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ON THE DEGREE PROPERTIES OF GENERALIZED RANDOM

GRAPHS∗

YI Y. SHI† AND HONG QIAN‡

Abstract. A generalization of the classical Erdös and Rényi (ER) random graph is introduced
and investigated. A generalized random graph (GRG) admits different values of probabilities for its
edges rather than a single probability uniformly for all edges as in the ER model. In probabilistic
terms, the vertices of a GRG are no longer statistically identical in general, giving rise to the pos-
sibility of complex network topology. Depending on their surrounding edge probabilities, vertices of
a GRG can be either “homogeneous” or “heterogeneous”. We study the statistical properties of the
degree of a single vertex, as well as the degree distribution over the whole GRG. We distinguish the
degree distribution for the entire random graph ensemble and the degree frequency for a particular
graph realization, and study the mathematical relationship between them. Finally, the connectivity
of a GRG, a property which is highly related to the degree distribution, is briefly discussed and some
useful results are derived.
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1. Introduction

The study of graphs has a long history. Graph theory has become one of the
important branches of discrete mathematics and provides powerful tools for solving
application problems such as computational algorithms and network optimization.
Random graphs arise from introducing probabilistic ideas into graph theory. They
have provided new perspectives on real world networks and analytical tools for ana-
lyzing systems with uncertainties, complementary to the standard graph theory. In
recent years, with the dramatically increasing capacity of computing and storage,
researchers are beginning to explore the properties and underlying principles of large-
scale systems such as the Internet and biological networks [4, 19]. This new research
trend has triggered a revitalization of the random graph theory and taken the field to
a new era. Still, as has been recognized by some experts, we are far from capturing
and explaining many of the universal, fascinating features shared by most of the large
networked systems in real world. A rigorous study of large-scale random graphs is
still in its infancy.

The best known random graph model is the classical random graph G(N,p) pro-
posed by Erdös and Rényi (ER) in 1950’s [6, 11]. This model considers a graph with
N vertices and assumes a uniform probability p for each pair of vertices to form an
edge. With varying p, different topological properties arise in the graph. In proba-
bilistic terms, an ER random graph assigns a set of identical independent Bernoulli
random variables with parameter p to the edges of a graph. Thus, a random graph
from this point of view is an ensemble of matrices consisting of random variables
{eij |1≤ i,j≤N,i 6= j}. The simplicity of the ER model makes it possible, on one
hand, for extensive analytical studies, but on the other hand limits its application
to many complex networks from the real world. For example, it has been observed
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recently that many complex networks, such as the Internet and protein-protein inter-
actions in biological cells, have a “power-law” degree distribution [2, 3, 10, 21]. This
differs significantly from the Poisson degree distribution dictated by the classical ER
random graph.

In order to approach various situations in real random networks, we suggest a
more general form of random graphs. Rather than using a uniform probability p, we
assign an arbitrary probability value pij ∈ [0,1] on the edge associated with vertices i

and j. This generalized random graph (GRG) model is simple in presentation, but
significantly complex in analysis, in particular when the pij ’s are connected with a
set of Bernoulli random variables that are not independent. We shall classify ran-
dom graphs within our model into two types, homogeneous and heterogeneous, and
study their degree properties respectively. Many papers in this field give only vague
definitions about the degree distribution in random graphs. In fact, a random graph
model, depending on its complexity, could generate a hierarchy consisting of several
levels in terms of conditional probabilities and conditional expectations. The degree
distributions at various levels are conceptually different, thus should be treated sep-
arately. As we shall show, under some conditions these degree distributions have a
definitive relationship and could be used interchangeably. In general there is an issue
of ergodicity in many large random graphs when N →∞.

The connectivity is another important dimension to explore the topology of ran-
dom graphs. Many theoretical papers have worked on the connectivity of classical
ER random graphs, as well as graphs with given degree sequences, and several beau-
tiful results have been established [9, 11]. The most fascinating phenomenon is the
existence of a critical point at which a phase transition occurs, i.e., a giant compo-
nent appears in the graph instead of many isolated small components. In the later
part of this paper, we will investigate the connectivity of the GRG model. We shall
concentrate our effort for the case of homogeneous random graphs and derive some
convenient criteria. More general conclusions can be obtained for GRGs only if more
specific details are given.

2. Model proposal

A standard graph with N vertices can be completely specified by the adjacency
matrix E: a symmetric N ×N matrix consisting of 0’s and 1’s with all diagonal entries
being 0. A matrix entry eij with value 1 represents an edge between vertex pair (i,j).
A generalized random graph is defined as follows: a Bernoulli random variable eij(pij)
is assigned to the vertex pair (i,j). A Bernoulli random variable e(p) has Pr{e=1}=p

and Pr{e=0}=1−p. The matrix M=[eij(pij)]N×N , therefore, is a random matrix,
which corresponds to a random graph ensemble. Note that each realization of M

should be symmetric with all the diagonal entries being 0. Theoretically, this is the
universal representation for all random graphs; we shall denote it by G(N,M). In the
present paper, we assume that the entries eij in matrix M are mutually independent
unless otherwise noted. Random graphs with dependent eij ’s exhibit greater topolog-
ical complexity which will be the subject of forthcoming publications. From G(N,M),
different graph realizations could be obtained by randomly sampling the Bernoulli
random variable eij on each vertex pair (i,j). All possible graph realizations can be
characterized by their adjacency matrices E1,E2,... ,Em, where m=2N(N−1)/2. We
use G(N,E) to denote the graph realization G with adjacency matrix E =[eij ]N×N .
The following two facts hold:

Fact 2.1. Pr{G(N,E)|M}=
∏

i,j p
eij

ij (1−pij)
1−eij .
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Fact 2.2. By the law of large numbers, for a sequence of realizations E1,E2,... , En,
as n→∞, 1

n (E1 +E2 + ···+En) converges to E[M]= [pij ]N×N in probability, where
E[M] denotes the regular matrix [E[eij ]]N×N .

Among all the properties of random graphs, the most studied one in recent years is
the degree distribution. For any single realization G(N,E), we can count the degrees
of all the vertices, generate the histogram of degrees, and normalize it to obtain the
degree frequency of such a particular graph. Unfortunately, this degree frequency is
widely called degree distribution. To be more precise, we shall name it the intra-
graph degree distribution. However, for a single vertex i in G(N,M), its degree is
a random variable, and thus could have many values among different realizations of
G(N,M). We call it the inter-graph degree fluctuation. In most empirical studies for
complex random networks, e.g., biological networks and computer networks, the data
is usually taken only from a single realization of the network. Hence the reported
degree distribution is actually an intra-graph degree distribution. Due to the inter-
graph fluctuations of degrees, however, the intra-graph degree distribution should not
be a fixed function, rather it has certain variance among different graph realizations.
The main interest of the present paper is to study such variances in both the degree,
as a single random variable, and intra-graph distribution, as a random vector. We
shall introduce clear definitions for the “degree distributions” at the different levels
of a random graph, as the concept has been vague in the current literature.

3. Inter-graph degree fluctuation

In the random graph model G(N,M), the degree di of vertex i, which is a discrete
random variable, can be expressed as the sum of N −1 independent Bernoulli random
variables: di =

∑N
j=1,j 6=ieij . If the eij ’s are identical, i.e., have the same success

probability p, then the sum di follows a binomial distribution B(N −1,p). By the
central limit theorem, di approaches a normal random variable as N →∞. If the
Bernoulli random variables eij are not identical, then the distribution of the integer-
valued random variable di follows the so-called Poisson binomial distribution. This
distribution has no explicit expression formula in general. However, when N →∞ it
can be well approximated by either a Poisson or normal distribution under different

conditions, as given by the following two lemmas. (We denote
∑N

j=1,j 6=i by
∑

′N
j=1 for

convenience.)

Lemma 3.1. If X1,... ,Xn are n independent Bernoulli random variables with respec-
tive success probabilities p1,... ,pn, define S=

∑n
i=1Xi, µ=p1 +p2 + ···+pn, and Y

to be a Poisson random variable with mean value µ. Then the following inequality
holds:

D= sup
0≤m≤n

|Pr(S≤m)−Pr(Y≤m)|≤2
∑

p2
i . (3.1)

Lemma 3.2. Let X1,... ,Xn be n independent Bernoulli random variables with respec-
tive success probabilities p1,... ,pn, S=

∑n
i=1Xi, µ=E[S]=

∑n
j=1pj, σ2 =V ar[S]=

∑n
j=1pj(1−pj), and γ =E[(S−µ)3]=

∑n
j=1pj(1−pj)(1−2pj). Let Φ(x) and φ(x)

be the c.d.f. and p.d.f. of the standard normal distribution, respectively, and
Γ(x)=Φ(x)+ γ

6σ2 (1−x2)φ(x). Then the following inequality holds:

∆= sup
0≤m≤n

∣

∣

∣

∣

Pr(S≤m)−Γ

(

m−µ+ 1
2

σ

)∣

∣

∣

∣

≤
σ+3

4σ3
. (3.2)
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The proofs of these two lemmas can be found in [12] and [15], respectively. The
first lemma provides the error bound of the Poisson approximation to the Poisson
binomial distribution. Under the conditions of maxi{pi}→0 and µ=

∑n
i=1pi →λ as

n→∞, the inequality (3.1) yields D≤2
∑

p2
i ≤maxi{pi}

∑

pi →λmaxi{pi}→0. This
reveals the fact that if the pi’s are sufficiently small (on the order of n−1) as n→∞,
the sum S can be well approximated by the Poisson random variable Y. If the pi’s
have medium or large values, then the error bound 2

∑

p2
i in Lemma 3.1 will definitely

exceed 1 as n→∞, hence it contains little information on how accurate the Poisson
approximation will be. However, in this case the mean µ and variance σ2 of S will
become large enough such that Γ(x)=Φ(x)+ γ

6σ2 (1−x2)φ(x)→Φ(x) and ∆≤ σ+3
4σ3 →0

as n→∞, which implies that the sum S can be approximated by a normal random
variable with very small error. Combining these facts and applying them to our
random graph model gives the following theorem:

Theorem 3.3. In the random graph G(N,M), the degree di of the vertex i follows

a Poisson binomial distribution. If maxj{pij}→0 and
∑

′N
j=1pij →λ as N →∞, then

di can be well approximated by a Poisson random variable Poisson(λ); otherwise it
can be well approximated by a normal random variable as N →∞, with mean and
variance

µi =E[di]=E





′N
∑

j=1

eij



=

′N
∑

j=1

pij , (3.3)

σ2
i =V ar[di]=V ar





′N
∑

j=1

eij



=

′N
∑

j=1

(pij −p2
ij). (3.4)

Theorem 3.3 describes the distribution, as well as the mean and variance, of the
inter-graph fluctuation of the degree di in our random graph model. More precisely,
we could get the following estimates for the value of di in a probabilistic sense:

Theorem 3.4. In the random graph G(N,M), the degree di of vertex i satisfies the
following inequalities:

Pr{di−µi ≥∆}≤e−
2∆

2

N , (3.5)

Pr{di−µi ≤−∆}≤e−
2∆

2

N . (3.6)

where µi is given by equation (3.3).

These two inequalities are actually a corollary of McDiarmid’s inequality. The
proof is not shown, but can be found in [14].

The two theorems above establish the probability laws for the degree of a vertex in
a large random network. When N tends to infinity, if the probabilities on the edges
∼N−1, then the degree is well approximated by a Poisson distribution; otherwise,
it is well apprximated by a normal distribution. In order to get the intra-graph
distribution (frequency), we need to know whether the degrees on the different vertices
are independent or correlated. This leads to the following theorem.

Theorem 3.5. In the random graph G(N,M), the degrees of any two vertices are
almost independent in the large limit of N .
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Proof. Consider the degrees di and dj of vertices i and j, respectively. Since
di =

∑

k 6=ieik and dj =
∑

l 6=j ejl, the two summands only have one common term eij .
Denote X=eij , Y=

∑

k 6=i,j eik, Z=
∑

l 6=i,j ejl, then X, Y, Z are independent of each
other. Therefore the covariance of di and dj should be:

Cov(di,dj)=E[(X+Y)(X+Z)]−E[X+Y]E[X+Z]

=E[X2]−E[X]2 =V ar[X]=pij(1−pij),

and their correlation should be

Corr(di,dj)=
Cov(di,dj)

√

V ar[di]V ar[dj ]
=

pij(1−pij)
√

V ar[di]V ar[dj ]

=
pij(1−pij)

√

(
∑n

j=1pij(1−pij))(
∑n

i=1pji(1−pji))
≈0

if




n
∑

j=1

pij(1−pij)





(

n
∑

i=1

pji(1−pji)

)

≫p2
ij(1−pij)

2,

which would almost be satisfied as N →∞. Since di and dj both have nearly normal
distributions, a very small correlation implies they are almost independent.

4. Intra-graph degree distribution

In a single random graph realization G(N,E), its degree frequency can be written
as follows:

PG(k)=
1

N

N
∑

i=1

δ(k,di)=
1

N

N
∑

i=1

δ



k,

N
∑

j=1

eij



 , (4.1)

where di is the degree of vertex i in G, a non-negative integer, and δ(i,j) is the
Kronecker delta symbol. PG(k) is called the intra-graph degree distribution for a
given graph realization G. Actually, PG(k) is just the histogram which represents the
frequency of appearance of each degree value. Due to the inter-graph fluctuation of
each vertex degree, the function PG(k) could have different forms for different graph
realizations. Therefore, in the random graph ensemble G(N,M), the intra-graph
degree distribution should be a random N -dimensional vector, defined as {PG(k),k =
0,1,... ,N −1}. For any given degree k, PG(k) is a random variable, which could be
expressed as follows:

PG(k)=
1

N

N
∑

i=1

δ(k,di)=
1

N

N
∑

i=1

δ



k,

N
∑

j=1

eij



. (4.2)

Like the degree di, it would also be informative to investigate the mean and variance
of the random variable PG(k), and their relationship with the random matrix M.

In the random graph ensemble G(N,M), the degree sequence is written as
(d1,d2,... ,dN ). This as an N -dimensional random vector where the N elements
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are almost independent of each other by Theorem 3.5. Denote the probability mass
function of di by fi(k)∈ [0,1]. By Theorem 3.3, fi(k) could be approximated by a
Poisson distribution when µi is small and maxj{pij}→0:

fi(k)≈
µk

i

k!
e−µi ,k =0,1,2,... ,N −1, (4.3)

or a normal distribution otherwise:

fi(k)≈
1

√

2πσ2
i

exp

(

−
(k−µi)

2

2σ2
i

)

,k =0,1,2,... ,N −1, (4.4)

where µi and σ2
i are given by equations (3.3) and (3.4), respectively.

Now let’s consider the degree distribution PG(k) given by equation (4.2). The
function δ(k,di) is also a Bernoulli random variable with success probability fi(k),
hence NPG(k) is the sum of N almost independent Bernoulli random variables. By
Theorem 3.3, the random variable PG(k) for a given k should follow a Poisson binomial
distribution, which could be approximated by normal (or Poisson) distribution with
mean and variance

E[PG(k)]=
1

N
E

[

N
∑

i=1

δ(k,di)

]

=
1

N

N
∑

i=1

fi(k), (4.5)

V ar[PG(k)]=
1

N2
V ar

[

N
∑

i=1

δ(k,di)

]

≈
1

N2

N
∑

i=1

fi(k)(1−fi(k)). (4.6)

The first equation shows the expected value of PG(k). Since each fi(k)∈ [0,1], the
second equation implies that as N →∞,

V ar[PG(k)]=
1

N2

N
∑

i=1

fi(k)(1−fi(k))≤
1

N2

N
∑

i=1

1

4
=

1

4N
→0.

Therefore, considering both the inter-graph degree fluctuation and intra-graph degree
distribution, we can define a single degree distribution function P (k) for the random
graph ensemble G(N,M). Naturally this degree distribution P (k) should be defined
as the expected value of PG(k) over all possible graph realizations in the ensemble,
which can be obtained from equation (4.5).

With all of the facts given above, we are now in the position to state the following
ergodic property of degree distributions:

Theorem 4.1. In the random graph G(N,M), the intra-degree distribution PG(k)
of any graph realization will converge to the degree distribution P (k) of the graph
ensemble in the large limit of the graph size N . Moreover, P (k) can be computed
using equation (4.5).

In dealing with large-scale random networks in the real world, one often counts
only the degree frequency for a single network realization, and uses it as the degree
distribution for the whole network ensemble. This theorem serves as the theoretical
basis for the feasibility of this substitution. Note that the key assumption behind this
theorem is that all the edge indicators eij are independent. The ergodic property no
longer holds if this assumption is violated.
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5. Random graph classification

In the previous two sections, we established the model G(N,M) of generalized
random graphs and obtained some useful results concerning their degree properties.
From these results, we know that the degree fluctuation of a given vertex i is almost
determined by the two quantities in equation (3.3) and equation (3.4), which are
both related to the probabilities pij associated with vertex i. This fact suggests a
natural classification for the generalized random graphs: if the probability set {pij |j =
1,2,... ,N,j 6= i} around vertex i follows identical statistical properties over all the
vertices in the graph, then in the statistical sense these vertices are homogeneous.
Otherwise, they are heterogeneous and should be analyzed separately. In the following
we distinguish between these two types of random graphs and make the respective
analysis.

5.1. Homogeneous random graph. The best known homogeneous random
graph is the classical ER random graph. This model assumes all the probabilities take
a same value p, thus making all the vertices identical in the statistical sense. Based on
this model, a further extension could be made while the homogeneity over vertices is
still maintained. Suppose that in the random graph G(N,M) the success probabilities
pij for the eij ’s are independently sampled from a given distribution, say Fp(x), where

x∈ [0,1]. From the symmetric property of M, only N(N−1)
2 independent samples are

needed. Under this model, although the probability sets {pij |j =1,2,... ,N,j 6= i} are
not identical for different vertices, they still have the same statistical properties when
N is large since each set represents a large number of independent samples from the
same distribution. Actually, by the law of large numbers, we immediately have the
following results regarding the degree of vertex i as N →∞:

E[di]=

′N
∑

j=1

pij ≈N

∫ 1

0

xFp(x)dx=NE[p], (5.1)

V ar[di]=

′N
∑

j=1

(pij −p2
ij)≈N

∫ 1

0

(x−x2)Fp(x)dx

=N
(

E[p]−E[p2]
)

, (5.2)

showing that the degree of each vertex has the same mean and variance, thus approx-
imately follows the same normal or Poisson distribution. This homogeneity among
vertices resembles the situation in the classical ER random graph. Consequently, the
degree distribution P (k) of this type of homogeneous random graph has the simple
form

P (k)=
1

N

N
∑

i=1

fi(k)=fi(k), (5.3)

where fi(k) is given by either equation (4.3) or (4.4), i.e. the degree distribution of
the random graph model is the same as the degree fluctuation of any vertex.

This type of random graph shares similar properties with the classical ER random
graph, but with more complexity in the matrix M. Actually, the ER random graph
can be viewed as a special case of this model if we take Fp(x)= δ(x,p), where δ is
the Kronecker delta symbol. The independent sampling from a given distribution for
probabilities pij ’s generates the homogeneity among vertices in the graph, yielding the
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approximately normal (or Poisson) degree distribution. On the contrary, if we observe
that a random graph model has a degree distribution different from the normal (or
Poisson) distribution, then the conclusion could be drawn that there must be an
inhomogeneity among vertices. We classify such graphs to be heterogeneous random
graphs as discussed below.

5.2. Heterogeneous random graph. The random graph G(N,M) is a het-
erogeneous random graph if the probability sets {pij |j =1,2,... ,N,j 6= i} around all
vertices are not statistically identical. From the previous subsection, we know that
a random graph with degree distribution different from normal (or Poisson), e.g.,
power-law, exponential, etc., must be a heterogeneous graph. However, the reverse
statement is not true. A heterogeneous graph could also have a normal (or Poisson)
degree distribution with appropriate choices of pij . Generally, heterogeneous random
graphs are very hard to analyze due to the complexity of the entries in M. The ap-
proximation formula for the degree distribution P (k), given by equation (4.5), should
be the best result we can extract from the general matrix M.

However, there is a widely-used class of heterogeneous random graphs allowing us
to make further analysis. This is the “intrinsic fitness model” introduced by Caldarelli,
et al. [5, 7, 9]. In this model, each vertex i in the graph is assigned a “intrinsic fitness”
number xi ∈ [0,∞) independently sampled from a certain distribution gx(x), and the
probability pij is defined to be pij =h(xi,xj) for each pair of (i,j), where h(a,b) is in
[0,1], symmetric under exchange of arguments, i.e. h(a,b)=h(b,a), and monotonically
increasing with respect to each argument. For example, h(a,b) could be ab, a+b, etc.
As long as the intrinsic fitness xi’s assigned to the vertices are different, there would
be a heterogeneity among all the vertices. With this particular model, the degree di

of vertex i has mean and variance

E[di]=

′N
∑

j=1

pij ≈N

∫ ∞

0

h(xi,y)gx(y)dy =µ(xi), (5.4)

V ar[di]=

′N
∑

j=1

(pij −p2
ij)≈N

∫ ∞

0

(h(xi,y)−h2(xi,y))gx(y)dy

=σ2(xi). (5.5)

Consequently, the degree distribution P (k) for the random graph G(N,M) can be
expressed as:

P (k)=
1

N

N
∑

i=1

fi(k)≈

∫ ∞

0

µ(x)k

k!
e−µ(x)gx(x)dx, (5.6)

or

P (k)=
1

N

N
∑

i=1

fi(k)≈

∫ ∞

0

1
√

2πσ2(x)
exp

(

(k−µ(x))2

2σ2(x)

)

gx(x)dx, (5.7)

depending on the value of µ(x), where µ(x) and σ2(x) are given by equations (5.4)
and (5.5), respectively.

5.3. Discussion on the correlation effect. One important feature distin-
guishing the “intrinsic fitness model” from the homogeneous random graph model is
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that the pij ’s around a given vertex are no longer independent samples from a distri-
bution, but have certain kind of correlation. If we imagine each pij is one realization
of a random variable pij , then for the homogeneous random graph, all pij ’s are i.i.d.
random variables following the same distribution Fp(x). But for the intrinsic fitness
model, pij =h(xi,xj), where xi and xj are i.i.d. random variables following the dis-
tribution gx(x). Hence for a given vertex i, the pij ’s associated with it would have
correlations depending on the relation function h(a,b). A vertex with a large fitness
number tends to make the probabilities around it mostly high, while a vertex with a
small fitness number tends to make them mostly low.

Introducing the idea of correlation would enrich our understanding of random
graph classification. In all the previous discussion, we have assumed that the Bernoulli
random variables eij representing edges in random graphs are mutually independent.
Under this assumption, we classify random graphs into two types, “homogeneous” and
“heterogeneous”, solely based on the statistical properties of the pij ’s. A homogeneous
random graph could have i.i.d. pij ’s, or identical, dependent pij ’s with the same type
of correlation for every vertex, which would still keep the homogeneity among vertices.
A heterogeneous random graph could have identical, dependent pij ’s with different
types of correlation as in the case in the intrinsic fitness model, or independent,
non-identical pij ’s, or even pij ’s which are neither identical nor independent. If
we further introduce correlations to the Bernoulli random variables eij , then the
situation will become much more complicated. First, the Poisson approximation and
the extended version of the central limit theorem dictated by Theorem 3.3 do not
hold any more. Hence the degree fluctuation does not necessarily follow a normal (or
Poisson) distribution, rather it could have any form depending on the correlations
among eij ’s. Secondly, the ergodic property will break down. In the large limit of
graph size N , the intra-graph degree distribution will not always converge to the
degree distribution of the random graph ensemble. The simplest example to support
this argument is that the eij ’s have perfect positive correlations. Then the graph
realization only has two possibilities: a completely connected graph, or a graph with
no edges. The intra-graph degree distribution will switch between two delta functions,
and would never converge no matter how large the graph size is. In the random
graph field, there has not been much study so far on the idea of edge or probability
correlation, mainly due to the difficulty of defining the correlation quantitatively.
However the richness of new problems makes it a promising research topic, and we
will carry on a more thorough analysis in future publications.

6. Connectivity

The main focus of this paper is on the degree properties of generalized random
graphs. Another interesting but more sophisticated topological property is the con-
nectivity of random graphs. For the classical ER random graph G(N,p), a thorough
analysis of its connectivity has been provided in [6, 11]. The main results for this
simplest random graph model are as follows:

(i) if Np<1, then almost surely the graph is disconnected and composed of isolated
trees;

(ii) if Np>1, then almost surely the graph has a giant component;

(iii) if Np> logN , then almost surely the graph is totally connected.

For more realistic random graph models where edge probabilities are not identical,
the analysis of connectivity could be very difficult since there is no general pattern
shared by all the vertices. However, as shown by Molloy and Reed [17, 18], for the class
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of graphs with a same intra-graph degree distribution PG(k) as defined in equation
(4.1), the connectivity of the random graph class can be determined solely by PG(k),
as stated in the following lemma.

Lemma 6.1. In the ensemble of graphs with the same degree sequence PG(k),
if

∑

k(k−2)PG(k)>0, then such graphs almost surely have a giant component; if
∑

k(k−2)PG(k)<0, then such graphs almost surely are disconnected and composed
of isolated small components.

This criterion has also been obtained by Newman using a generating function
method [20]. Note that the random graph model studied by these authors is quite
different from what we study in this paper. In their model, they classify all the possible
graphs with N vertices into different groups with the criterion that graphs in the same
group has the same intra-graph degree distribution PG(k). For a given PG(k), the
graph is chosen uniformly at random from that corresponding group. This is where
the randomness comes from in this so-called “configuration” model. In our model
G(N,M), however, the predetermined parameter is the random matrix M. Under
this matrix M, different graph realizations may have different intra-graph degree
distributions PG(k), thus would be classified into different groups in the configuration
model. Fortunately, by Theorem 4.1 the variance of PG(k) among different realizations
tend to be 0 as the graph size N →∞. Therefore, in the large limit of N , we could
place all the realizations of random graph G(N,M) into a same group according to the
degree distribution P (k) of G(N,M). It seems that by this means the same criterion
in Lemma 6.1 could be applied to infer the connectivity of our generalized random
graph model G(N,M). However, this is not always true. In fact, this criterion is still
valid and could even be simplified for the homogeneous random graphs, but is not
applicable for the heterogeneous random graphs.

The homogeneous random graph has the nice feature that all the vertices have
identical statistical properties. As shown in equation (5.3), all the vertices have the
same degree fluctuation fi(k), which is also equal to the degree distribution P (k) of the
random graph model. This property allows us to treat the component size distribution
problem as a homogeneous branching process, and apply the same generating function
method used by Newman in [20]. The phase transition also occurs at the critical point
∑

k(k−2)P (k)=0. Since the P (k) in the homogeneous random graph model has a
particular form, we can obtain a simpler criterion.

Theorem 6.2. For the homogeneous random graph model G(N,M), if the average
degree of any vertex is more than 2, then almost surely the graph has a giant compo-
nent; if the average degree is less than 1, then almost surely the graph is disconnected
and has many small components.

Proof. If fi(k) is better approximated by equation (4.4), then

N
∑

k=0

k(k−2)P (k)=
N

∑

k=0

k(k−2)fi(k)≈
N

∑

k=0

k(k−2)
1

√

2πσ2
i

exp

(

−
(k−µi)

2

2σ2
i

)

≈

∫ ∞

0

x(x−2)
1

√

2πσ2
i

exp

(

−
(x−µi)

2

2σ2
i

)

dx≈σ2
i +µ2

i −2µi

=N(E[p]−E[p2])+N2E[p]2−2NE[p]=N(NE[p]2−E[p]−E[p2]).
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Therefore, the condition
∑

k(k−2)P (k)>0 corresponds to NE[p]2 >E[p]+E[p2],

i.e., NE[p]>1+ E[p2]
E[p] , and the condition

∑

k(k−2)P (k)<0 corresponds to NE[p]2 <

E[p]+E[p2], i.e., NE[p]<1+ E[p2]
E[p] . Since 0≤ E[p2]

E[p] ≤1, we can make the conclu-

sion that if NE[p]=E[di]>2, then
∑

k(k−2)P (k)>0; if NE[p]=E[di]<1, then
∑

k(k−2)P (k)<0.
If fi(k) is better approximated by equation (4.3), then

N
∑

k=0

k(k−2)P (k)=

N
∑

k=0

k(k−2)fi(k)≈

N
∑

k=0

k(k−2)
µk

i

k!
e−µi

=

N
∑

k=0

[k(k−1)−k]
µk

i

k!
e−µi =

N
∑

k=2

µk
i

(k−2)!
e−µi −

N
∑

k=1

µk
i

(k−1)!
e−µi

=µ2
i

N
∑

k=2

µk−2
i

(k−2)!
e−µi −µi

N
∑

k=1

µk−1
i

(k−1)!
e−µi =µ2

i −µi =µi(µi−1).

Therefore, if µi =NE[p]>1, then
∑

k(k−2)P (k)>0; if µi =E[p]<1, then
∑

k(k−
2)P (k)<0.

Combining the results in the two cases above, we can draw a common conclusion
that if the average degree is more than 2, then almost surely the graph has a giant
component; if the average degree is less than 1, then almost surely the graph is
disconnected and has many small components.

Unlike the classical ER random graph, there exits a gap E[di]=NE[p]∈ (1,2)
where we cannot make an obvious conclusion and should defer to the original criterion
∑

k(k−2)P (k)>0. This is due to the intricacy introduced in our model, where the
probability can take many values rather than a unique one. To explain the situation
in this gap, we consider an example where two graphs with the same average degree
have different connectivity situations. Let E[di]=NE[p]=1.5. The first graph is
constructed as follows: in the matrix M of that graph, each row has only two non-
zero entries, one is a Bernoulli random variable with success probability 0.5, the other
is a fixed number 1. The positions of these two entries are chosen uniformly and
independently at random in each row. For this graph, the maximum degree is 2
and some of the vertices have degree 1. Hence

∑

k(k−2)P (k)<0 and almost surely
this graph is disconnected and has many small components. The second graph is
the classical ER random graph with Np→1.5 as N →∞. By the result (ii) in the
beginning of this section, this graph almost surely has a giant component.

The heterogeneous random graph does not have any pattern to follow, and thus
may generate a lot of complexity. For a given degree distribution P (k), there could
be many random graphs G(N,M) with different matrices M sharing this same degree
distribution. The failure of building a 1-to-1 correspondence between P (k) and M

is the major reason why we can not replicate the criterion used in the configuration
model. To see why this is true, we use a simple example as an illustration. Suppose
the following degree distribution is given: P (k)=1 for k =3 and P (k)=0 for all
other values of k, i.e. all the vertices in the graph have degree 3. We will construct
two graphs, one is connected, the other is not, while both having the given degree
distribution P (k). The first graph has N =4m vertices and m isolated components.
Each component is a complete graph K4 with 4 vertices, thus the degree of each vertex
is 3. The second graph is constructed based on the first one with certain modification.
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We firstly erase one edge in each component K4, then connect all the vertices in the
graph with degree 2, but not in the same component, to form a ring. This graph
also has the same degree distribution, but is connected. If we choose the appropriate
matrix M to represent the first graph and apply the criterion

∑

k(k−2)P (k)>0,
then the conclusion would be the graph almost surely has a giant component, which
is obviously incorrect. Note that this example does not contradict with the original
criterion for the configuration model, since the first graph is actually a rare event
in the group of all graphs with degree distribution P (k) and the probability of the
appearance of that graph tends to 0 as N →∞. Almost all the other graphs with
such degree distribution P (k) would have a giant component, and the second graph
is one of them.

From the above arguments, we acquire a brief idea of how connected a generalized
random graph would be according to its representation matrix M. To sum up, for the
homogeneous random graph, if the average degree is more than 2, then the graph al-
most surely has a giant component; if the average degree is less than 1, then the graph
is almost surely disconnected and has many small components. For the homogeneous
random graph with average degree between 1 and 2, as well as the heterogeneous
random graph, no general conclusions could be drawn and the connectivity should be
studied case by case.

7. Conclusions

This paper introduces a generalized random graph (GRG) model which would
fit to most real-world random networks. Based on this model, we have studied the
degree properties, namely the inter-graph degree fluctuation and the intra-graph de-
gree distribution. It is pointed out that the degree distribution of the whole graph
model and the degree sequence of a single graph realization have different concepts,
and due to the inter-graph degree fluctuation on each vertex, they also have different
analytical expressions. However, if all the edge indicators are mutually independent,
then in a graph with very large size the ergodic property ensures that the intra-graph
degree distribution in a single graph realization converges to the degree distribution
of the whole graph model. Moreover, we classify the GRGs into two types: “homo-
geneous” and “heterogeneous”, based on the extent of similarity among vertices in a
statistical sense. It is found that the homogeneous random graphs have many nice
features which resemble the classical ER random graph. Finally, we explore the issue
of connectivity in the GRG model. Discussion is mainly focused on the condition of
the emergence of a giant component in different types of random graphs, and some
simple criteria for the case of homogeneous random graphs are derived .

The structure and dynamics of random graphs has been a rapidly developing
research field during the last few decades [8, 13, 23]. While most studies focused
on particular models and their corresponding behavior [1, 5, 7], this paper attempts
to understand a generalized random graph model. Although only the subject of
degree properties and connectivity have been studied, which might be the simplest
task among all the features of complex graphs, it is our hope that it could serve as
a starting point toward more comprehensive research of this intriguing field, such as
network growth and dynamics, etc. We believe that such investigations will eventually
help us gain deeper understanding to the complex systems in the real world.
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