame N is
constant and the result for different ∆t is plotted.
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∆t=1.5 ·10−5.

course a rather problem dependent figure, but still shows that the fast method can also
beat standard methods for reasonably small problems, and that the constant in the
complexity estimate is not prohibitively large. Finally, in figure 5.5 we examine the
effect of varying the time step ratio between levels, i.e. the value of mj . For mj =3j ,
corresponding to a tripling of the time step in each level, we should in principle have
an error and complexity that is independent of N , while for mj =2j and mj =4j

the complexity and the error, respectively, should grow logarithmically with N . In
practice these differences are hard to discern, since the effect of the variations in
prefactors in front of the complexity is more significant when problems of moderate
sizes are studied. In the example in figure 5.5 the choice mj =2j is probably the best
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Fig. 5.6. Error and timing for a fixed time t=1 and reference timestep ∆t=5 ·10−4, doubling
in each refinement, mj =2j . Error (left) and wall clock timing (right) as a function of N , for the
second order Fast Interface Tracking (FIT2) and basic Runge-Kutta 2 (RK2).
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Fig. 5.7. Error for a fixed time t=1 and number of points N =512, doubling the timestep in
each refinement, mj =2j . Error as a function of ∆t, for the second order Fast Interface Tracking
(FIT2) and basic Runge-Kutta 2 (RK2).

because of the small error constant, even though it is a bit slower than the choices
mj =3j and mj =4j .

5.2. Second order method. For the second order method (3.4, 3.5) we
make similar experiments and compare with a direct solution with Runge-Kutta 2.
The results corresponding to figure 5.2 are indicated in figure 5.6. In this case the
theoretical error estimate gives O(∆t2 log2N) and the error thus grows with N . In
fact, at N =1000, the error is almost 100 times as large as with the direct solver. This
prefactor is considerably larger than in the first order case above, where it was around
five for the same problem. The execution time, on the other hand, is almost constant
in N as seen in the right frame of figure 5.6. The second order accuracy is confirmed
in figure 5.7. In all, the large prefactor makes this method less practical. We will
get back to this problem in section 6.1 below where better high order methods are
constructed.
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6. Extensions

We will now consider a few extensions to the basic methods in section 3. We do
not analyze these extensions in detail as in section 4, but rely on a simplified analysis
like the one in section 3.1. Here we generalize the setting and assume that the estimate
of the wavelet coefficients and their time derivatives satisfy |∂p

t wj,k|≤C 2−Qj (instead
of 2−2j) and that the number of unknowns at level j is Nj (previously Nj =2j). The
finest level is denoted J and we always assume in this section that T/∆tj is an integer
for all j≤J so that we do not need to make extra time steps of the type (3.6) at the
end (thus avoiding the ”+N” term in (3.7)). The same steps as in section 3.1 then
give that

cost∼ 1

∆t

J
∑

j=0

Nj

mj
, error∼∆tp

J
∑

j=0

mp
j2

−Qj , (6.1)

for a p-th order time stepping scheme. While the left estimate is straightforward,
rigorous justification of the right estimate for the extensions requires different tech-
niques than in section 4. This will not be done here, but will be considered in future
publications. We just note that numerical experiments confirm its validity.

6.1. Higher order methods. Higher order methods require an improved
prediction strategy compared to (2.1). Let us consider a p-th order time-stepping
scheme, where we still let Nj =2j and suppose Q=2. The cost estimate (6.1) then
shows that we need mj ≥C2j to have a significantly lower cost than N/∆t. But this
implies that

error≥C∆tp
J

∑

j=0

2(p−2)j ,

and there is therefore a “barrier” at p=2 beyond which the iteration becomes unstable
and the error will start to grow rapidly with N . Hence, it is apparent that the methods
used so far cannot be generalized to higher order than two if the wavelet decay rate is
fixed at Q=2. To overcome this barrier we must have wavelets that decay faster than
2−2j with Q>2. Fortunately, this can be accomplished rather easily by using more
general subdivision schemes as predictor instead of the simple averaging of neighboring
points (2.1) used so far.

Subdivision is a procedure to iteratively create smooth curves and surfaces from an
initial coarse mesh. Consider the sequence {yj,k}, which for fixed j can be interpreted
as the sample values of a piecewise linear function yj(t) on a grid of size 2−j , hence
yj(k2−j)=yj,k. We introduce the subdivision operator S acting on infinite sequences,
S : ℓ∞→ ℓ∞ such that

{yj+1,k}=S{yj,k}.
We limit ourselves here to linear interpolatory subdivision for which S is defined as
follows. For even points,

yj+1,2k =yj,k

and for odd points,

yj+1,2k+1 =
∑

ℓ

sℓyj,k+ℓ,
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Fig. 6.1. Example of higher order subdivision: The “4-point scheme” [9] used to construct a
smooth curve from a coarse mesh (left) and as predictor for a normal mesh construction (right).
While midpoint subdivision corresponds to a straight line between the two closest neighboring points,
the 4-point scheme corresponds to a third order polynomial interpolating the four closest neighboring
points.

where {sℓ} is a sequence with a finite number of non-zero entries. For well-chosen
coefficients {sℓ} we obtain that yj(t) converges to a continuous function y(t) as j
grows, see e.g. [2, 5]. The procedure is exemplified in the left frame of figure 6.1.
The smoothness of the limit function y(t) is an important feature of the subdivision
process and depends crucially on S. As an example we can consider the averaging
of neighboring points we have used so far which corresponds to {sℓ}={1/2, 1/2}
and results in piecewise linear (Lipschitz) limit functions. This is usually called the
“midpoint” or “2-point” scheme.

In our case we will use the subdivision operator as a predictor in the normal mesh
procedure. We let {x∗

j+1,k}=S{xj,k} be the predicted points, replacing (2.1), and
then as before define xj+1,2k+1 to be an intersection point between the curve γ(s) and
the line passing through x∗

j+1,2k+1 that is orthogonal to the segment (xj,k,xj,k+1). The
wavelet vector is the difference xj+1,2k+1−x∗

j+1,2k+1 =wj,k, and wj,k ⊥xj,k+1−xj,k.
We still set xj+1,2k =x∗

j+1,2k =xj,k for even points. This is illustrated in the right
frame of figure 6.1. It is thus a generalization of the previous simpler procedure based
on (2.1).

Examples of subdivision schemes include the Lagrange interpolation subdivision
schemes [8], which are natural generalizations of the midpoint scheme. The {sℓ}
sequences for these schemes are

• “4-point”,

{sℓ}=
1

16
{−1, 9, 9, −1},

• “6-point”,

{sℓ}=
1

256
{3, −25, 150, 150, −25, 3},

• “8-point”,

{sℓ}=
1

2048
{−5, 49, −245, 1225, 1225, −245, 49, −5}.

Prediction with higher order subdivision schemes will give faster decay of wavelet
vectors. It was for instance shown in [6] that if the curve γ(s) is in CQ+ε([0,1];R2)
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for ε>0 then

|wj,k|≤C2−(Q−ε)j , (6.2)

where Q depends on the subdivision operator in a nontrivial way, for example

• “4-point:” Q=3,
• “6-point:” Q≈3.83,

• “8-point:” Q≈4.55.

In the dynamic case we get an alternative description of the curve movement by
writing down the ODEs for the wavelet vectors {wj,k} as before. We have

xj+1,2k =xj,k, xj+1,2k+1 =x∗
j+1,2k+1 +wj,k =

∑

ℓ

sℓxj,k+ℓ +wj,k.

Consequently,

dwj,k

dt
=

dxj+1,2k+1

dt
−

∑

ℓ

sℓ
dxj,k+ℓ

dt
=F

(

t,
∑

ℓ

sℓxj,k+ℓ +wj,k

)

−
∑

ℓ

sℓF (t,xj,k+ℓ).

We conjecture that, as in the midpoint subdivision case, the estimate (6.2) also holds
for time derivatives of wj,k in a fixed time interval, and that the error estimate in (6.1)
can be rigorously proved for higher order subdivision operators. The technique used
in section 4 needs to be refined, however, since the max norms of those subdivision
operators are typically not bounded by one, as it is for the midpoint scheme. This
will be the topic of a future publication.

From this analysis we then see that the p=2 barrier can be removed by taking
a higher order subdivision scheme with Q>2 as predictor. We exemplify the gain
by repeating the numerical experiment in section 5.1 and section 5.2, with velocity
field and initial curve as in (5.1) and (5.2). Now, however, we use the 4-point scheme,
with Q=3, instead of the midpoint scheme, with Q=2. The results are indicated
by FIT2–4 in figure 6.2 and figure 6.3, while the previous second order method from
section 5.2 is indicated by FIT2–mid. The improvement in accuracy is substantial;
the error is bounded in N and the prefactor has dropped to around ten. The method
is marginally slower.

6.2. Problems with higher codimension. We can also consider the case
when the interface has higher co-dimension than one. In particular we look at one-
dimensional curves in three-dimensional space, so that x(t,·) :R→R

3. The approach
for this case is a simple generalization of the algorithm used so far. Instead of a
line normal to the vector xj,k+1−xj,k, we consider the plane normal to this vector.
We then let xj+1,2k+1 be the point where the normal plane that passes through the
predicted point x∗

j+1,2k+1 pierces the interface. The wavelet vector is the difference
xj+1,2k+1−x∗

j+1,2k+1. The theory for this construction is very similar to the previous
case and the proof of (6.1) can in fact be done in exactly the same way as in section
4 since the proof of Proposition 4.2 in [34] goes through almost verbatim for curves
in higher dimensions as well. In particular, the wavelet decay is still 2−2j , giving the
same cost and accuracy formulas as before,

cost∼ 1

∆t

J
∑

j=0

2j

mj
, error∼∆t

J
∑

j=0

mj2
−2j .
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Fig. 6.2. Error and timing for a fixed time t=1 and reference timestep ∆t=5 ·10−4, doubling
in each refinement, mj =2j . Error (left) and wall clock timing (right) as a function of N , for the
second order Fast Interface Tracking with midpoint prediction (FIT2–mid), with 4-point prediction
(FIT2–4) and basic Runge-Kutta 2 (RK2).
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Fig. 6.3. Error for a fixed time t=1 and number of points N =512, doubling the timestep in
each refinement, mj =2j . Error as a function of ∆t, for the second order Fast Interface Tracking
with midpoint prediction (FIT2–mid), with 4-point prediction (FIT2–4) and basic Runge-Kutta 2
(RK2).

As an example we take the velocity field

F (x,y,z)=





y sin(x)− 1
2

(x+0.2)cos(y)+0.4
cos(z+xy)



, (6.3)

and let the initial curve be a circle in the z =0 plane,

xj,k(0)=





cos(2πk2−j)
sin(2πk2−j)

0



, wj,k(0)=
[

1−cos
(

2−jπ
)]

xj+1,2k+1(0). (6.4)

The solutions at different times are plotted in the left frame and the decay of wavelet
vectors are plotted in the right frame of figure 6.4, respectively. The error and wall
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Fig. 6.5. Error and timings for higher co-dimension problem, with same parameters as in figure
5.2.

clock timings of Method 1 compared to direct Forward Euler behave in the same was
as before. They are plotted in figure 6.5.

6.3. Two-dimensional problems. Normal meshes can be generalized to
two dimensions in several ways. See [18] and [22] for some examples. Here we will
approximate the surface by a triangulation and use the following simple approach
based on face-splitting for refinements. To construct the normal wavelet vector and
to go from one level to the next we take the steps given below, illustrated in figure
6.6.

1. Start from two adjacent triangles.

2. Construct normals to the triangles, n1 and n2.

3. Compute an average normal:

naver =
n1 +n2

|n1 +n2|
.
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Fig. 6.6. Steps in normal mesh construction. The surface to be approximated is indicated as a
transparent sheet.
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Fig. 6.7. Example of the first levels in a normal mesh construction, with N0 =9, E0 =16 and
T0 =8.

4. Let the predicted point be the middle of the connecting edge. Apply naver

there and find the point where it pierces the surface. This gives the normal
wavelet vector.

5. Do the same thing for all edges.

6. Connect the new points to form a refined triangulation.

An example of the first steps in the normal construction of mesh for a half sphere
is shown in figure 6.7.

There is no rigorous result available that establishes the general decay rate of
the wavelet vectors for this approach. Since the predicted point is obtained in a
way similar to the midpoint predictor in the one-dimensional case, one can, however,
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expect that the generic rate would be the same 2−2j here also, if the triangulation is
refined uniformly. This is also what we see in numerical experiments, c.f. the right
frame of figure 6.8. Given this decay rate, the accuracy of the method would also be
the same as in one dimension,

error∼∆t
J

∑

j=0

mj2
−2j .

As for the complexity, let the number of points, edges and triangles on level j be
denoted Nj , Ej and Tj respectively. From the normal construction above it follows
that in each level the number of triangles is quadrupled. For each new triangle there
will be three new edges, and each old edge will be cut in two. Thus, the number of
new points equals the number of old edges. We obtain the recursions

Tj+1 =4Tj , Ej+1 =2Ej +3Tj , Nj+1 =Nj +Ej .

Solving this system of difference equations yields

Nj =N0−E0 +T0 +2j

(

E0−
3

2
T0

)

+4j T0

2
.

Hence, with this normal construction the number of points Nj grows as O
(

22j
)

and
the computational cost is

cost∼ 1

∆t

J
∑

j=0

22j

mj
.

It is therefore more difficult to maintain a low cost than before, when we had the
term 2j instead of 22j . We need to take mj =4j to avoid essential growth of the
computational cost with NJ . Then

cost∼ J

∆t
∼ logNJ

∆t
.

However, as seen in the one-dimensional case the accuracy for this choice of mj is
rather bad compared to smaller mj , see figure 5.5. We can still beat the O(NJ/∆t)
complexity of a direct method by taking smaller mj , however. For instance, if we use
mj =2j as before,

cost∼ 1

∆t

J
∑

j=0

22j

2j
∼ 2J

∆t
∼

√
NJ

∆t
. (6.5)

It would also be possible to construct refinement schemes with mj =3j . That gives

cost∼ (4/3)J

∆t
∼ N0.21

J

∆t
.

It should be noted that, as was proposed for the one-dimensional case, the situa-
tion could be improved by using higher order interpolatory subdivision schemes like
Butterfly [10, 46] for the predicted point.

For the numerical experiments, we use the same velocity field as in (6.3) and let the
initial surface be a half sphere with radius one centered at the origin x2 +y2 +z2 =1,
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Fig. 6.9. Solution at t=1 with ∆t=0.004, J =4 and NJ =1089 using Forward Euler (left) and
Fast Interface Tracking with mj =4j (right).

z≥0. The initial surface is triangulated as in figure 6.8. The solution computed
by the fast method, with mj =4j , and basic Forward Euler is shown in figure 6.9.
There is no discernible difference in the results. A more detailed look at the errors
and timings of the method is given in figure 6.10; the error curves are similar to the
one-dimensional case in figure 5.5, as expected, while the timings differ for mj =2j ,
where the computational cost now grows with N as predicted by (6.5). The first order
accuracy of the methods for a fixed N is confirmed in figure 6.11.

7. Conclusions and open problems

We have constructed fast methods for tracking the evolution of one- and two-
dimensional interfaces in a time-varying velocity field. When we are interested in the
location of the interface at a fixed number of points in time, the proposed methods
are much faster than standard methods, while still having the same order of accuracy.
To construct higher order methods more accurate prediction schemes are needed. We
have shown how this can be done in one dimension. It will be needed also in two
dimensions.
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When computing over longer times the proposed methods will need to be improved
and augmented with additional steps. As in standard front tracking the representation
of the interface can deteriorate since the length or area of the interface can expand
quickly and the number of marker points used initially may not be enough to resolve
it. An adaptive mechanism which adds and removes marker points as the resolution of
the interface changes is therefore usually necessary in front tracking algorithms. Such
adaptivity will also be needed for the methods in this paper. In the multiresolution
setting we expect that this can be done in a natural way, given that the representation
is already dealing with scales. In fact, the ability of wavelets to detect local regularity
and singularities have made them particulary useful in adaptive schemes for PDEs,
where better resolution in non-smooth regions is obtained by using finer scale level of
the wavelets there, see e.g. [20, 4] for hyperbolic problems and [3] for elliptic problems.
In the front tracking setting it is the parameterization of the curve that becomes non-
smooth, not the curve itself. Finer levels would be added at the places on the interface
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where derivatives of x(t,s) with respect to s are large. This could follow the steps of
standard adaptive front tracking, adding new levels when the wavelet vectors or the
distances between marker points become too large.

The multiresolution representation can also deteriorate in another way; as time
evolves the wavelet vectors shift away from the locally defined normal direction and
wj,k is not normal to the line (xj,k,xj,k+1) for t>0, in general. Although Theorem
4.1 shows that for fixed times, the lack of orthogonality does not destroy the error
estimates, clearly the quick growth in time of the wavelet decay prefactors seen in
Fig. 5.1, 6.4 and 6.8 also implies growth in the error constant C ′ in (4.1). Eventually,
for large enough times, the method will not be useful anymore. Therefore, when
solving the interface tracking problem for long times, reinitialization of the mesh to a
better form will be necessary at regular time intervals to bring down the size of those
prefactors. For one-dimensional curves, it would not be too difficult to return to
an exactly normal representation using interpolation of the fully reconstructed curve
(an O(N) operation). For higher dimensional manifolds this is a greater challenge,
although an O(N logN) algorithm was presented in [18] for surfaces in 3D. An exactly
normal representation may not be necessary, however, and one could for instance look
at ideas from computer graphics, where remeshing is a standard problem for finding
improved, but not necessarily exactly normal, representations of static meshes. See for
example [30]. There is also some existing work on remeshing for deformable surfaces
[25]; in fact, updating the representation continuously for a dynamically changing
mesh should be somewhat easier than doing it for a static mesh. It should be noted
that the deterioration of normality is a property of the continuous problem, not the
discretization, so, in principle, the time between reinitializations could be chosen
independent of ∆t and N , and the reinitializations would then not affect the overall
complexity.

It would be natural to try to apply the proposed method also for more complicated
interface tracking problems, like geometric motions where the velocity of the interface
also depends on the local shape of the interface, e.g. the curvature. Then F in
(1.1) would be of the form F =F (t,x,xs,xss,···). In its present form, the method is,
however, not suitable for these cases. Computing the velocity from just the wavelet
coefficients and the marker points on the previous level is no longer possible. One
also needs an approximation of the derivatives xs, xss, etc. This can be obtained by
reconstructing the whole interface and differentiating numerically along the interface,
but then all unknowns couple and one can no longer compute level by level, which
is necessary to obtain the speedup of the present method. Moreover, the special
relation between time and space scales, which is the fundamental reason why the
method works, may be different for these problems, i.e., Theorem 4.3 may no longer
be true. Thus, currently the method is primarily for passive transport and will not
work for geometric motion unless some new ideas come up.

Appendix A. Local truncation error for Runge-Kutta 2. The local trun-
cation errors for Runge-Kutta schemes are not as straightforward to derive as for
multistep methods. For completeness we therefore show here the error estimate used
in section 4 for Runge-Kutta 2. Let y(t)∈C3(R+) be the exact solution satisfying
y′ =f(t,y)∈C2

b (R+,R2). The local truncation error τn is defined as the residual when
the exact solution is entered into the scheme, hence

τn =y(tn)+
∆t

2

[

f
(

tn,y(tn)
)

+f
(

tn+1,y(tn)+∆tf(tn,y(tn))
)]

−y(tn+1).



396 FAST INTERFACE TRACKING

By using the ODE we obtain

τn =y(tn)+
∆t

2
[y′(tn)+y′(tn+1)]−y(tn+1)

+
∆t

2

[

f
(

tn+1,y(tn)+∆ty′(tn)
)

−f
(

tn+1,y(tn+1)
)]

.

The error has two parts which can be rewritten as follows. After expanding y and y′

around tn we get from Taylor’s formula with an integral remainder term that

E1 :=y(tn)+
∆t

2
[y′(tn)+y′(tn+1)]−y(tn+1)=

∆t3

2

∫ 1

0

s(1−s)y′′′(tn +s∆t)ds.

Moreover,

E2 :=
∆t

2

[

f
(

tn+1,y(tn)+∆ty′(tn)
)

−f
(

tn+1,y(tn+1)
)]

=
∆t

2

∫ 1

0

Dyf
(

tn+1, ȳ(s))
)(

y(tn)+∆ty′(tn)−y(tn+1)
)

ds,

where ȳ(s) :=s(y(tn)+∆ty′(tn))+(1−s)y(tn+1). Hence,

|τn|≤ |E1|+ |E2|≤
∆t3

2

∫ 1

0

|s(1−s)|ds sup
tn≤t≤tn+1

|y′′′(t)|

+
∆t

2
|Dyf(tn+1,·)|∞|y(tn)+∆ty′(tn)−y(tn+1)|

≤ ∆t3

12
sup

tn≤t≤tn+1

|y′′′(t)|+ ∆t3

4
|Dyf(tn+1,·)|∞ sup

tn≤t≤tn+1

|y′′(t)|.

REFERENCES

[1] H.J. Bungartz and M. Griebel, Sparse grids, Acta Numerica, 13, 1–121, 2004.
[2] A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary subdivision, Memoirs Amer. Math.

Soc., 93(453), 1991.
[3] A. Cohen, W. Dahmen and R.A. DeVore, Adaptive wavelet methods for elliptic operator equa-

tions: convergence rates, Math. Comp., 70, 27–75, 2001.
[4] A. Cohen, S. M Kaber, S. Müller and M. Postel, Fully adaptive multiresolution finite volume

schemes for conservation laws, Math. Comp., 72(241), 183–225, 2003.
[5] I. Daubechies and J.C. Lagarias, Two-scale difference equations I. Existence and global regu-

larity of solutions, SIAM J. Math. Anal., 22(5), 1388–1410, 1991.
[6] I. Daubechies, O. Runborg and W. Sweldens, Normal multiresolution approximation of curves,

Constr. Approx., 20, 399–463, 2004.
[7] L. Demanet and L. Ying, Wave atoms and time upscaling of wave equations, preprint, 2007.
[8] G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx.,

5(1), 49–68, 1989.
[9] N. Dyn, D. Levin and J. Gregory, A 4-point interpolatory subdivision scheme for curve design,

Comput. Aided Geom. Des., 4, 257–268, 1987.
[10] N. Dyn, D. Levin and J. Gregory, A butterfly subdivision scheme for surface interpolation with

tension control, ACM Trans. on Graphics, 9(2), 160–169, 1990.
[11] B. Engquist, S. Osher and S. Zhong, Fast wavelet based algorithms for linear evolution equa-

tions, SIAM J. Sci. Comput., 15(4), 755–775, 1994.
[12] B. Engquist, O. Runborg and A.K. Tornberg, High frequency wave propagation by the segment

projection method, J. Comput. Phys., 178, 373–390, 2002.
[13] M.B. Giles, Multilevel Monte–Carlo path simulation, Oper. Res., 56(3), 607–617, 2008.



OLOF RUNBORG 397

[14] J. Glimm, J.W. Grove, X.L. Li, K.M. Shyue, Y. Zeng and Q. Zhang, Three-dimensional front
tracking, SIAM J. Sci. Comput., 19(3), 703–727, 1998.

[15] J. Glimm, E. Isaacson, D. Marchesin and O. McBryan, Front tracking for hyperbolic systems,
Adv. Appl. Math, 2, 91–119, 1981.

[16] M. Griebel and D. Oeltz, A sparse grid space-time discretization scheme for parabolic problems,
Computing, 81(1), 1–34, 2007.

[17] J. Guckenheimer and A. Vladimirsky, A fast method for approximating invariant manifolds,
SIAM J. Appl. Dyn. Syst., 3(3), 232–260, 2004.

[18] I. Guskov, K. Vidimce, W. Sweldens and P. Schröder, Normal meshes, Computer Graphics
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[30] A. Lee, W. Sweldens, P. Schröder, L. Cowsar and D. Dobkin, MAPS: Multiresolution Adaptive
Parametrization of Surfaces, Computer Graphics (SIGGRAPH ’98 Proceedings), 95–104,
1998.

[31] S.J. Osher, L.T. Cheng, M. Kang, H. Shim and Y.H. Tsai, Geometric optics in a phase-space-
based level set and Eulerian framework, J. Comput. Phys., 179(2), 622–648, 2002.

[32] S.J. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations, J. Comput. Phys., 79(1), 12–49, 1988.

[33] D. Peng, B. Merriman, S. Osher, H. Zhao and M. Kang, A PDE based fast local level set
method, J. Comput. Phys., 155(2), 410–438, 1999.

[34] O. Runborg, Introduction to normal multiresolution analysis, B. Engquist, P. Lötstedt and
O. Runborg (eds), Multiscale Methods in Science and Engineering, Lecture Notes in Com-
putational Science and Engineering, Heidelberg, Springer Verlag, 44, 205–224, 2005.

[35] C.C. Stolk, A fast method for linear waves based on geometrical optics, preprint, 2007.
[36] J. Strain, Tree methods for moving interfaces, J. Comput. Phys., 151(2), 616–648, 1999.
[37] J. Strain, A fast modular semi-Lagrangian method for moving interfaces, J. Comput. Phys.,

161(2), 512–536, 2000.
[38] W. Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math.

Anal., 29(2), 511–546, 1997.
[39] A.K. Tornberg and B. Engquist, The segment projection method for interface tracking, Comm.

Pure Appl. Math., 56(1), 47–79, 2003.
[40] S.O. Unverdi and G. Tryggvason, A front tracking method for viscous, incompressible, multi-

fluid flows, J. Comput. Phys., 100, 25–37, 1992.
[41] V. Vinje, E. Iversen and H. Gjøystdal, Traveltime and amplitude estimation using wavefront

construction, Geophysics, 58(8), 1157–1166, 1993.
[42] J.E. Welch, F.W. Harlow, J.P. Shannon and B.J. Daly, The MAC method: a computing tech-

nique for solving viscous, incompressible, transient fluid flow problems involving free sur-



398 FAST INTERFACE TRACKING

faces, Los Alalmos Scientific Laboratory Report LA, 3425, 1966.
[43] L. Ying and E. Candes, The phase flow method, J. Comput. Phys., 220(1), 184–215, 2006.
[44] L. Yuan and Y.Y. Lu, A recursive doubling Dirichlet-to-Neumann map method for periodic

waveguides, J. Lightwave Technol., 25, 3649–3656, 2007.
[45] C. Zenger, Sparse grids, W. Hackbusch, (ed.), Parallel Algorithms for Partial Differential Equa-

tions, Notes on Numerical Fluid Mechanics, Vieweg, 31, 241–251, 1991.
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