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MODELING SHALLOW GRAVITY-DRIVEN SOLID-FLUID

MIXTURES OVER ARBITRARY TOPOGRAPHY∗

IOANA LUCA† , YIH-CHIN TAI‡ , AND CHIH-YU KUO§

Abstract. The purpose of this paper is to derive modeling equations for debris flows on real
terrain. Thus, we use curvilinear coordinates adapted to the topography as introduced, e.g., by
Bouchut and Westdickenberg [F. Bouchut and M. Westdickenberg, Commun. Math. Sci., 2(3), 359-
389, 2004], and develop depth-averaged models of gravity-driven saturated mixtures of solid grains
and pore fluid on an arbitrary rigid basal surface. First, by only specifying the interaction force and
ordering approximations in terms of an aspect ratio between a typical length perpendicular to the
topography, and a typical length parallel to the topography, we derive the governing equations for
the shallow flow of a binary mixture, driven by gravitational force. In doing so, the non-uniformity
through the avalanche depth of the constituent velocities and of the solid volume fraction is accounted
for by coefficients of Boussinesq type. Then, the material behaviour peculiarities of both constituents
properly enter the theory. One constituent is a granular solid. For its stresses we propose three
models, one of them of Mohr-Coulomb type. The other constituent is a Newtonian/non-Newtonian
fluid with small viscosity, obeying a viscous bottom friction condition. The final governing equations
for the shallow flow of the mixture, incorporating the constitutive assumptions, are deduced, and the
limiting equilibrium is then investigated.

Key words. Debris flow, solid-fluid mixture, curvilinear coordinates adapted to the topography,
shallow avalanche equations, Mohr-Coulomb granular material.
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1. Introduction

Geophysical flows across three-dimensional terrain include debris flows, which are
collections of geological materials (e.g., sand, rocks) mixed with water, transporting
trees, cars, pieces of destroyed houses, etc. The damages that debris flows produce are
huge, hence the considerable interest in their prediction and evolution once initiated.

Three processes characterize a debris flow: initiation, movement and deposition.
Due to their complexity, to this date there is no theoretical approach which could
account for all these processes. This paper refers to the movement of the avalanching
body, more specifically, to the derivation of the equations describing the motion of a
shallow mass of debris on arbitrary rigid topography. For an extensive literature on
modeling equations of avalanching flows the reader may consult Pudasaini and Hutter
[22] and Harbitz [6]. Here we restrict the introductory survey to works closely related
to the topic of the paper.

The efforts in deducing modeling equations for the flowing material layer con-
centrate on (i) the rheology of the avalanching mass and, more recently, on (ii) the
account of the influences due to the geometry of the basal surface. Related to (i),
as a real progress in comparison to earlier works, we mention the depth-integrated
granular model of Mohr-Coulomb type developed by Savage and Hutter [24]. Very
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2 SHALLOW MIXTURE FLOWS OVER ARBITRARY TOPOGRAPHY

close to this proposal are the models by Iverson [8], McDougall and Hungr [14], [15].
To (ii) we refer in more detail, since the main contribution of the present paper is
the description of the moving mass on arbitrary topography. Thus, related to (ii), we
mention Pudasaini et al. [19]–[21] for designing an orthogonal coordinate system suit-
able for a channel-type form of the bed surface, and Iverson and Denlinger [9], Pitman
and Le [18] and Pelanti, Bouchut and Mangeney [17] for depth-averaged equations
corresponding to topographic terrains with small slope variations.

However, the first general formulation of the modeling equations in coordinates
following the real topography is due to Bouchut and Westdickenberg [1]. Unlike many
works devoted to avalanche modeling, within this approach the avalanche depth is
measured along the normal direction to the bed surface, and not along the verti-
cal direction, which would distort the shallowness assumption in steep topographies.
However, the rheological properties are so weak that the flowing material is an inviscid
fluid, which is not a model that can describe, e.g., a deposition process. Independently,
De Toni and Scotton [4] used essentially the same coordinate system as did Bouchut
and Westdickenberg [1] to derive modeling equations for an avalanche mass of Savage-
Hutter type, but they measured the avalanche depth vertically. By using the powerful
matrix decomposition of field quantities and relations, as introduced in Bouchut and
Westdickenberg [1], Luca, Tai and Kuo [10] reconsidered the formulation of modeling
equations for the avalanche mass (inviscid fluid and Newtonian fluid) with the aid of
the depth-averaging procedure. The approach could be easily extended in Luca et
al. [11] to account for any rheologic behaviour, and to derive a hierarchy of depth-
integrated avalanche models in terms of the scaling of the stress components; besides,
a topography-adjusted version of the Savage-Hutter model fitting into this hierarchy
has been proposed. We also mention Bouchut et al. [2] and Tai and Kuo [28] for
including the erosion/deposition process into a framework which uses the topography
following coordinates of Bouchut and Westdickenberg [1].

Most of the references cited above concern single-phase dry granular avalanches,
which are clearly a rough approximation when dealing with debris flows. More real-
istic descriptions of these flows, that is as solid-fluid mixtures, are given by Iverson
[8], Iverson and Denlinger [9], Pudasaini, Hutter and Wang [20], Pitman and Le [18],
and recently by Pelanti, Bouchut and Mangeney [17]. Iverson [8] and Iverson and
Denlinger [9] use the mass balance and momentum balance of the (saturated) mix-
ture as a whole, with the fluid velocity estimated as being equal to the solid velocity,
and constant solid volume fraction. The paper by Pudasaini, Hutter and Wang [20] is
developed in the same spirit. On the other hand, Pitman and Le [18] derived model
equations for a binary mixture, in which each constituent moves according to its own
mass balance and momentum balance equations. As a consequence, the interaction
force between constituents (the effect of which is annihilated in the models of Iverson
type by adding the momentum balance equations of both constituents) plays an im-
portant role in the derivation of the constituent pressures. A slightly but substantially
different version of Pitman and Le [18] is proposed in Pelanti, Bouchut and Mangenay
[17], where, unlike Pitman and Le [18] (who depth-average the momentum balance
equation corresponding to the fluid constituent after dividing by the fluid volume
fraction), the momentum balance equation corresponding to the fluid constituent is
depth-averaged in its original form, which is more reasonable if the analogy with the
turbulence theory is invoked.

The approaches dealing with mixture models are restricted to topography with
small slope variations of the bed surface. It is the purpose of the present paper to
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deal with a mixture on arbitrary topography. Thus, we extend the considerations in
Luca et al. [11] to a two-phase flow. One constituent is a Newtonian/non-Newtonian
fluid with small viscosity (so small that the stresses in the bulk fluid approximately
reduce to the pore pressure), and experiencing bottom viscous friction. The other
constituent is a granular material experiencing bottom Coulomb friction, and of which
the stresses in the bulk material are given by (1) a spherical tensor, (2) a topography-
adapted version of the Iverson-Denlinger model [9], or (3) the topography-adapted
version of the Savage-Hutter model as introduced in Luca et al. [11]. Thus, three
mathematical models for debris flows are developed. The interaction force, different
from that in Pitman and Le [18], is carried over from Schneider and Hutter [25],
where it is thermodynamically justified, but here it is postulated in an ad-hoc manner.
An interesting consequence of this assumption is that both constituent pressures are
essentially given by the same formulas as for the single-phase material in Luca et al.
[11].

The content of the paper is structured as follows. Section 2 briefly introduces
the geometric properties of the basal surface and the topography-based curvilinear
coordinates as in Bouchut and Westdickenberg [1]. Section 3 formulates the intrinsic
model equations for a binary saturated mixture, in a region which is bounded below
by the topographic surface and above by the free surface, which, as in Pitman and
Le [18], is considered a material surface for each constituent. A formal introduction
of the constituent pressures is given. Later, these pressures are identified as the
pore fluid pressure and the solid stress component acting perpendicular to a surface
element parallel to the bed surface. Section 4 derives the non-dimensional model
equations in the curvilinear coordinates described in section 2. In section 5 the depth-
averaged mass and tangential momentum balance equations corresponding to each
constituent are deduced, and the basic equations which are next dealt with are clearly
stated. Section 6 introduces the scaling approximations due to the shallowness of the
flowing material layer. The non-uniformity along the avalanche depth of the tangential
velocities and solid volume fraction are accounted for by coefficients of Boussinesq
type. In section 7 the interaction force is postulated, and the emerging modeling
equations, deduced in the Appendix without specifying the rheological properties of
the constituents, are presented. Section 8 specifies the material peculiarities. Thus,
three depth-integrated avalanche models for debris flows are proposed. In section 9 we
take up the problem of finding the conditions satisfied by the solid volume fraction and
avalanche depth when the avalanche mass reaches the equilibrium. Finally, section
10 is devoted to conclusions. Numerical investigations based on the derived model
equations are left for future work.

In this paper we use the following notations. The 2×2 matrices are denoted by
capital upright boldface letters, e.g., A, and the 2-column matrices are denoted by
small upright boldface letters, e.g., a. A similar notation, but with slanted letters, is
used for vectors and tensors, e.g., a, A. The dyadic product of two column matrices
a and b is a⊗b≡abT , where the superscript T stands for the transpose of a matrix;
the symbol ⊗ also denotes the tensor product of two vectors. The inner product of
the 2-column matrices a and b is a ·b≡ tr(abT ), where tr denotes the trace operator,
and the inner product of the squared matrices A, B is defined as A ·B≡ tr(ABT ).
Finally, the Greek indices have the values 1, 2, the Latin indices range from 1 to 3,
and summation over repeated indices is understood.

2. Curvilinear coordinates adapted to the topography

In this section we shall briefly present the curvilinear coordinates introduced by
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Bouchut and Westdickenberg [1], see also De Toni and Scotton [4], as a tool to derive
modeling equations for the avalanche mass flowing on arbitrary topography. In doing
so we follow the exposure from Luca et al. [11].

Thus, we suppose the mathematical model of the basal topography to be a regular
surface S in the three-dimensional Euclidean point space E, of which the translation
vector space is denoted by V. Assume that, with respect to an orthogonal Cartesian
coordinate system Ox1x2x3, in which Ox3 is (physically) the vertical direction, S has
the representation

x1 =x1(ξ
1,ξ2), x2 =x2(ξ

1,ξ2), x3 = b(x1(ξ
1,ξ2),x2(ξ

1,ξ2)),

which is considered of class C2 on some open subset ∆0 of R2, and such that the
determinant of the matrix

F≡
(

∂xi

∂ξα

)

i,α∈{1,2}

is positive (det F>0). Then, if ρ∈V is the position vector of a point on S, the vectors

τα ≡ ∂ρ

∂ξα
, α∈{1,2},

define the natural basis of the tangent space to S at that point; moreover, a unit
normal vector field to S is

n≡ τ 1×τ 2

‖τ 1×τ 2‖
,

where × stands for the cross product of two vectors in V, and ‖‖ represents the
Euclidean norm of a vector in V. We choose n so as to point into the avalanche
body. We denote by −s1,−s2 and c (c>0) the components of n with respect to the
Cartesian basis of V associated to Ox1x2x3, collect s1, s2 in the 2-column matrix

s≡ (s1,s2)
T ,

and note that

c=(1+gradb ·gradb)−1/2, s= c gradb, (2.1)

where grad is the gradient operator with respect to the Cartesian coordinates x1, x2.
Then, the coefficients of the first fundamental form of S are φαβ ≡τα ·τβ , and

(φαβ)=M−1
0 , M0≡F−1(I−s⊗s)F−T , (2.2)

holds, where I is the 2×2 unit matrix. By the representation

∂n

∂ξβ
=−bαβ τα =−Wα

βτα, β∈{1,2},

with {τ 1,τ 2} the reciprocal basis of {τ 1,τ 2}, one defines the coefficients bαβ of the
second fundamental form of S, and the entries Wα

β of the Weingarten matrix. Note
the relation

W=M0H, H≡ (bαβ), W≡ (Wα
β).
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Finally, the curvature tensor H and the mean curvature Ω of the surface at a given
point on S are defined by

H≡ bαβ τα⊗τβ =Wα
β τα⊗τβ , Ω≡ 1

2 trH= 1
2 trW.

Now, if r is the position vector of a point P ∈E lying above the basal surface, the
relation

r(x1,x2,x3)=ρ(ξ1,ξ2)+ξn(ξ1,ξ2)≡r(ξ1,ξ2,ξ), ξ >0 (2.3)

defines a change of coordinates in a neighborhood of S, on condition that the Jacobian
J of the transformation (2.3) is non-zero. Since J is given by

J =
1

c
detB, B≡F(I−ξW), (2.4)

implying

J =J0det(I−ξW), J0≡ J |ξ=0 =
1

c
detF 6=0, (2.5)

the condition J 6=0 is equivalent to

det(I−ξW) 6=0, (2.6)

which we assume to be valid in the domain occupied by the avalanche mass, and which
exactly defines what is meant by “arbitrary” topography in this paper and in related
works, e.g., Bouchut and Westdickenberg [1], Luca et al. [10], [11]. The vectors

gβ ≡
∂r

∂ξβ
=(δα

β −ξWα
β)τα, β∈{1,2}, g3≡

∂r

∂ξ
=n, (2.7)

where δα
β is the Kronecker symbol, define the natural basis of V at the point P .

Clearly, g1, g2 are parallel to S, and g3 is normal to S. Thus, in the representation of
a vector w∈V with respect to this basis we can identify a tangential component wτ

and a normal component wn, that is,

w =w1g1 +w2g2
︸ ︷︷ ︸

wτ

+w3g3
︸ ︷︷ ︸

wn

, wτ ≡wβgβ =w−wn, wn≡w3g3 =(w ·n)n.

We close this section by introducing the notation

M≡B−1(I−s⊗s)B−T , (2.8)

and mentioning that

M0=M|ξ=0 , M=(I−ξW)−1M0(I−ξW)−T . (2.9)

The matrix M enters the approach via the metric tensor corresponding to the trans-
formation (2.3), see Bouchut and Westdickenberg [1]. That is, with gij ≡gi ·gj , we
have

(gij)=

(
M−1 0

0 1

)

. (2.10)
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3. Model equations

We model the avalanche body by a binary mixture consisting of a solid and a fluid.
In doing so, we adopt Truesdell’s mixture theory, see Truesdell [30]. In particular,
it is therefore assumed that each constituent is a continuum in its own right, and
that the configurations of the two continua are superposed at each moment. So, the
phase separation is not accounted for. To identify the quantities referring to the two
constituents we use the indices s (solid) and f (fluid). Thus, ρs and ρf denote the
partial densities (mass of a constituent per volume of the mixture), while σs and
σf are the constituent stress tensors. However, instead of vs, vf for the constituent
velocities, we use v and u, respectively. Then, assuming that no mass interactions
are present, for the solid constituent the mass and momentum balance equations in
an inertial reference frame can be written as

∂ρs

∂t
+div(ρsv)=0,

∂ρsv

∂t
+div(ρsv⊗v−σs)=ρsb+

+
m, (3.1)

where b is the specific body force,
+
m is the interaction force, and div is the spatial

divergence operator. Similarly, for the fluid constituent we have

∂ρf

∂t
+div(ρfu)=0,

∂ρfu

∂t
+div(ρfu⊗u−σf )=ρfb− +

m . (3.2)

Taking the opposite of
+
m as interaction force in (3.2), Truesdell’s third metaphysical

principle (i.e., the mixture as a whole must be described by the same laws which apply
for a single body) is fulfilled.

We assume that the constituents are density preserving, that is the true densities
ρ̃s, ρ̃f (mass of a constituent per volume of that constituent) are constant in time
and uniform in space. Moreover, we suppose that there is no void space within the
mixture, that is

νs +νf =1, (3.3)

where νs, νf are the constituent volume fractions (constituent volume per mixture
volume). We have

ρs =νsρ̃s, ρf =νf ρ̃f ,

or, simplifying the notation with the aid of ν≡νs,

ρs =νρ̃s, ρf =(1−ν)ρ̃f ,

which turns equations (3.1), (3.2) into

∂ν

∂t
+div(νv)=0,

∂νv

∂t
+div

{

νv⊗v− 1

ρ̃s
σs

}

=νb +
1

ρ̃s

+
m, (3.4)

and

∂(1−ν)

∂t
+div {(1−ν)u}=0,

∂(1−ν)u

∂t
+div

{

(1−ν)u⊗u− 1

ρ̃f
σf

}

=(1−ν)b− 1

ρ̃f

+
m,

(3.5)
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respectively. Note that ν∈(0,1), as the constituents are assumed to simultaneously
occupy the same region in E.

Equations (3.4), (3.5) hold in the domain occupied by the avalanche mass, which
is bounded below by the bed surface and above by the free surface. However, the free
surface is unknown, and hence, e.g., an evolution equation for it is needed. Here we
consider that the free surface

F (x1,x2,x3,t)=0 (3.6)

is material for each constituent, which yields the so-called kinematic boundary con-
ditions

∂F

∂t
+∇F ·v =0,

∂F

∂t
+∇F ·u=0 at F =0, (3.7)

where ∇ is the spatial gradient operator. Relations (3.7) are equivalent to

∂F

∂t
+∇F ·v =0, ∇F ·(v−u)=0 at F =0,

which shows, in particular, that the projections of the velocities v, u (evaluated on
the free surface) onto the normal direction to the free surface are required to be
equal. This condition is approximately satisfied if v−u≈0 , but for “large” v−u it
is less realistic, as Pitman and Le [18] (who also used (3.7)) noticed. However, the
account of (3.7) brings considerable simplifications in the averaging procedure, see the
forthcoming Proposition 5.1. On the other hand, since each constituent of the mixture
is assumed to be a continuum body in its own right, the free surface corresponding to
each constituent has to be a material surface, see Truesdell and Toupin [29], p. 509;
with a common free surface for both constituents we then obviously have (3.7).

Now, equations (3.4), (3.5) are complemented by boundary conditions at the
bottom topography and at the free surface, as follows. The velocity of each constituent
is supposed to be tangent to the basal topography,

v ·n=0, u ·n=0, (3.8)

which expresses the so-called non-penetration condition, and both solid and fluid
stresses normal to the free surface are taken to be zero, that is,

σsnF ·nF =0, σfnF ·nF =0 at F =0, (3.9)

where nF denotes a unit normal vector field to the surface F =0. It is worthwhile to
mention that, in avalanche modeling the free surface is usually assumed traction-free,
which, for the case presented here, means

σsnF =0 , σfnF =0 at F =0. (3.10)

However, as shown in Luca, Tai, Kuo [10] for the one-component avalanche mass,
conditions (3.10) could lead to an overdetermined system of equations. Later on, in
section 6, we merely assume that the stresses on the free surface are negligibly small,
see (6.5) below.

The unknown fields in (3.4)–(3.9) are ν, v, u, F , σs, σf ,
+
m, and since there are

10 scalar equations, viz. (3.4), (3.5), (3.7), we need closure relations in terms of 10
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basic scalar fields. We take 8 of these basic unknowns to be ν, v, u, F . Then, we
represent the stress tensors σs, σf as

σs =−ps1 +σE
s , σf =−pf1 +σE

f , (3.11)

where the identification of the constituent pressures ps, pf and of the extra stress
tensors σE

s , σE
f has to be made clear when giving the closure relations for σs,f , and

take ps, pf as the other 2 independent variables. (We note that the trace of σE
s,f in

(3.11) is not necessarily zero.) Thus, the extra stresses σE
s,f and the interaction force

+
m have to be given in terms of these basic fields.

However, to look for a solution of the system of equations and boundary conditions

(3.4)–(3.9), complemented by closure relations for σE
s,f ,

+
m and initial data, is rather

a challenging task. To simplify the formulated problem we use the depth-averaging
procedure as described in section 5. Essentially, the approach is the same as that used
in Luca et al. [11] for the one-component avalanche mass, and is based on equations
(3.4)–(3.9) written in the curvilinear coordinates of section 2.

For the forthcoming sections 4–7 the specification of ps,f and σE
s,f in (3.11) is not

important, but we can keep in mind that, in the models proposed in section 8, we have
ps ≡−σsn ·n, and σf is given by a Newtonian/non-Newtonian law, see (8.1) below.
We may think of ps, pf as independent variables required by the saturation constraint
(3.3), and by the constraint that both constituents have the same free surface, see
(3.7).

4. Non-dimensional model equations in curvilinear coordinates

Now we want to write equations (3.4)–(3.9) in terms of the contravariant com-

ponents vi, ui, T ij
s , T ij

f , bi,
+
mi (i,j =1,2,3) of v, u, σE

s , σE
f , b and

+
m , respectively,

relative to the basis {g1,g2,g3}:

v =vigi, u=uigi, σE
s =T ij

s gi⊗gj , σE
f =T ij

f gi⊗gj , b= bigi,
+
m=

+
migi.

To this end we first collect these components in block matrix form, as follows:

v≡
(

v1

v2

)

, v≡v3, u≡
(

u1

u2

)

, u≡u3,

(

Ps ps

pT
s T 33

s

)

≡ (T ij
s ),

(

Pf pf

pT
f T 33

f

)

≡ (T ij
f ), b≡

(
b1

b2

)

, b≡ b3,
+
m≡

(
+
m1

+
m2

)

,
+
m≡ +

m3.

In the above, Ps and Pf are 2×2 matrices, and ps, pf are 2-column matrices. Then,
we introduce the (two-dimensional) Grad and Div operators by

Gradf≡
(

∂f

∂ξ1
,
∂f

∂ξ2

)T

, Gradw≡
(

∂wα

∂ξβ

)

, Divw≡ ∂wα

∂ξα
, DivP≡

(
∂P 1β

∂ξβ
,
∂P 2β

∂ξβ

)T

,

where f , w≡ (w1,w2)T and P≡ (Pαβ)α,β∈{1,2} are smooth fields on ∆0. Finally,
assuming that ξ1,ξ2 are length dimensional coordinates, and that the free surface
equation (3.6) emerges as ξ =h(ξ,t) under transformation (2.3), we switch to non-
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dimensional variables according to the scalings

(x1,x2,x3,t)=L(x̂1,x̂2,x̂3, t̂/
√

Lg ), (ξ1,ξ2,ξ)=L(ξ̂1, ξ̂2, ξ̂), (b,h)=L(b̂, ĥ),

(v,v,u,u)=
√

Lg (v̂, v̂,û,û), (b,b)=g(b̂,b̂), (
+
m,

+
m)= ρ̃sg (

+̂
m,

+̂
m),

(ps,T
ij
s )= ρ̃sLg (p̂s,T̂

ij
s ), (pf ,T ij

f )= ρ̃fLg (p̂f ,T̂ ij
f ),

(4.1)

where L is a typical length tangent to the topography, and g is the constant gra-
vitational acceleration. Then, the non-dimensional form of equations and boundary
conditions (3.4)–(3.9) in the curvilinear coordinates defined in section 2 can be sim-
ply carried over from Luca et al. [10], see Proposition 3 therein, with only minor
modifications1. Thus, omitting the hat and using the notations

Γ(−pM,0)≡p

{

B−1 ∂B

∂ξα
Meα +tr(W(I−ξW)−1)B−1s

}

, (4.2)

Γ(P,p)≡−B−1 ∂B

∂ξα
Peα +2B−1FWp+Γ(P)B−1s, (4.3)

Γ(w,w)≡−B−1 ∂B

∂ξα
(w⊗w)eα+2wB−1FWw+Γ(w)B−1s, (4.4)

Γ(P)≡−BT F−T H·P, Γ(w)≡−BT F−T H·(w⊗w), (4.5)

where p, w are scalars, p, w are 2-column matrices, P is a 2×2 matrix, and e1≡ (1,0)T ,
e2≡ (0,1)T , as well as

c0≡ ρ̃s/ρ̃f , (4.6)

we deduce the follwoing statements.

Proposition 4.1. In the curvilinear coordinates (2.3) and in non-dimensional form,
the balance equations (3.4) corresponding to the solid constituent emerge as

∂Jν

∂t
+Div{Jνv}+

∂

∂ξ
{Jνv}=0, (4.7)

∂

∂t
{Jνv}+Div{J (νv⊗v+psM−Ps)}+

∂

∂ξ
{J(νvv−ps)}

+JΓ(−psM,0)+JΓ(Ps,ps)

=Jνb+JνΓ(v,v)+J
+
m, (4.8)

∂

∂t
{Jνv}+Div{J(νvv−ps)}+

∂

∂ξ
{J (νv2−T 33

s )}+J
∂ps

∂ξ
+JΓ(Ps)

=Jνb+JνΓ(v)+J
+
m, (4.9)

1To avoid confusion, we draw attention to the fact that P, p and T 33 are used in Luca et al.
[10], [11] to denote the contravariant components of the stress tensor.
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while the balance equations (3.5) corresponding to the fluid constituent turn into

∂

∂t
{J(1−ν)}+Div{J(1−ν)u}+

∂

∂ξ
{J(1−ν)u}=0, (4.10)

∂

∂t
{J(1−ν)u}+Div{J [(1−ν)u⊗u+pfM−Pf ]}+ ∂

∂ξ
{J [(1−ν)uu−pf ]}

+JΓ(−pf M,0)+JΓ(Pf ,pf )=J(1−ν)b+J(1−ν)Γ(u,u)−c0J
+
m, (4.11)

∂

∂t
{J(1−ν)u}+Div{J [(1−ν)uu−pf ]}+

∂

∂ξ
{J

[
(1−ν)u2−T 33

f )
]
}

+J
∂pf

∂ξ
+JΓ(Pf )=J(1−ν)b+J(1−ν)Γ(u)−c0J

+
m . (4.12)

Moreover, the kinematic boundary conditions (3.7) appear as

∂h

∂t
+Gradh ·v=v,

∂h

∂t
+Gradh ·u=u at ξ =h(ξ,t), (4.13)

the conditions (3.8) of the tangency of the velocities emerge as

v=0, u=0 at ξ =0, (4.14)

and the dynamic conditions (3.9) become

{(−psM+Ps)Gradh−ps}·Gradh−(ps ·Gradh+ps−T 33
s )=0,

{(−pfM+Pf )Gradh−pf}·Gradh−(pf ·Gradh+pf−T 33
f )=0

(4.15)

at ξ =h(ξ,t).

Equations (4.8), (4.11) are referred to as tangential momentum balance equations,
and (4.9), (4.12) are called normal momentum balance equations. The Γ,Γ terms
appear as source terms in (4.8), (4.9), (4.11), (4.12), due to the Christoffel symbols
corresponding to the change of coordinates. In the next section we outline the way
by which we exploit the equations and boundary conditions given in Proposition 4.1.

5. Depth-averaging procedure

Now we explain the depth-integration procedure, which we use to derive the final
modeling equations. First, the mass balance equations (4.7), (4.10) and the tangential
momentum balance equations (4.8), (4.11) are integrated with respect to the normal
variable ξ from 0 to h(ξ,t). So, by using the Leibniz rules

∫ h(ξ,t)

0

Divwdξ =Div

∫ h(ξ,t)

0

wdξ−w(ξ,h(ξ,t)) ·Gradh,

∫ h(ξ,t)

0

DivPdξ =Div

∫ h(ξ,t)

0

Pdξ−P(ξ,h(ξ,t))Gradh,

that hold for a 2-column matrix w(ξ,ξ,t) and for a square matrix P(ξ,ξ,t) of order
2, as well as the boundary conditions (4.14), (4.13), we deduce the following.
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Proposition 5.1. For the solid constituent, the depth-integrated mass balance and
tangential momentum balance equations are given by

∂

∂t

∫ h(ξ,t)

0

Jνdξ+Div

∫ h(ξ,t)

0

Jνvdξ =0, (5.1)

∂

∂t

∫ h(ξ,t)

0

Jνvdξ+Div

∫ h(ξ,t)

0

J{νv⊗v+psM−Ps}dξ+ (J ps)|ξ=0

+{J [(−psM+Ps)Gradh−ps]}ξ=h +

∫ h(ξ,t)

0

J{Γ(−psM,0)+Γ(Ps,ps)}dξ

=

∫ h(ξ,t)

0

Jνbdξ+

∫ h(ξ,t)

0

JνΓ(v,v)dξ+

∫ h(ξ,t)

0

J
+
mdξ. (5.2)

Similarly, for the fluid constituent we have

∂

∂t

∫ h(ξ,t)

0

J(1−ν)dξ+Div

∫ h(ξ,t)

0

J(1−ν)udξ =0, (5.3)

∂

∂t

∫ h(ξ,t)

0

J(1−ν)udξ+Div

∫ h(ξ,t)

0

J{(1−ν)u⊗u+pfM−Pf}dξ

+ (J pf )|ξ=0 +{J [(−pfM+Pf )Gradh−pf ]}ξ=h

+

∫ h(ξ,t)

0

J{Γ(−pfM,0)+Γ(Pf ,pf )}dξ

=

∫ h(ξ,t)

0

J(1−ν)bdξ+

∫ h(ξ,t)

0

J (1−ν)Γ(u,u)dξ−c0

∫ h(ξ,t)

0

J
+
mdξ. (5.4)

Then we note that, assuming that the mass balance equation (4.7) and boundary
condition (4.14)1 hold, the kinematic boundary condition (4.13)1 is equivalent to the
depth-integrated mass balance equation (5.1). A similar statement is valid for the
fluid constituent. Consequently, the system of equations and boundary conditions
(4.7)–(4.15) is equivalent to (4.7)–(4.12), (5.1), (5.3), (4.14), (4.15). Next, instead of
one of the equivalent systems mentioned above, we use the system consisting of

(4.7), (5.2), (4.9), (4.10), (5.4), (4.12), (5.1), (5.3), (4.14), (4.15), (5.5)

which is a consequence of (4.7)–(4.15). The idea is to use (5.5) under some ordering
approximations to deduce a set of equations involving only the depth-average of the
field quantities entering equations (5.5), as we subsequently describe. Thus, by using
the mass balance equations (4.7), (4.10) and the boundary conditions (4.14), one
deduces the normal velocities v, u as

v=− 1

Jν

∫ ξ

0

{
∂Jν

∂t
+Div(Jνv)

}

dξ′,

u=− 1

J(1−ν)

∫ ξ

0

{
∂J(1−ν)

∂t
+Div(J(1−ν)u)

}

dξ′,
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which will be substituted into (5.2), (4.9), (5.4), (4.12). Then, by using the closure

relation for the interaction force
+
m and scaling approximations, from (4.9), (4.12) and

(4.15) we obtain the constituent pressures ps, pf , the expressions of which are next
introduced into (5.2), (5.4). Finally, the depth-integrated equations (5.1)–(5.4) are
transformed into equations for the depth-averaged solid volume fraction, the depth-
averaged tangential velocities, and for the avalanche depth, by closing them with
constitutive relations and flow rules that account for the shallowness of the flowing
material layer.

The benefit of the averaging procedure, which has already been used, e.g, in
Savage and Hutter [24], Luca et al. [10], [11], Tai and Kuo [28] for the one-component
avalanche mass, and in Pitman and Le [18], Pelanti, Bouchut and Mangenay [17] for
a solid-fluid mixture, is that the normal variable ξ is eliminated.

6. Ordering approximations

We exploit the equations and boundary conditions (5.5) under some scaling ap-
proximations, by which physically non-significant contributions of the field variables
are neglected. In order to express these approximations we use an aspect ratio ǫ≪1
between a typical thickness normal to the topography and a typical length-scale L
tangent to the topography, and a constant γ∈ (0,1). We suppose that the same L
is considered to define the non-dimensional quantities in (4.1). For concreteness, we
mention that for snow and debris avalanches we usually have ǫ≈10−2 and γ≈ 1

2 , see
Pudasaini and Hutter [22], p.188. We also make use of the definition

f (ξ,t)≡ 1

h(ξ,t)

∫ h(ξ,t)

0

f(ξ,ξ,t)dξ

for the mean value (along the depth) or depth-average of a quantity f . Thus, we
introduce the following approximations, which we shall later comment upon.
a) Geometric approximations: the material layer is thin, i.e., h=O(ǫ).
b) Flow rule approximations: the velocities v, u are such that v=O(1), u=O(1),
and assumptions of Boussinesq type hold, viz.,

∫ h(ξ,t)

0

ξvdξ= 1
2h2ms

1v+O(ǫ2+γ),

∫ h(ξ,t)

0

v⊗vdξ=hms
2v⊗v+O(ǫ2+γ),

∫ h(ξ,t)

0

ξv⊗vdξ = 1
2h2ms

3v⊗v+O(ǫ2+γ),

∫ h(ξ,t)

0

vvdξ = 1
2h2βsv+O(ǫ2+γ),

(6.1)

and similar relations with scalar coefficients mf
1 , mf

2 , mf
3 , βf for the fluid constituent.

The momentum correction factors or Boussinesq coefficients ms
1 to βf are supposed

to be scalar functions of ξ,t (possibly by means of ν , v) of order O(1), see Luca et
al. [11].
c) Configurational-flow rule approximations: the solid volume fraction ν and the
tangential velocities v, u have the properties

ν =ν +O(ǫ), (6.2)

∫ h(ξ,t)

0

νvdξ =hns
1νv+O(ǫ2+γ),

∫ h(ξ,t)

0

νv⊗vdξ =hns
2νv⊗v+O(ǫ2+γ),

∫ h(ξ,t)

0

νudξ =hnf
1νu+O(ǫ2+γ),

∫ h(ξ,t)

0

νu⊗udξ =hnf
2νu⊗u+O(ǫ2+γ),

(6.3)
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where the scalar coefficients ns
1 to nf

2 are functions of ξ,t of order O(1).
d) Dynamic stress approximations: corresponding to the motion of the avalanche
mass, the stress tensors σs and σf satisfy the conditions

ps =O(ǫ), Ps =O(ǫ), ps =O(ǫγ), T 33
s =O(ǫ1+γ),

pf =O(ǫ), Pf =O(ǫ), pf =O(ǫγ), T 33
f =O(ǫ1+γ).

(6.4)

Moreover, on the free surface ξ =h(ξ,t) we assume

(−psM+Ps)Gradh−ps =O(ǫ2+γ), (−pfM+Pf )Gradh−pf =O(ǫ2+γ). (6.5)

We now address assumptions a–d. Thus, by assumption a we consider that the
flowing avalanche mass is shallow. In particular, it implies that ξ =O(ǫ) for ξ∈ [0,h],
which will be used next.

By assumption b, the tangential velocities of both constituents are significant,
while the normal velocities v, u are of order O(ǫ), which can be seen from (5.6) by ac-
counting for ν =O(1), v=O(1), u=O(1), J =O(1), ξ =O(ǫ). Moreover, postulating
(6.1) and similar relations for the fluid constituent, as well as (6.2), tangent velocity
profiles v, u that slightly deviate from “plug-flow” profiles are envisaged. We explain
this by referring to the solid constituent. Thus, inserting v=v(ξ,t), which defines
a “plug-flow”, into the left-hand side of the first three relations in (6.1), we deduce
that these relations are satisfied with ms

1 =ms
2 =ms

3 =1 and no negligible terms. In
view of (5.6), the last assumption in (6.1) actually refers to ν and v. To see that it is
also satisfied by a “plug-flow” of the solid constituent, the volume fraction of which
satisfies (6.2), we have first to use

J =J0det(I−ξW)=J0(1−2Ωξ)+O(ǫ2) (6.6)

and (6.2) in (5.6)1 to obtain

v=− 1

J0ν

{
∂

∂t
(J0ν )+Div(J0νv)

}

ξ+O(ǫ2),

and hence

∫ h(ξ,t)

0

vvdξ =− h2

2J0ν

{
∂

∂t
(J0ν )+Div(J0νv)

}

v+O(ǫ3).

Consequently, noting that v=v, the last relation in (6.1) is satisfied by a “plug-flow”
in which (6.2) holds, with the Boussinesq coefficient βs given by

βs =− 1

J0ν

{
∂

∂t
(J0ν )+Div(J0νv)

}

, (6.7)

and negligible terms of order O(ǫ3). It is then clear that the momentum correction
factors ms

1 to ms
3 distinct from 1, and βs distinct from (6.7) refer to a motion of the

avalanche mass different from a “plug-flow” in which (6.2) holds. Corresponding to
a power law for the tangential velocity profile, the coefficients ms

1, ms
2, ms

3 have been
determined in Luca et al. [11], and are shown to belong to [1,2); the coefficient βs

can be determined as in deducing (6.7).
Assumption c is suggested by the experimental data recorded in Egashira, Itoh

and Takeuchi [5], which show that the solid volume fraction decreases almost linearly



14 SHALLOW MIXTURE FLOWS OVER ARBITRARY TOPOGRAPHY

along the avalanche depth, except near the free surface, where it abruptly goes to zero.
As a simplified first approach, we suppose that the solid volume fraction at (ξ,ξ,t)
is only slightly different from its depth-averaged value at (ξ,t), see (6.2). Moreover,
postulating (6.3), a linear (in ξ) profile of ν is envisaged. That is, if ν is given by the
linear profile

ν =ν +

(

1− 2ξ

h

)

(ν0−ν), ν0≡ ν|ξ=0 =χ0ν, χ0≥1, χ0−1=O(ǫ),

and the Boussinesq relations (6.1)1−−3 are taken into account, then (6.3) are satisfied
with

ns
1 =χ0 +(1−χ0)m

s
1, ns

2 =χ0m
s
2 +(1−χ0)m

s
3,

nf
1 =χ0 +(1−χ0)m

f
1 , nf

2 =χ0m
f
2 +(1−χ0)m

f
3 .

(6.8)

Consequently, assuming (6.1)1−3, values of ns
1 to nf

2 different from those in (6.8),
reflect the non-linearity of the solid volume fraction distribution along the avalanche
depth.

Finally, by (6.4) of assumption d both pressures ps,f are of the order of the
hydrostatic pressure, and the normal extra stresses parallel to the base, i.e., T 11

s,f ,

T 22
s,f , as well as the shear stresses T 12

s,f , ps,f , are small, while the normal extra stresses

T 33
s,f are insignificant. Conditions (6.5), combined with (4.15), show that

ps ·Gradh+ps−T 33
s =O(ǫ3+γ), pf ·Gradh+pf −T 33

f =O(ǫ3+γ) (6.9)

at ξ =h(ξ,t). These and (6.5) represent nothing more than the assumption that the
stress vectors σs,fnF on the free surface are negligibly small, see Luca et al. [11].

In the next section, conditions a–d, complemented by the closure relation for the

interaction force
+
m, are used to exploit the equations in (5.5). The body force will

be taken as the gravitational force, so that we have, see Luca, Tai and Kuo [10],

b=−cB−1s, b=−c. (6.10)

Here non-dimensional components b and b of the body force vector b are envisaged.

7. Quasi-general model for a shallow binary mixture

It is worthwhile to mention that until now the indices s and f have only been
formally used, since the solid-fluid attribute of the mixture has not yet entered the
theory. In this section we still keep this generality. However, we specify the interaction

force
+
m. Various relations proposed for the interaction force can be found in Massoudi

[12]. We also mention Pitman and Le [18], with the law

+
m=−ν∇pf +cD(u−v),

where cD is the drag coefficient. Here we take, in a simplified form, the expression

of
+
m deduced in Schneider and Hutter [25], see Chapter 8 therein, as a consequence

of the entropy inequality within a thermodynamic analysis conducted with specific
constitutive assumptions, different from those considered in this paper. It is then
clear that (7.1) below is an ad-hoc assumption. However, it has the advantage that
it accounts for the influences of both constituent pressures on the interaction force.
Besides, an interesting result of this assumption is that, by exploiting the normal
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momentum balance equations, the constituent pressures are shown to be given by the
same formulae as for the one-component avalanche mass, see Luca et al. [11].

Thus, introducing the true pressures p̃s, p̃f according to

ps =νp̃s, pf =(1−ν)p̃f ,

we assume

+
m={(1−cs)p̃s +csp̃f}∇ν +cD(u−v), (7.1)

where cs is the solid mass fraction,

cs ≡
ρs

ρs +ρf
=

c0ν

c0ν +1−ν
, c0≡

ρ̃s

ρ̃f
, (7.2)

and the drag coefficient cD is assumed to be constant. In non-dimensional form, (7.1)
appears as, see (4.1),

+
m=

{

(1−cs)p̃s +
cs

c0
p̃f

}

∇ν +cD(u−v), (7.3)

where the non-dimensional drag coefficient above is related to the dimensional drag
coefficient in (7.1) by

cDnon−dim =
1

ρ̃s

√

L

g
cDdim.

Moreover, in the curvilinear coordinates considered in section 2, (7.3) emerges as

+
m=

{

(1−cs)p̃s +
cs

c0
p̃f

}

MGradν +cD(u−v),

+
m=

{

(1−cs)p̃s +
cs

c0
p̃f

}
∂ν

∂ξ
+cD(u−v).

(7.4)

We assume that the non-dimensional drag coefficient in (7.4) is cD =O(1)2.
The exploitation of equations (5.5), under assumptions a–d, (6.10), (7.4), leads

to the results stated in the next proposition, the proof of which is relegated to the
Appendix.

2In Hydraulics the drag force is defined as the total force acting by a fluid on a submerged
rigid body, when the fluid and the rigid body are in relative rectilinear motion. This force is
non-dimensionalised as cw ≡ drag force/((1/2)ρ̃f u2A), where u is the relative velocity, and A is
a typical area of the submerged body. Values of the so-called drag coefficient cw are listed for
various bodies, e.g., in Roberson and Crowe [23]: cw ∈ (0.85, 2.3) for large Reynolds numbers,
and cw is smaller than these values for laminar flows. Now, if extrapolating, we take the drag
force cDdim(u−v) in a binary mixture as cw ρ̃f‖u−v‖(u−v)/(2d), where d is a typical diam-
eter of the grain particles, we have cDdim = cwρ̃f‖u−v‖/(2d). Thus, with the typical values
ρ̃f ≈1000Kg/m3, ‖u−v‖≈1m/s, d=0.1m for a debris flow, and taking cw ∈ (0.85, 2.3), we de-
duce cDdim ∈ (4.25×103, 11.5×103)Kg/(m3s). Then, with ρ̃s ≈2500Kg/m3, L≈100m, g≈10m/s,
we estimate cDnon−dim ∈ (5.37, 14.54). Having in view that ǫ≈10−2, we see that the assumption
cDnon−dim =O(1) is roughly justified by these heuristics. We also mention Mambretti, Larcan and
De Wrachien [13] with their cw =0.2, as calibrated in the numerical computations, even for a flow
with a large Reynolds number. Using cw =0.2, we have cDnon−dim ≈1.26=O(1). In fact, cD has
to be such that cD(u−v)=O(ǫγ), see the derivation of (A.1), (A.2).
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Proposition 7.1. Assuming a–d, (6.10), (7.4) and cD =O(1), the mean pressures of
the mixture constituents are given by

ps = 1
2 h(c+ms

3as)ν +O(ǫ1+γ), pf = 1
2 h(c+mf

3af )(1−ν)+O(ǫ1+γ), (7.5)

where as ≡Hv ·v, af ≡Hu ·u. Moreover, the depth-integrated mass and tangential
momentum balance equations corresponding to the solid constituent emerge as

∂

∂t
{J0h(1−Ωh)ν}+Div{J0h(ns

1−ms
1Ωh)νv}=O(ǫ2+γ), (7.6)

∂

∂t
{J0h(ns

1−ms
1Ωh)ν v}+Div

{
J0h

[
(ns

2−ms
3Ωh)νv⊗v+psM0−Ps

]}

−J0h

{

F−1 ∂F

∂ξα
Pseα−2Wps +(H ·Ps)F

−1s

}

=−J0 ps|ξ=0−J0h
{(

c+ns
2as− 1

2ms
3hãs

)
ν I+psW

}
F−1s

−F−1 ∂F

∂ξα
{J0h [(ns

2−ms
3Ωh)νv⊗v+psM0]}eα

+ 1
2 J0h

2ms
3νF−1 ∂

∂ξα
(FWF−1)F(v⊗v)eα +J0h

2βsνWv

+
J0h

2

2(c0ν +1−ν )

{

c+ms
3(1−ν )as +mf

3νaf

}

M0Gradν

+cDJ0h
{

(1−mf
1Ωh)u−(1−ms

1Ωh)v
}

+O(ǫ2+γ), (7.7)

where ãs ≡Hv ·Wv . Similarly, the depth-integrated mass and tangential momentum
balance equations corresponding to the fluid constituent turn into

∂

∂t
{J0h(1−Ωh)(1−ν)}+Div

{

J0h
(

1−nf
1ν −mf

1 (1−ν )Ωh
)

u
}

=O(ǫ2+γ), (7.8)

∂

∂t

{

J0h
(

1−nf
1ν −mf

1 (1−ν )Ωh
)

u
}

+Div
{

J0h
[(

mf
2 −nf

2ν −mf
3 (1−ν )Ωh

)

u⊗u+pfM0−Pf

]}

−J0h

{

F−1 ∂F

∂ξα
Pf eα−2Wpf +(H ·Pf )F−1s

}

=−J0 pf |ξ=0

−J0h
{[

(mf
2−nf

2ν )af +
(

c− 1
2mf

3hãf

)

(1−ν )
]

I+pfW
}

F−1s

−F−1 ∂F

∂ξα

{

J0h
[(

mf
2 −nf

2ν −mf
3 (1−ν )Ωh

)

u⊗u+pf M0

]}

eα

+ 1
2 J0h

2mf
3 (1−ν )F−1 ∂

∂ξα
(FWF−1)F(u⊗u)eα +J0h

2βf (1−ν)Wu

− c0J0h
2

2(c0ν +1−ν )

{

c+ms
3(1−ν )as +mf

3νaf

}

M0Gradν

−c0cDJ0h
{

(1−mf
1Ωh)u−(1−ms

1Ωh)v
}

+O(ǫ2+γ), (7.9)

where ãf ≡Hu ·Wu.
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In (7.7), (7.9) the mean pressures ps, pf are understood to be given by the non-
neglected parts in (7.5). It is worthwhile to note that the formulae (A.6) (see Ap-
pendix) for the true pressures of both constituents coincide with the formula for the
pressure in the one-component theory, see Luca et al. [11]. This result is essentially
due to assumption (7.3) on the interaction force plus the ordering approximations
a–d.

We refer to (7.5)–(7.9) as the shallow avalanche equations corresponding to a

two-component mixture, for which the non-dimensional interaction force
+
m is (7.3).

Complemented by closure relations for the extra stresses of both constituents, these
equations are meant to stand for the determination of ν, v, u, h.

Multiplication of (7.7) from the left by F gives the equation

∂

∂t
{J0h(ns

1−ms
1Ωh)νFv}

+Div
{
J0hF

[
(ns

2−ms
3Ωh)νv⊗v+psM0−Ps

]}

+J0h
{
2FWps−(H ·Ps)s

}

=−J0 Fps|ξ=0−J0h
{(

c+ns
2as− 1

2ms
3hãs

)
ν I+psFWF−1

}
s

− 1
2 J0h

2ms
3ν

∂

∂ξα
(FWF−1)F(v⊗v)eα +J0h

2βsνFWv

+
J0h

2

2(c0ν +1−ν )

{

c+ms
3(1−ν )as +mf

3νaf

}

FM0Gradν

+cDJ0h
{

(1−mf
1Ωh)Fu−(1−ms

1Ωh)Fv
}

+O(ǫ2+γ), (7.10)

which is equivalent to (7.7), since detF 6=0, and somewhat of lower complexity than
that of (7.7). A similar equation can be deduced for the fluid constituent from (7.9),
namely

∂

∂t

{

J0h
(

1−nf
1ν −mf

1 (1−ν )Ωh
)

Fu
}

+Div
{

J0hF
[(

mf
2 −nf

2ν −mf
3 (1−ν )Ωh

)

u⊗u+pfM0−Pf

]}

+J0h
{
2FWpf −(H ·Pf )s

}

=−J0Fpf |ξ=0−J0h
{[

(mf
2−nf

2ν )af +
(

c− 1
2mf

3hãf

)

(1−ν )
]

I+pfFWF−1
}

s

+ 1
2 J0h

2mf
3 (1−ν )

∂

∂ξα
(FWF−1)F(u⊗u)eα +J0h

2βf (1−ν)FWu

− c0J0h
2

2(c0ν +1−ν )

{

c+ms
3(1−ν )as +mf

3νaf

}

FM0Gradν

−c0cDJ0h
{

(1−mf
1Ωh)Fu−(1−ms

1Ωh)Fv
}

+O(ǫ2+γ). (7.11)

For simplicity of writing, in the remainder of the paper we shall refer to (7.10) and
(7.11) and not to (7.7), (7.9).

The mean pressures (7.5) and equations (7.6), (7.10), (7.8) and (7.11) significantly
simplify if the bottom topography is slightly curved, as shown in the next proposition.
So, we have



18 SHALLOW MIXTURE FLOWS OVER ARBITRARY TOPOGRAPHY

Proposition 7.2. If H=O(ǫ), or H=O(ǫγ) and ps =O(ǫ), pf =O(ǫ), then the
mean pressures of the mixture constituents are given by

ps = 1
2 hcν +O(ǫ1+γ), pf = 1

2 hc(1−ν)+O(ǫ1+γ), (7.12)

the depth-integrated mass and tangential momentum balance equations corresponding
to the solid constituent emerge as

∂

∂t
{J0hν}+Div{J0hns

1νv}=O(ǫ2+γ), (7.13)

∂

∂t
{J0hns

1νFv}+Div
{
J0hF

[
ns

2νv⊗v+psM0−Ps

]}

=−J0 Fps|ξ=0−J0h(c+ns
2as)ν s+

cJ0h
2

2(c0ν +1−ν )
FM0Gradν

+cDJ0h(Fu−Fv)+O(ǫ2+γ), (7.14)

and the depth-integrated mass and tangential momentum balance equations corre-
sponding to the fluid constituent turn into

∂

∂t
{J0h(1−ν)}+Div

{

J0h
(

1−nf
1ν

)

u
}

=O(ǫ2+γ), (7.15)

∂

∂t

{

J0h
(

1−nf
1ν

)

Fu
}

+Div
{

J0hF
[(

mf
2 −nf

2ν
)

u⊗u+pfM0−Pf

]}

=−J0Fpf |ξ=0−J0h
{

(mf
2−nf

2ν )af +c(1−ν )
}

s

− c0cJ0h
2

2(c0ν +1−ν)
FM0Gradν −c0cDJ0h(Fu−Fv)+O(ǫ2+γ). (7.16)

8. Particular models for a shallow solid-fluid mixture

In this section we “close” the balance equations (7.6), (7.10), (7.8) and (7.11) by
specifying the extra-stresses

Ps, Pf , ps, pf , ps|ξ=0 , pf |ξ=0 .

We present three avalanche models of binary mixtures on arbitrary topography, by
combining one fluid constitutive behaviour with three different solid constitutive be-
haviours.

Consider first the interstitial incompressible fluid. For this we assume the (non-
dimensional) Newtonian/non-Newtonian law

σf =−pf1 +2η(γ̇)D, γ̇≡2
√

IID, IID ≡ 1
2 trD2, η =O(ǫ2+γ), (8.1)

with pf – the pore fluid pressure, 1 – the unit tensor, D – the stretching tensor
corresponding to the fluid constituent,

D≡ 1
2 (∇u+(∇u)T ),

and η – the dynamic viscosity. We note that, according to the scalings (4.1), a fluid
with non-dimensional dynamic viscosity of order O(ǫ2+γ) is a realistic model, see Luca
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et al. [11]. We identify pf , σE
f in (3.11) with pf and 2η(γ̇)D, respectively, from (8.1).

Moreover, we suppose that at the bottom topography there is friction, modeled by
the (dimensional) viscous law

σfn−(σfn ·n)n=ρf c̃‖u‖u at ξ =0,

with (non-dimensional) constant friction coefficient c̃. In non-dimensional form this
law emerges as

σfn−(σfn ·n)n=(1−ν)c̃‖u‖u at ξ =0. (8.2)

Since now

Pf =O(η)=O(ǫ2+γ), pf =O(η/ǫ)=O(ǫ1+γ), T 33
f =O(η)=O(ǫ2+γ),

(see the contravariant components of the stretching tensor with respect to the basis
{g1,g2,g3} in Luca et al. [10] or [11] and use (8.1)), the dynamic approximations
(6.4) referring to Pf , pf , T 33

f are fulfilled, conditions (6.5)2, (6.9)2 at the free surface
make sense, and the only non-negligible stress term in (7.11) is pf |ξ=0. This term is

inferred from the boundary condition (8.2). Indeed, in curvilinear coordinates (2.3)
this condition emerges as

pf |ξ=0 =(1−ν0)c̃

√

M−1
0 u0·u0 u0, u0≡ u|ξ=0 . (8.3)

Since pf =O(ǫ1+γ) in the bulk fluid, we require c̃=O(ǫ1+γ), so as to have pf |ξ=0 as

given by (8.3) of order O(ǫ1+γ). Then, in order to relate the basal shear stress (8.3)
to ν and u, we note that ν0 =ν +O(ǫ), see (6.2), and assume

u0 =χfu, χf ∈ (0,1],

which yields

pf |ξ=0 =(1−ν ) c̃χ2
f

√

M−1
0 u·u u +O(ǫ2+γ).

Generally, the sliding parameter χf must be prescribed. For the power law velocity
profile

u=u+
1

n+1

{

1−(n+2)

(

1− ξ

h

)n+1
}

(u−u0), n>0,

and for a constant viscosity η, following Luca, Tai and Kuo [10] it can be shown that,
equating pf |ξ=0 as given by the constitutive law (in which the power law velocity

profile is accounted for) and pf |ξ=0 as given by the friction law, see (8.3), one obtains

u0 =χfu+O(ǫ2+γ), χf =2

{

1+

√

1+4m̃

√

M−1
0 u ·u

}−1

, m̃≡ (1−ν)c̃h

η(n+2)
,

which clearly shows that the sliding coefficient depends on η, c̃, and hence χf is a
parameter which depends, in particular, on the rheology of the fluid and on the friction
properties at the bed surface.
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Thus, postulating the Newtonian law (8.1) with η =O(ǫ2+γ), and the viscous
friction law (8.2) with c̃=O(ǫ1+γ), the tangential momentum balance equation (7.11)
corresponding to the fluid constituent emerges as

∂

∂t

{

J0h
(

1−nf
1ν −mf

1 (1−ν )Ωh
)

Fu
}

+Div
{

J0hF
[(

mf
2 −nf

2ν −mf
3 (1−ν )Ωh

)

u⊗u+pfM0

]}

=−J0(1−ν ) c̃χ2
f

√

M−1
0 u·u Fu

−J0h
{[

(mf
2−nf

2ν )af +
(

c− 1
2mf

3hãf

)

(1−ν )
]

I+pfFWF−1
}

s

+ 1
2 J0h

2mf
3 (1−ν ) ∂

∂ξα
(FWF−1)F(u⊗u)eα +J0h

2βf (1−ν)FWu

− c0J0h
2

2(c0ν +1−ν )

{

c+ms
3(1−ν )as +mf

3νaf

}

FM0Gradν

−c0cDJ0h
{

(1−mf
1Ωh)Fu−(1−ms

1Ωh)Fv
}

+O(ǫ2+γ). (8.4)

For small curvature of the bed surface, i.e., H=O(ǫγ), the equation above reduces to

∂

∂t

{

J0h
(

1−nf
1ν

)

Fu
}

+Div
{

J0hF
[(

mf
2 −nf

2ν
)

u⊗u+pfM0

]}

=−J0(1−ν ) c̃χ2
f

√

M−1
0 u·u Fu−J0h

{

(mf
2−nf

2ν )af +c(1−ν )
}

s

− c0cJ0h
2

2(c0ν +1−ν)
FM0Gradν −c0cDJ0h(Fu−Fv)+O(ǫ2+γ),

see also (7.16).
Now we refer to the solid constituent, for which we identify the pressure ps in

decomposition (3.11) as ps ≡−σsn·n, so that T 33
s =0. At the bottom topography we

assume the classical Coulomb friction law

σsn−(σsn·n)n=(tanδ)(−σsn·n)+ sgnv at ξ =0, (8.5)

with tanδ =O(ǫγ), where δ is the basal angle of friction, tanδ>0, the index + stands
for the positive part of a quantity, i.e., f+≡max{0,f}, and

sgnv≡







1

‖v‖ v, if v 6=0 ,

any tangent vectorm to S, ‖m‖≤1, if v =0 ,

see, e.g., Bouchut and Westdickenberg [1]. In (8.5) the non-dimensional form accord-
ing to (4.1) is envisaged. Recalling that v=0 at ξ =0, in curvilinear coordinates (8.5)
emerges as

ps|ξ=0 =(tanδ)(ps|ξ=0)+ sgnv0, v0≡ v|ξ=0 , (8.6)

where for a 2-column x the multivalued function sgnx is defined as

sgnx≡







1
√

M−1
0 x ·x

x, if x 6=0,

any 2-column m, M−1
0 m ·m≤1, if x=0.

.
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In particular, (8.6) shows that ps|ξ=0 =O(ǫ1+γ). We assume that ps in the bulk fluid
is of the same order of magnitude as on the bottom surface, that is,

ps =O(ǫ1+γ).

As a consequence, in (7.10) the term 2J0hWps is negligibly small. Moreover, with
ps =O(ǫ1+γ) and T 33

s =0, we have

ps =ν p̃⋆
s +O(ǫ2), p̃⋆

s ≡ c(h−ξ)+H ·
∫ h(ξ,t)

ξ

v⊗vdξ′,

see (A.7) and the derivation of (A.6). So, taking ξ =0 in the expression above, we
derive

ps|ξ=0 =h(c+ms
2as)ν +O(ǫ2).

This result and the assumption

v0 =χsv, χs ∈ (0,1],

turn the boundary condition (8.6) into

ps|ξ=0 =h(tanδ){c+ms
2as}+ν sgnv+O(ǫ2+γ), (8.7)

which needs to be used in (7.10) to express the basal shear stress ps|ξ=0. The sliding
coefficient χs does not appear in the friction law (8.7).

It only remains to specify the mean extra stresses Ps. To this end, recalling
the assumption Ps =O(ǫ), we shall specify σs when evaluated up to terms of order
O(ǫ1+γ). More specifically, we have

σs =σij
s gi⊗gj =σαβ

s gα⊗gβ +σα3
s (gα⊗n+n⊗gα)+σ33

s n⊗n,

and using the relation

(σij
s )=

(

−psM+Ps ps

pT
s −ps +T 33

s

)

between the contravariant components σij
s of the stress tensor σs and the contravari-

ant components Ps, ps, T 33
s of the extra stress tensor σE

s (see (2.10) and (3.11)1), as
well as the assumptions

Ps =O(ǫ), ps =O(ǫ1+γ), ps =−σ33
s =O(ǫ)

and approximation gα =τα +O(ǫ), see (2.7), we have

σs =σ⋆αβ
s τα⊗τβ −psn⊗n+O(ǫ1+γ)=O(ǫ), (σ⋆αβ

s )≡−psM0 +Ps.

This yields

σs =σ⋆
s +O(ǫ1+γ),

σ⋆
s ≡σ⋆αβ

s τα⊗τβ −psn⊗n, (σ⋆αβ
s )=−psM0 +Ps,

(8.8)

and therefore it is clear that any assumption on σs as evaluated up to terms O(ǫ1+γ),
that is on σ⋆

s , yields Ps. Moreover, (8.8) shows that σ⋆
s n=−psn, implying that −ps
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is an eigenvalue of σ⋆
s , and n is an eigenvector corresponding to this eigenvalue. As

a symmetric tensor, σ⋆
s is then completely determined if the other two eigenvalues

and principal directions (mutually orthogonal and perpendicular to n) are specified.
We shall give them in terms of the eigenvalues and eigenvectors of the mean surface
stretching corresponding to the solid constituent, that is of DSvτ ,

DSvτ ≡ 1
2

(
∇Svτ +(∇Svτ )T

)
,

where, if w is a vector in the tangent space to the surface S, w =wατα, then

∇Sw≡wα
;βτα⊗τβ ,

with {τ 1,τ 2} the reciprocal basis of {τ 1,τ 2}, and

wα
;β≡

∂wα

∂ξβ
+Γα

γβ wγ , Γα
γβ≡φασ ∂2xi

∂ξβ∂ξγ

∂xi

∂ξσ
, φασ≡τα·τσ.

The surface gradient ∇Sw is an endomorphism of the tangent space to S at ξ.
So, let λ1, λ2 be the eigenvalues of the mean surface stretching, and let f1, f2

be corresponding (for the moment arbitrary) orthonormal eigenvectors3. We shall
propose three models for σ⋆

s . Common to these models is the assumption that, if
λ1 6=λ2 (in which case, there are two principal directions of DSvτ uniquely defined),
two principal directions of σ⋆

s , parallel to the topography, coincide with the principal
directions of the mean surface stretching. Three different assumptions on the corres-
ponding eigenvalues will differentiate three models of solid constituents. The case
λ1 =λ2 will be discussed separately for each model.

Before proceeding to state the models, we show how Ps can be deduced from our
assumptions. Thus, we denote by C≡(Cα

β) the change of basis matrix from {τ 1,τ 2}
to the basis {f1,f2} of the tangent space to S, i.e.,

fβ =Cα
βτα, β∈{1,2},

and mention that

CCT =M0, (8.9)

which holds since the basis {f1,f2} is orthonormal and τα·τβ are the entries of the
matrix M−1

0 . Now, by representing σ⋆
s in terms of {f1,f2,n} as

σ⋆
s = σ̃αβ

s fα⊗fβ −psn⊗n,

see definition (8.8)2 of σ⋆
s , we have the relation

(σ⋆αβ)=C(σ̃αβ)CT ,

which combined with (8.8)3 gives

Ps =psM0 +C(σ̃αβ)CT . (8.10)

Our assumptions on σ⋆
s will immediately give (σ̃αβ), and hence Ps can be deduced

from relation (8.10). Finally, note that (8.10) holds, in fact, for any orthonormal
vectors f1, f2 in the tangent space to S, and not necessarily for eigenvectors of
DSvτ .

3The matrix (Dα
β
) in the representation DSvτ =Dα

β
τα⊗τβ is needed to obtain the eigenvalues

and eigenvectors of DSvτ, and it has been deduced in Luca et al. [11].
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Model 1 of the solid constituent

If λ1 6=λ2, we suppose that the eigenvectors f1, f2 of DSvτ are eigenvectors of σ⋆
s

corresponding to the eigenvalue −ps, that is,

σ⋆
s =−psfα⊗fα−psn⊗n=−ps1 . (8.11)

We also assume that σ⋆
s =−ps1 holds if λ1 =λ2, and thus, up to terms of order

O(ǫ1+γ), the granular material is modeled as an inviscid fluid. The stresses σ̃αβ

are then given by the diagonal matrix (σ̃αβ)=−psI, and from (8.10) and (8.9) we
deduce that Ps =0. Therefore, the tangential momentum balance equation (7.10)
corresponding to the solid constituent emerges as

∂

∂t
{J0h(ns

1−ms
1Ωh)νFv}+Div {J0hF[(ns

2−ms
3Ωh)νv⊗v+psM0]}

=−J0h(tanδ){c+ms
2as}+νF sgnv

−J0h
{(

c+ns
2as− 1

2ms
3hãs

)
ν I+psFWF−1

}
s

− 1
2 J0h

2ms
3ν

∂

∂ξα
(FWF−1)F(v⊗v)eα +J0h

2βsνFWv

+
J0h

2

2(c0ν +1−ν )

{

c+ms
3(1−ν )as +mf

3νaf

}

FM0Gradν

+cDJ0h
{

(1−mf
1Ωh)Fu−(1−ms

1Ωh)Fv
}

+O(ǫ2+γ). (8.12)

For a bed surface with curvature H=O(ǫγ), equation (8.12) reduces to

∂

∂t
{J0hns

1νFv}+Div{J0hF[ns
2νv⊗v+psM0]}

=−J0h(tanδ){c+ms
2as}+νFsgnv−J0h(c+ns

2as)ν s

+
cJ0h

2

2(c0ν +1−ν )
FM0Gradν +cDJ0h(Fu−Fv)+O(ǫ2+γ), (8.13)

where ps is given by (7.12)1. If, moreover, H=O(ǫ), the term ms
2as in the expression

of the basal shear stress can also be neglected. However, the influence of the curvature
of the basal surface in (8.13) is still present, via as entering the coefficient of s. In both
equations (8.4) and (8.12), the extra stresses are present only as basal shear stresses,
modeled by a viscous friction law for the fluid, and by a Coulomb friction law for the
solid. That is, the rheology of the mixture components is so weak that it manifests
itself in the governing shallow avalanche equations only through the coefficients of
Boussinesq type, the sliding parameter χf , the viscous friction coefficient c̃, the basal
friction angle δ, and the permeability cD. All these phenomenological parameters are
also present in the next two models.

Model 2 of the solid constituent

Now, again with λ1 6=λ2, we suppose that f1, f2 are eigenvectors of σ⋆
s corresponding

to the eigenvalue −kps, that is,

σ⋆
s =−kpsfα⊗fα−psn⊗n, (8.14)

where the earth pressure coefficient k is defined as

k≡
{

k1
act, if λ1 +λ2≥0

k1
pass, if λ1 +λ2 <0,
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with

k1
act/pass ≡

2

cos2ϕ

{

1∓
√

1−sec2 δ cos2ϕ
}

−1. (8.15)

In the above, the constant ϕ is the internal angle of friction, ϕ>δ, and the minus sign
corresponds to k1

act, while the plus refers to k1
pass. Moreover, recalling that ps =O(ǫ)

and that the idea of introducing σ⋆
s in (8.8) was to collect the terms O(ǫ) of σs, we

can approximate the earth pressure coefficients k1
act/pass arising in (8.14) as follows.

With tanδ =O(ǫγ) and values of the internal angle of friction ϕ∈ (30◦,40◦), see, e.g.,
Pudasaini and Hutter [22], we have

√

1−sec2 δ cos2ϕ=sinϕ+O(ǫ2γ),

and hence from (8.15) we deduce

k1
act/pass = k̃1

act/pass +O(ǫ2γ), k̃1
act/pass ≡2sec2ϕ−1∓2secϕ tanϕ. (8.16)

Therefore, apart from the negligible terms, (8.14) emerges as

σ⋆
s =−k̃ psfα⊗fα−psn⊗n, (8.17)

where

k̃≡
{

k̃1
act, if λ1 +λ2≥0

k̃1
pass, if λ1 +λ2 <0.

(8.18)

Now, since fα⊗fα =1 −n⊗n, it is clear that (8.17) makes also sense for the case
λ1 =λ2, and that in (8.17) we can take any two orthonormal vectors f1,f2 in the
tangent space to S. Thus, for Model 2 of the solid constituent we take (8.17), in which
f1, f2 are arbitrary orthonormal vectors tangent to S4.

Since (8.17) implies (σ̃αβ)=−k̃psI, relations (8.10) and (8.9) yield

Ps =(1− k̃)psM0.

This expression of Ps is inserted into the tangential momentum balance equation
(7.10). If we also recall that the term containing ps is negligible, and that the basal
shear stress is given by (8.7), we have

∂

∂t
{J0h(ns

1−ms
1Ωh)νFv}

+Div
{

J0hF
[

(ns
2−ms

3Ωh)νv⊗v+ k̃psM0

]}

=−J0h(tanδ){c+ms
2as}+νFsgnv +2(1− k̃)J0Ωhpss

−J0h
{(

c+ns
2as− 1

2ms
3hãs

)
ν I+psFWF−1

}
s

− 1
2 J0h

2ms
3ν

∂

∂ξα
(FWF−1)F(v⊗v)eα +J0h

2βsνFWv

+
J0h

2

2(c0ν +1−ν )

{

c+ms
3(1−ν )as +mf

3νaf

}

FM0Gradν

+cDJ0h
{

(1−mf
1Ωh)Fu−(1−ms

1Ωh)Fv
}

+O(ǫ2+γ). (8.19)

4We could have simply postulated (8.11) and (8.14) (in which f1, f2 are any two orthonormal
vectors tangent to S), which avoids the discussion of the cases where λ1 6=λ2 and λ1 =λ2. However,
the reasoning followed in the paper points out the common features of the models (8.11), (8.17) and
the forthcoming (8.21).
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From (8.19) one can easily deduce the tangential momentum balance equation cor-
responding to a bottom surface with small curvature, see also (8.13). Model 2 is an
adaption to the case of an arbitrary bed surface of the model due to Iverson and
Denlinger [9].

Model 3 of the solid constituent

Finally, we propose yet another closure relation for σ⋆
s . Assuming λ1 6=λ2, we require

the ordering of the vectors of the basis {f1,f2} to be so as to have |w1|≥ |w2|, where
w1, w2 are the components of vτ with respect to this basis, i.e., vτ =wαfα. Moreover,
we suppose that f1, f2 are eigenvectors of σ⋆

s corresponding to the eigenvalues −k1ps

and −k2ps, respectively. That is,

σ⋆
s =−k1psf1⊗f1−k2psf2⊗f2−psn⊗n. (8.20)

Here the earth pressure coefficients k1, k2 are given by

k1 =

{

k1
act, if λ1≥0

k1
pass, if λ1 <0,

k2 =

{

k2
act, if λ2≥0

k2
pass, if λ2 <0,

with k1
act/pass defined in (8.15) and

k2
act/pass≡

1

2

{

k1
act/pass +1∓

√
(

k1
act/pass−1

)2

+4tan2 δ

}

,

with the same sign rule as in (8.15) and the choice of k1
act and k1

pass as depending on
whether λ1≥0 or λ1 <0, respectively. Like for Model 2, the earth pressure coefficients
k1, k2 can be approximated as

k1 = k̃1 +O(ǫ2γ), k2 = k̃2 +O(ǫ2γ),

where

k̃1≡
{

k̃1
act, if λ1≥0

k̃1
pass, if λ1 <0,

k̃2≡







k̃1
act, if λ1≥0, λ2≥0

k̃1
pass, if λ1 <0, λ2 <0

1, if λ1≥0, λ2 <0 or λ1 <0, λ2≥0,

and hence, apart from the negligible terms, assumption (8.20), stated for the case
λ1 6=λ2, emerges as

σ⋆
s =−k̃1psf1⊗f1− k̃2psf2⊗f2−psn⊗n,

or, explicitly,

σ⋆
s =







−k̃1
actpsfα⊗fα−psn⊗n, if λ1≥0, λ2≥0

−k̃1
passpsfα⊗fα−psn⊗n, if λ1 <0, λ2 <0

−k̃1
actpsf1⊗f1−psf2⊗f2−psn⊗n, if λ1≥0, λ2 <0

−k̃1
passpsf1⊗f1−psf2⊗f2−psn⊗n, if λ1 <0, λ2≥0.

(8.21)
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Note, in passing, that k̃1
act <1 and k̃1

pass >1. Now, it is important to realize that
(8.21)1,2 make sense for the case λ1 =λ2, and that the orthonormal vectors f1, f2

therein can be chosen arbitrarily in the tangent space to S. Thus, for Model 3 of the
solid constituent we take (8.21), where f1, f2 arising in (8.21)1,2 are orthonormal
vectors tangent to S (be they eigenvectors of DSvτ or not), and f1, f2 in (8.21)3,4

are eigenvectors of DSvτ , ordered as indicated above (clearly, in (8.21)3,4 we have
λ1 6=λ2).

Since (8.21) implies that

(σ̃αβ)=−p

(
k̃1 0

0 k̃2

)

,

from (8.10) we deduce that

Ps =psM0−psC

(
k̃1 0

0 k̃2

)

CT , (8.22)

which has to be inserted into the tangential momentum balance equation (7.10).
This last model, essentially proposed in Luca et al. [11], is a version adapted to
arbitrary topography of the Savage-Hutter model [24], and hence of Mohr-Coulomb
type. Clearly, the bulk stresses in Models 2 and 3 of solid constituent depend on the
internal angle of friction, but are independent of the basal friction angle.

We summarize the model equations of the binary mixture in the following

Proposition 8.1. Suppose that the avalanche mass is modeled as a solid-fluid mix-
ture for which mass productions are not present. Moreover, let

(i) the interaction force be given by (7.3) with the drag coefficient cD =O(1),

(ii) the pore fluid be modeled by the Newtonian/non-Newtonian law (8.1) with viscosity
η =O(ǫ2+γ), and by the bottom viscous friction shown in (8.2) with c̃=O(ǫ1+γ),

(iii) the solid constituent be characterized by the bottom Coulomb friction given in
(8.5) with tanδ =O(ǫγ), and for which the stresses in the bulk material are described
by one of the models 1 to 3.

Then, the governing equations describing the motion of the avalanche mass on
arbitrary topography are as follows:

1) Model 1 of binary mixture: (7.5), (7.6), (7.8), (8.12), (8.4);

2) Model 2 of binary mixture: (7.5), (7.6), (7.8), (8.19), (8.4);

3) Model 3 of binary mixture: (7.5), (7.6), (7.8), (7.10) (in which ps is negligibly
small and the stresses (8.7), (8.22) are accounted for), (8.4).

Before ending this section we mention that the approach here did not make neces-
sary the introduction of the saturation pressure, which often enters a mixture theory
due to the saturation constraint (3.3). The reason for this is that the interaction force
+
m given by (7.1) shows no explicit dependence on the saturation pressure, as, e.g., in
Passman, Nunziato and Walsh [16]. The closure relations for both stress tensors σs,f

neither do depend explicitly on the saturation pressure. The same situation arises
in Pitman and Le [18]. This is, however, different for some models in Schneider and
Hutter [25].
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9. Limiting equilibrium

Now we are interested in the analysis of the conditions satisfied by ν, h when the
avalanche mass described in Proposition 8.1 is in equilibrium, that is, when

∂ν

∂t
=0, v=0, u=0,

∂h

∂t
=0 (9.1)

hold at any ξ, and for any t in some interval. However, we must draw attention to
the fact that, when satisfying (9.1), the solutions ν , h of the model equations may
have no physical reality. Indeed, usually a phase separation process initiates when
the solid-fluid mixture reaches the rest state, or, in the approach developed here, it
is assumed that each point of the avalanche body is occupied simultaneously by both
constituent particles. Besides, the closure relations (8.17) and (8.21) are intended
to describe the stress state in a rapidly flowing avalanche mass, and hence other
closure relations may be necessary to describe the constitutive behaviour of the solid-
fluid mixture at rest. We merely expect the solutions ν, h, when satisfying (9.1), to
approximate the real volume fraction and avalanche height for a very short time period
after the moment when the avalanche stops to flow; in this sense we refer to (9.1) as
describing a limiting equilibrium, see also the comments in Iverson and Denlinger [9].
But it remains for experiments and numerics to validate this conjecture. Here we only
derive the equations satisfied by ν , h, under assumptions (9.1) and corresponding to
Models 1 to 3.

With respect to Models 2 and 3 we make the following remark. The earth pressure
coefficient k̃ is discontinuous at λ1 +λ2 =0, and k̃1, k̃2 have also discontinuity points.
Moreover, the values of these coefficients at the discontinuity points were, in general,
arbitrarily assigned (e.g., we could have taken k =k1

pass for λ1 +λ2 =0), since the
values of these coefficients were deduced for λ1 6=0, λ2 6=0, by combining the Mohr-
Coulomb theory with the Rankine model of soil mechanics, see Hutter et al. [7]. In
order to reduce the computational difficulties connected to these discontinuities, it is
therefore not a bad idea to use regularizing functions k̂, k̂1, k̂2 instead of k̃, k̃1, k̃2,
respectively, as Tai and Gray [26], and Tai, Hutter and Gray [27] have done for the
earth pressure coefficients k1, k2. In doing so, the arbitrariness of the earth pressure
coefficients at the discontinuity points is replaced by the arbitrariness of the choice
of the regularizing functions. However, the values of k̂, k̂1, k̂2 at λ1 =λ2 =0 play an
important role in the description of the limiting equilibrium, and hence they must
be carefully selected. Indeed, at equilibrium DSvτ =0 , and hence the stress tensor
corresponding to Models 2 and 3 has the form

σ⋆
s =−k0psfα⊗fα−psn⊗n, (9.2)

where k0 is the value of k̂ or k̂1, respectively, at λ1 =λ2 =0, and f1, f2 are orthonormal
vectors tangent to S. It is then clear that the study of the limiting equilibrium can
give information on k0. We note that Iverson and Denlinger [9] assumed k0 =1 in
their model.

Thus, we understand that in Models 2 and 3 the earth pressure coefficients are
regularized and exploit the depth-integrated mass and tangential momentum balance
equations corresponding to the solid and fluid constituents under assumptions (9.1),
accounting for (9.2). Taking k0 =1 in (9.2) we obtain the stress tensor corresponding
to Model 1, and so the next calculations, conducted for arbitrary k0, envisage all three
models.
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To begin with, we note that under assumptions (9.1) the mean pressures ps, pf

are given by

ps = 1
2 hcν +O(ǫ1+γ), pf = 1

2 hc(1−ν )+O(ǫ1+γ), (9.3)

see (7.5), and that the depth-averaged mass balance equations (7.6), (7.8) are iden-
tically satisfied. Then, having in view (9.1), (9.2), the depth-integrated momentum
balance equation corresponding to the solid constituent can be deduced from (8.19),
in which k̃ is replaced by k0, as

Div {k0J0hpsFM0}
=−J0hc(tanδ)ν Fm+2(1−k0)J0Ωhpss

−J0h
{
cν I+psFWF−1

}
s +

J0h
2c

2(c0ν +1−ν )
FM0Gradν +O(ǫ2+γ), (9.4)

and by using (9.1), the depth-integrated momentum balance equation (8.4) corre-
sponding to the fluid constituent can be written as

Div
{
J0hpfFM0

}

=−J0h
{
c(1−ν )I+pfFWF−1

}
s− c0J0h

2c

2(c0ν +1−ν )
FM0Gradν +O(ǫ2+γ). (9.5)

We therefore have to exploit (9.4), (9.5), in which (9.3) is accounted for. Thus, using
the formulae

DivFM0 =
∂F

∂ξα
M0eα +FDivM0,

DivM0 =−F−1 ∂F

∂ξα
M0eα−tr

(

F−1 ∂F

∂ξα

)

M0eα−WF−1s−2ΩF−1s,

GradJ0 =J0 tr

(

F−1 ∂F

∂ξα

)

eα +J0HF−1s, Gradc=−cHF−1s,

the last three of which have been deduced in Luca, Tai and Kuo [10], after a routine
calculation equations (9.4), (9.5) can be cast into the form

k0ν FM0Gradh+h
k0(c0−1)ν +k0−1

2(c0ν +1−ν )
FM0Gradν

+ 1
2 (1−k0)hν FWF−1s+(1−Ωh)ν s

=−(tanδ)ν Fm+O(ǫ1+γ), (9.6)

FM0Gradh+
(c0−1)h

2(c0ν +1−ν )
FM0Gradν +(1−Ωh)s=O(ǫ1+γ). (9.7)

Moreover, insertion of the expression of FM0Gradh as deduced from (9.7) into (9.6)
transforms the latter into

(1−k0)

{
h

2(c0ν +1−ν)
FM0Gradν − 1

2hν FWF−1s−(1−Ωh)ν s

}

=(tanδ)ν Fm+O(ǫ1+γ). (9.8)
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We recall that m in (9.8) is specified by the condition M−1
0 m ·m≤1, and hence (9.8)

must be interpreted as the inequality implied by this condition.
Relations (9.7), (9.8) are those that have to be satisfied by ν and h at the limiting

equilibrium. We note that equation (9.7) can be written in the form, see (2.1) and
definition (2.2) of M0,

c gradh+
(c0−1)hc

2(c0ν +1−ν)
gradν +(1−Ωh) gradb=O(ǫ1+γ). (9.9)

For small curvature, H=O(ǫγ), we have grad c=O(ǫγ), and hence (9.9) emerges as

grad(b+hc)+
(c0−1)hc

2(c0ν +1−ν)
gradν =O(ǫ1+γ).

We close this analysis with the following remarks concerning (9.7) (or equivalently
(9.9)) and (9.8).

1) If k0 =1, condition (9.8) is satisfied and there remains only equation (9.9) to
restrict ν and h at equilibrium.

2) If Gradν =0 and k0 6=1, both (9.7), (9.8) are restrictions on h and hence no
solution may exist for h. Thus we expect uniform distribution of ν at equilibrium
only if k0 =1.

3) For very close values of the true densities of both constituents, in the sense that
c0−1=O(ǫγ), see (4.6) (which is not generally true, e.g., in debris flows, but may be
true, e.g., if two fluids are mixed, in which case Model 1 for the “solid” constituent is
most likely appropriate), or for grad ν =0, (9.9) turns into

c gradh+(1−Ωh) gradb=O(ǫ1+γ).

This equation was also deduced in Luca, Tai and Kuo [10] for the single constituent
avalanche body modeled as an inviscid or viscous fluid. In particular, for small cur-
vature H=O(ǫγ) it emerges as

b+ch= constant,

that is, the equilibrium free surface is horizontal.

4) For k0 6=1 and negligible basal friction of the solid constituent, that is, tanδ =
O(ǫ1+γ), condition (9.8) takes the form

h

2(c0ν +1−ν )
FM0Gradν − 1

2hν FWF−1s−(1−Ωh)ν s=O(ǫ1+γ), (9.10)

which, noticing that

FWF−1s=FM0HF−1s=F−T HF−1s−(s ·F−T HF−1s)s,

F−T HF−1 = c grad(gradb),

can be rewritten as

hc

2(c0ν +1−ν)
gradν− 1

2hc3νgrad(gradb)gradb−(1−Ωh)νgradb=O(ǫ1+γ). (9.11)
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This can be used to transform (9.9) into

cgradh+ 1
2 (c0−1)hc3νgrad(gradb)gradb+(c0ν +1−ν)(1−Ωh)gradb=O(ǫ1+γ).

(9.12)
Therefore, equations (9.11), (9.12) stand for the determination of ν and h for the case
k0 6=1 and negligible basal Coulomb friction. With H=O(ǫγ), they emerge as

hc gradν −2(c0ν +1−ν )ν gradb=O(ǫ1+γ),

gradhc+(c0ν +1−ν ) gradb=O(ǫ1+γ),

which are still too complicated for finding an analytic solution.

The remarks above make obvious the fact that the case k0 =1 is the simplest case
which can be considered when regularizing the earth pressure coefficients, but it is
equally interesting to take k0 6=1, e.g., k0 =2sec2ϕ−1, see (8.16).

10. Conclusions

In this paper we presented a quasi-general model and three particular models
of binary mixtures for shallow debris flows on arbitrary rigid terrain. In doing so,
we followed Truesdell’s mixture theory and the approach in Luca et al. [11] dealing
with a one-constituent avalanche mass. In particular, we used curvilinear coordinates
adapted to the topography as introduced by Bouchut and Westdickenberg [1]. A
brief review of these coordinates is given in section 2. In section 3 the intrinsic basic
equations and boundary conditions are formulated, however, the material laws are
not yet specified, so that the terms “solid” and “fluid”, which we use to refer to
both constituents, are only formally used. In writing these equations the following
assumptions are laid down:

• both constituents simultaneously occupy the same domain, bounded below
by the basal surface and above by the free surface;

• no mass exchange occurs between constituents, and neither erosion nor de-
position are considered;

• the constituents are density preserving;

• there are no voids in the mixture;

• the motion of each constituent is governed by the mass and momentum bal-
ance equations, in which the interaction force between constituents is ac-
counted for;

• both constituents have zero normal velocity at the basal surface;

• the free surface is a material surface for each constituent;

• the stresses acting perpendicular to the free surface and corresponding to
both constituents are zero.

In section 4, Proposition 4.1, the intrinsic governing equations are written in non-
dimensional form and in terms of the previously mentioned curvilinear coordinates. In
section 5 the exact depth-integrated mass and tangential momentum balance equa-
tions corresponding to each constituent are deduced, see Proposition 5.1, and the
depth-averaging procedure, followed in the subsequent sections, is described. Part
of this procedure is the formulation of ordering approximations, and this issue is
addressed in section 6. The approximations account for

• the shallow geometry of the avalanche body;
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• significant values of the tangential velocities of both constituents;

• deviations both of the tangential velocity from a “plug-flow” profile and of
the solid volume fraction from a linear profile, manifested by coefficients of
Boussinesq type;

• dynamic assumptions by which, in particular, the stress vector on the free
surface is negligibly small.

These approximations are next used to exploit the local mass balance equations,
the normal momentum balance equations, and the depth-integrated mass and tan-
gential momentum balance equations, in which the interaction force is given by an
ad-hoc closure relation that we have taken from Schneider and Hutter [25]. Propo-
sition 7.1 collects the emerging equations, that stand for the determination of the
depth-averaged solid volume fraction, depth-averaged tangential constituent veloci-
ties and free surface height, as soon as closure relations for the mean stress tensor
corresponding to each constituent are given. Section 8 is devoted to the formulation
of these closure relations. Thus, one constituent is supposed to be a Newtonian/non-
Newtonian fluid with small viscosity and experiencing bottom friction. If the viscosity
is sufficiently small, only the basal shear stress survives in the tangential momentum
balance equation, and this is parameterized by a viscous law with a constant friction
coefficient. The other constituent is a solid subjected to basal friction of Coulomb
type. Moreover, for its bulk stresses three models are proposed. Common to these
models is the assumption that two of the principal directions of the mean stress tensor
are aligned with the principal directions of the mean surface stretching. What differ-
entiates the models is the statement on the eigenvalues of the mean stress tensor. The
simplest case is envisaged by Model 1, which, apart from negligible terms, reduces
to the inviscid fluid. Model 2 is an adaption of the Iverson and Denlinger model
[9] to arbitrary topography. The most general model is Model 3, which constitutes
an adaption of the Savage-Hutter model [24] to arbitrary bed surfaces, and hence of
Mohr-Coulomb type. Proposition 8.1 indicates the governing equations corresponding
to these three models of a solid-fluid mixture flowing on an arbitrary topography. Fi-
nally, in section 9 the conditions satisfied by the solid volume fraction and avalanche
depth at equilibrium are deduced, and particular cases of them are discussed. Nu-
merical simulations using the models proposed here are relegated to further papers.

Appendix. Here we prove Proposition 7.1. In doing so, we closely follow the
proof of a similar proposition stated for the case of a single phase, see Appendix A
in Luca et al. [11]. Thus, we start with the normal momentum balance equation
(4.9) corresponding to the solid constituent, which under the scalings in section 6 and
assumption (6.10)2 emerges as

∂

∂t
(Jνv)

︸ ︷︷ ︸

+Div {J (νvv−ps)}
︸ ︷︷ ︸

+
∂

∂ξ

(
J (νv2−T 33

s )
)

︸ ︷︷ ︸

+J
∂ps

∂ξ
︸ ︷︷ ︸

+JΓ(Ps)
︸ ︷︷ ︸

=

O(ǫ) O(ǫγ) O(ǫγ) O(1) O(ǫ)

−Jνc
︸ ︷︷ ︸

+JνΓ(v)
︸ ︷︷ ︸

+ J
+
m

︸︷︷︸
.

O(1) O(1) O(1)

Accounting for v=u=O(ǫ), cD =O(1) in expression (7.4)2 of
+
m, and neglecting
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the terms that are not of order O(1) in the relation above, we obtain

∂ps

∂ξ
=−ν c+νΓ(v)+

{

(1−cs)p̃s +
cs

c0
p̃f

}
∂ν

∂ξ
+O(ǫγ).

Moreover, with ps =νp̃s, cs as given by (7.2), and

Γ(v)=−H ·(v⊗v)+O(ǫ),

see (4.5), (2.4)2, the above equation can be written as

∂p̃s

∂ξ
=−c−H ·(v⊗v)+

1

c0ν +1−ν
(p̃f −c0p̃s)

∂ν

∂ξ
+O(ǫγ). (A.1)

Similarly, from the normal momentum balance equation (4.12) corresponding to the
fluid constituent we deduce that

∂p̃f

∂ξ
=−c−H ·(u⊗u)+

1

c0ν +1−ν
(p̃f −c0p̃s)

∂ν

∂ξ
+O(ǫγ). (A.2)

The system (A.1), (A.2) can be solved to deduce the true pressures p̃s, p̃f as follows.
We multiply equation (A.1) by (−c0) and add the emerging equation to (A.2). One
obtains

∂

∂ξ
{(c0ν +1−ν)(p̃f −c0p̃s)}

=(c0ν +1−ν){(c0−1)c+c0H ·(v⊗v)−H ·(u⊗u)}+O(ǫγ).

Integrating the preceding equation from ξ to h(ξ,t), with the aid of the boundary
conditions (6.9), which appear as

p̃s =O(ǫ1+γ), p̃f =O(ǫ1+γ) at ξ =h(ξ,t), (A.3)

we deduce that

(c0ν +1−ν)(p̃f −c0p̃s)

=−
∫ h(ξ,t)

ξ

(c0ν+1−ν){(c0−1)c+c0H·(v⊗v)−H·(u⊗u)}dξ′+O(ǫ1+γ). (A.4)

Finally, with ν =ν +O(ǫ), we have

p̃f −c0p̃s

= −
∫ h(ξ,t)

ξ

{(c0−1)c+c0H·(v⊗v)−H·(u⊗u)}dξ′+O(ǫ1+γ)=O(ǫ). (A.5)

The expression above and

1

c0ν +1−ν
=

1

c0ν +1−ν
+O(ǫ)

are next substituted into (A.1), (A.2). Thus, noting that

∫ h(ξ,t)

ξ

(p̃f −c0p̃s)
∂ν

∂ξ′
dξ′ =O(ǫ1+γ),
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which is deduced by first integrating by parts and then by using (A.5)5, (A.3), (6.2),
the integration of (A.1), (A.2) from ξ to h(ξ,t) gives the true pressures as

p̃s = p̃⋆
s +O(ǫ1+γ), p̃⋆

s ≡ c(h−ξ)+H ·
∫ h(ξ,t)

ξ

v⊗vdξ′,

p̃f = p̃⋆
f +O(ǫ1+γ), p̃⋆

f ≡ c(h−ξ)+H ·
∫ h(ξ,t)

ξ

u⊗udξ′.

(A.6)

The mean values of the pressures ps, pf are then given as in (7.5) by noting that

ps =ν p̃⋆
s +O(ǫ1+γ), pf =ν p̃⋆

f +O(ǫ1+γ), (A.7)

and that

∫ h(ξ,t)

0

(
∫ h(ξ,t)

ξ

v(ξ′)⊗v(ξ′)dξ′

)

dξ =

∫ h(ξ,t)

0

(
∫ ξ′

0

v(ξ′)⊗v(ξ′)dξ

)

dξ′

=

∫ h(ξ,t)

0

ξ′v(ξ′)⊗v(ξ′)dξ′ = 1
2h2ms

3v⊗v+O(ǫ2+γ),

and a similar relation with u instead of v, hold.
We now refer to the depth-integrated mass balance equation (5.1), in which the

integrands are evaluated up to terms O(ǫ2). So, with the aid of (6.6) and (6.2) we
obtain

Jν =J0(ν−2Ων ξ)+O(ǫ2), Jνv=J0(νv−2Ων ξv)+O(ǫ2),

whence, together with (6.1)1, (6.3)1, we deduce

∫ h(ξ,t)

0

Jνdξ =J0h(1−Ωh)ν +O(ǫ3),

∫ h(ξ,t)

0

Jνvdξ =J0h(ns
1−ms

1Ωh)νv+O(ǫ2+γ),

(A.8)

and hence (7.6) follows.
Now, we pass to the depth-integrated tangent momentum balance equation (5.2)

and evaluate the integrands up to order O(ǫ1+γ). The first integral on the left-hand
side of (5.2) has already been determined, see (A.8)2. So, we refer to the integral
under the divergence operator and notice that, with (6.6), (6.2), (6.3)2 and

ps =p⋆
s +O(ǫ1+γ)=O(ǫ), p⋆

s ≡ν p̃⋆
s, M=M0 +O(ǫ), Ps =O(ǫ), (A.9)

we deduce

J(νv⊗v+psM−Ps)=J0{νv⊗v−2Ων ξv⊗v+p⋆
sM−Ps}+O(ǫ1+γ),

which implies

∫ h(ξ,t)

0

J(νv⊗v+psM−Ps)dξ

=J0h
{
(ns

2−ms
3Ωh)νv⊗v+p⋆

sM0−Ps

}
+O(ǫ2+γ). (A.10)

5What actually counts after the integration by parts is that ν =ν +O(ǫ) and p̃f −c0p̃s =O(ǫ).
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The next term in (5.2) is

(J ps)|ξ=0 =J0 ps|ξ=0 . (A.11)

Then, the term evaluated at ξ =h is of order O(ǫ2+γ), see (6.5), and hence it can be
neglected.

Now, with (A.9)1,3, (6.6) and definition (2.4) of B, from (4.2) we deduce

JΓ(−psM,0)=J0p
⋆
s

{

F−1 ∂F

∂ξα
M0eα +2ΩF−1s

}

+O(ǫ1+γ).

This, together with

JΓ(Ps,ps)=J0

{

−F−1 ∂F

∂ξα
Pseα +2Wps−(H·Ps)F

−1s

}

+O(ǫ1+γ),

which can be derived from (4.3), (4.5)1 and (6.4), yields

∫ h(ξ,t)

0

J{Γ(−psM,0)+Γ(Ps,ps)}dξ

=J0hp⋆
s

{

F−1 ∂F

∂ξα
M0eα+2ΩF−1s

}

−J0h

{

F−1 ∂F

∂ξα
Pseα−2Wps +(H·Ps)F

−1s

}

+O(ǫ2+γ). (A.12)

Next, since

B−1 =(I−ξW)−1F−1 =(I+ξW)F−1 +O(ǫ2), (A.13)

we have, see (6.10), (6.2),

Jνb=−J0c{(ν−2Ωνξ)I+ξνW}F−1s+O(ǫ2),

and therefore the first term on the right-hand side of (5.2) emerges as

∫ h(ξ,t)

0

J νbdξ =−J0hcν
{
(1−Ωh)I+ 1

2 hW
}
F−1s+O(ǫ3). (A.14)

We next examine the second integral on the right-hand side of (5.2). Thus, by
making use of (4.4), (6.2), (6.6), (A.13), (4.5)2 and v=O(ǫ), we obtain

JνB−1 ∂B

∂ξα
(v⊗v)eα =J0F

−1 ∂F

∂ξα
{(νv⊗v)−2Ων (ξv⊗v)}eα

−J0νF−1 ∂

∂ξα
(FWF−1)F(ξv⊗v)eα +O(ǫ2),

JνvB−1FWv=J0νW(vv)+O(ǫ2),

JνΓ(v)B−1s=−J0

{[
H·(νv⊗v)−2ΩνH·(ξv⊗v)−νWT H·(ξv⊗v)

]
I

+ ν (H·(ξv⊗v))W}F−1s+O(ǫ2).
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We see then, by appeal to (6.1), (6.3), as ≡Hv ·v , and ãs ≡Hv ·Wv , that the esti-
mation

∫ h(ξ,t)

0

JνΓ(v,v)dξ =−J0hν (ns
2−ms

3Ωh)F−1 ∂F

∂ξα
(v⊗v)eα

−J0hν
{[

(ns
2−ms

3Ωh)as− 1
2ms

3hãs

]
I+ 1

2ms
3hasW

}
F−1s

+ 1
2J0h

2ms
3νF−1 ∂

∂ξα
(FWF−1)F(v⊗v)eα +J0h

2βsνWv +O(ǫ2+γ) (A.15)

holds. In order to evaluate the last integral in (5.2), we first use the approximation

cs = c⋆
s +O(ǫ), c⋆

s ≡
c0ν

c0ν +1−ν
,

and recall that p̃s =O(ǫ), p̃f =O(ǫ), to show the relation

J
+
m=J0

{

(1−c⋆
s)p̃

⋆
s +

c⋆
s

c0
p̃⋆

f

}

M0Gradν +cDJ0(1−2Ωξ)(u−v)+O(ǫ1+γ).

Then, replacing p̃⋆
s, p̃⋆

f by their values as given in (A.6), we arrive at

∫ h(ξ,t)

0

J
+
mdξ =

J0h
2

2(c0ν+1−ν )

{

c+(1−ν )ms
3as+νmf

3af

}

M0Gradν

+cDJ0h
{

(1−mf
1Ωh)u−(1−ms

1Ωh)v
}

+O(ǫ2+γ). (A.16)

Finally, substitution of (A.8)2, (A.10)–(A.12), (A.14)–(A.16) into (5.2) proves (7.7).
The governing equations (7.8), (7.9) describing the motion of the fluid constituent

can be analogously deduced.
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