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INTERNATIONAL AND DOMESTIC TRADING

AND WEALTH DISTRIBUTION∗

B. DÜRING† AND G. TOSCANI‡

Abstract. We introduce and discuss a kinetic model for wealth distribution in a simple market
economy which is built of a number of countries or social groups. Our approach is based on the
model with risky investments introduced by Cordier, Pareschi, and Toscani in [S. Cordier, L. Pareschi
and G. Toscani, J. Stat. Phys., 120, 253-277, 2005], and borrows ideas from the kinetic theory of
mixtures of rarefied gases. Wealth is exchanged by individuals inside these countries (domestic trade)
as well as in between different countries (international trade). Under a suitable scaling we derive a
system of Fokker-Planck type equations and discuss its extension to a two-dimensional model with
distributed trading propensity. Theoretical and numerical results for two groups show that the wealth
distribution develops a bimodal (and in general, a polymodal) shape.
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1. Introduction

In recent years, a number of models have been proposed to account for the evolu-
tion of the distribution of wealth in a simple market economy. One class that might be
considered to constitute a mesoscopic approach is based on generalized Lotka-Volterra
models [24, 31]. A second more popular approach relies on methods borrowed from
statistical mechanics for particle systems [23, 14, 8, 7, 22, 29, 11, 13]. The founding
idea behind this last approach is that a trading market composed of a sufficiently
large number of agents can be described using the laws of statistical mechanics, sim-
ilar as for a physical system composed of many interacting particles. If one agrees
with the claim that there are deep analogies between economics and physics, then var-
ious well established physical methods can be applied to analyze wealth distributions
in economies. In particular, by identifying wealth in a closed economy with energy,
the application of statistical physics methods leads to a better understanding of the
development of tails in wealth distributions of real economies. In kinetic models of
simple market economies, in fact, the knowledge of the large-wealth behavior of the
steady state density is of primary importance, since it determines a posteriori if the
model fits data of real economies. By identifying wealth with energy, it becomes clear
that the problem of describing the large time behavior of the wealth distribution in
a kinetic model of the type considered in [23, 14, 8, 7, 22, 29, 11, 13] is analogous
to the problem of describing the large time behavior of the density in the spatially
homogeneous Boltzmann equation. In particular, for nonconservative kinetic models
this analogy has been recently enlightened in [29, 27], while convergence to steady
wealth distributions in conservative models has been dealt with in [25, 26, 16].

The features typically incorporated in kinetic trade models are saving effects and
randomness. Saving means that agents never exchange their entire wealth in a trade,
but are guaranteed to retain at least a certain minimal fraction of their wealth at the
end of each trade. This concept has been introduced in [8], where a fixed saving rate
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for all agents has been proposed, and generalized in [9] by introducing an individual
saving rate. Randomness means that the amount of wealth changing hands is non-
deterministic. Among others, this idea has been developed in [13] to include the effects
of a risky market. Numerous numerical simulations for models of the prescribed type
have been carried out with different mechanism for saving and varying degrees of
randomness (see the recent book [10] for an overview of the recent results). In most
of these models, however, there is conservation of wealth in individual trades.

The distributed saving gives rise to an additional interesting feature when a special
case is considered, where the saving parameter is assumed to take only two fixed
values, preferably widely separated. In this case, the steady distribution of wealth can
result in a bimodal distribution [21]. The numerical output evolves towards a robust
and distinct two-peak distribution as the difference in the two saving parameters
is increased systematically. A population can be imagined to have two distinctly
different kinds of people: some of them tend to save a very large (fixed) fraction of
their wealth and the others tend to save a relatively small (fixed) fraction of their
wealth. Bimodal distributions (and a polymodal distribution, in general) are, in fact,
reported with real data for the income distributions in Argentina [20].

Bimodal distributions have been recently found in a different context, by studying
a suitable modification of the nonconservative trade model of Slanina [29] to account
for different outcomes which depend on the individual wealth [12]. Numerical exper-
iments using the model then show that the (normalized) wealth distribution tends to
develop a bimodal distribution with a power law profile for large wealths. Despite
the fact that the model considered in [24] is nonconservative, while the analysis of
Gupta [21] refers to a conservative one, there is a common feature which produces the
bimodal effect which can be easily recognized in a separation of trading rules between
poor and rich people.

In this paper, we will study the problem of formation of bimodal distributions in a
society, by means of the trade model introduced in [13], suitably modified to describe
different groups of agents. This model, in fact, is sufficiently flexible to take into
account both the randomness of the market and a (variable) saving rate. In addition,
it allows for a suitable asymptotic analysis (the continuous trading limit), from which
one can pass from the kinetic description in terms of a Boltzmann-type equation to
a simpler description in terms of Fokker-Planck type equations. These last equations
possess in general steady states which can be explicitly evaluated.

The paper is organized as follows. In the next section we introduce the model
which leads to a system of Boltzmann equations. This model is the analogue of
a mixture of ideal gases of Maxwell type recently studied in [5]. The continuous
trading limit and the corresponding associated system of Fokker-Plank type equations
are studied in section 3. Section 4 deals with a generalization of the Fokker-Planck
system in the case of a distributed saving rate. Numerical examples will be presented
in section 5.

2. Kinetic models for the evolution of wealth

The goal of a kinetic model of a simple market economy is to describe the evolution
of the distribution of wealth by means of microscopic interactions among agents or
individuals which exchange wealth. Each trade is in this picture interpreted as an
interaction where a fraction of the wealth changes hands. One generally assumes that
this wealth after the interaction is nonnegative, which corresponds to impose that
no debts are allowed. As a consequence of the trade rules, one expects to obtain for
large times a stationary wealth distribution f∞(v) (denoting the density of agents
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with wealth v >0) with Pareto tails,

F∞(w)=

∫ ∞

w

f∞(v)dv∝w−α. (2.1)

The exponent α is referred to as Pareto index, named after the economist Vilfredo
Pareto [28], who proposed formula (2.1) more than a hundred years ago. According
to recent empirical data, the wealth distribution among the population in a western
country follows in fact a Pareto law, with an index α ranging between 1.5 and 2.5.
As briefly outlined in the introduction, a number of different trade models have been
proposed to describe economic interactions between agents. The first, by Chakrabarti
and colleagues [8, 7], conserves wealth during the exchange and allows savings that
can be a fixed and equal percentage of the initial wealth held by each agent. However,
this trade yields the exponentially decaying Gibbs distribution. Allowing the saving
percentage to take on a random character [9] then introduces a power law character
to the distribution for high incomes, that can be shown to be exactly one. The
characteristics of this model have been extensively studied in [26], where it has been
clearly established that the appearance of Pareto tails is unnatural and fragile in
this framework. Only the presence of random terms in the trade, which destroy the
pointwise conservation of wealth, was subsequently shown to be responsible of a robust
convergence to a steady distribution with tails [25].

A slightly different phenomenon which leads to formation of tails has been re-
marked by Slanina [29]. This model assumes a different exchange rule that allows
creation of money during each exchange process and the solution is not stationary.
Consequently, one must normalize the amount of money held by an agent with the
mean value of money within the system at any time. In this way a stationary solution
with tails for the distribution of the normalized money can be obtained. A similar
phenomenon appears in kinetic theory of dissipative gases, where the formation of
tails in Maxwell models is known as the Ernst-Brito conjecture [18, 19, 3, 4, 2]. An
exhaustive study of formation of tails in general nonconservative one-dimensional ki-
netic equations can be found in [27]. It can be argued that the analysis of [27] could
be extended to more complicated models, like the one proposed by [12], to recover a
qualitative analysis. We will return to this issue in a forthcoming paper.

2.1. The Cordier-Pareschi-Toscani model. The study of the time-
evolution of the wealth distribution among individuals in a simple economy, together
with a reasonable explanation of the formation of tails in this distribution has been re-
cently achieved by means of kinetic collision-like models in [13]. The Cordier-Pareschi-

Toscani model (CPT model) is based on a binary trade which is a balance between
both saving and random effects. When two agents with pre-trade wealths v and w
interact, then their post-trade wealths v∗ and w∗ are given by

v∗ =(1−γ)v+γw+η1v, (2.2a)

w∗ =(1−γ)w+γv+η2w. (2.2b)

Here, γ∈ (0,1) is the constant transaction rate parameter. In other words, the constant
saving propensity equals 1−γ. The quantities η1 and η2 are random variables with
mean zero and variance σ2. They model risky investments that each agent performs.
In the original version, due to the presence of these random variables, a post-trade
wealth could result in a negative value. The exclusion of these trades (debts were not
allowed) at the level of the Boltzmann equation makes in general the CPT model non-
conservative. A conservative version, we will consider in this paper, can be obtained
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considering only random variables such that the post-trade wealths are non-negative.
To this extent, it is assumed in the following that ηi ≥−1+γ (i=1,2).

We remark that a crucial feature of the CPT model (in the conservative version)
is that it only preserves the total wealth in the statistical mean,

〈

v∗+w∗
〉

=
(

1+〈η1〉
)

v+
(

1+〈η1〉
)

w=v+w, (2.3)

where 〈·〉 denotes the statistical expectation value. The homogeneous Boltzmann
equation for the distribution function f =f(w,t) corresponding to (2.2) can be easily
written in weak form [13]. For all smooth functions φ(w), the kinetic equation reads
as

d

dt

∫

R+

f(w)φ(w)dw=

〈

∫

R
2
+

(

φ(v∗)−φ(v)
)

f(v)f(w)dvdw

〉

. (2.4)

Note that, due to (2.3), the total mean wealth is preserved in time

m(t)=

∫

R+

wf(w,t)dw=m. (2.5)

The large time behavior of f(w,t) [25] is largely determined by the convex function

S(s) :=γs−1+
1

2

〈

(1−γ+η1)
s +(1−γ+η2)

s
〉

. (2.6)

Clearly, S(1)=0 by (2.3). Provided S
′(0)<0, the model possesses a unique steady

state f∞. If S(s)<0 for all s>1, then f∞ has an exponentially small tail. On the
contrary, if there exits a non-trivial root s̄∈ (1,∞) of S, then f∞ possesses a Pareto
tail (2.1) of index α= s̄. Moreover, in both cases any solution f(t) converges to f∞
exponentially fast in suitable Fourier and Wasserstein metrics [15].

One further interesting aspect of equation (2.4) is related to the possibility of
recovering, in a suitable asymptotic limit (γ→0, σ2→0, σ2/γ→λ), a related Fokker-
Planck type equation [6, 13] for the scaled density h(v,τ)=mf(mv,t), τ = t/γ, which
describes the large time behavior of f(v,t),

∂h

∂τ
=

λ

2

∂2

∂v2

(

v2h
)

+
∂

∂v

(

(v−1)h
)

. (2.7)

Equation (2.7) admits a unique stationary state of unit mass and unit mean, given
by a generalized Γ-distribution

Mλ(v)=
(µ−1)µ

Γ(µ)

exp
(

−µ−1
v

)

v1+µ
, µ=1+

2

λ
>1. (2.8)

Note that distribution (2.8) was first introduced in 1925 by Amoroso [1], exactly in
connection with the curve of wealth distribution. This stationary distribution exhibits
a Pareto power law tail for large v’s.

We remark that equation (2.7) is essentially the same Fokker-Planck equation
derived from a Lotka-Volterra interaction in [6, 30, 24]. Moreover, the asymptotic
procedure adopted in [13] leads to the same Fokker-Planck equation even in the case
in which the total wealth in trades (2.2) is not preserved.
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2.2. A multi-national kinetic model for the evolution of wealth. In
this section we propose a generalization of the CPT model, where agents from n
different countries or social groups of individuals trade with each other. These groups
shall be identified with countries or social classes inside a country. We will adopt
the hypothesis that all agents belonging to one group share a common saving rate
parameter. This hypothesis can be further relaxed by assuming that the saving rate
is a random quantity, with a statistical mean which is different for different social
groups.

This can be seen as the analogue to the physical problem of a mixture of gases,
where the molecules of the different gases exchange momentum during collisions [5].
When two agents from the same country with pre-trade wealths v and w interact
— a domestic trade event — their post-trade wealths v∗ and w∗ are supposed to be
given by (2.2) with a common saving rate parameter which is characteristic for this
country. On the other hand, in case of an international trade, i.e., when two agents of
different countries interact, we assume that each agent uses the transaction parameter
which is characteristic for his country. Hence, when two agents, one from country i
(i=1,2,... ,n) with pre-trade wealth v, and the other from country j (j =1,2,... ,n)
with pre-trade wealth w, interact, their post-trade wealths v∗ and w∗ are given by

v∗ =(1−γiγ)v+γjγw+ηijv, (2.9a)

w∗ =(1−γjγ)w+γiγv+ηjiw. (2.9b)

In (2.9), the trade depends on the transaction parameters γ and γi (i=1,... ,n),
while the risks of the market are described by ηij (i,j =1,... ,n), which are equally
distributed random variables with zero mean and variance σ2

ij =λijγ. The different
variances for domestic trades in each country and for international trades reflect dif-
ferent risk structures in these trades. For example, investments and trades inside
different countries or markets may be subject to different types and quantities of risk,
and international trading may face additional risks compared to domestic trades.

The trading rule (2.9) preserves — as in the original CPT model — the total
wealth in the statistical mean,

〈

v∗+w∗
〉

=
(

1+〈ηij〉
)

v+
(

1+〈ηji〉
)

w=v+w. (2.10)

In this setting, we are led to study the evolution of the distribution function for
each country as a function depending on the wealth w∈R+ and time t∈R+, fi =
fi(w,t). In analogy with the classical kinetic theory of mixtures of rarefied gases, the
time-evolution of the distributions will obey a system of n Boltzmann-like equations,
given by

∂

∂t
fi(w,t)=

n
∑

j=1

1

τij
Q(fi,fj)(w), i=1,... ,n. (2.11)

Here, τij are suitable relaxation times, which depend on the velocity of money circu-
lation [32]. The Boltzmann-like collision operators are derived by standard methods
of kinetic theory, considering that the change in time of fi(w,t) due to binary trades
depends on a balance between the gain and loss of agents with wealth w [13]. The
operator Q reads as

Q(fi,fj)(w)=

〈

∫

R+

( 1

Jij
fi(v∗)fj(w∗)−fi(v)fj(w)

)

dv

〉

. (2.12)
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In (2.12), (v∗,w∗) denotes the pre-trade pair that produces the post-trade pair (v,w),
following rules like (2.9), while Jij denotes the Jacobian of the transformation of (v,w)
into (v∗,w∗). Finally, 〈·〉 denotes the operation of mean with respect to the random
quantities ηij . A useful way of writing the collision operator (2.12), that allows us to
avoid using the Jacobian, is the so-called weak form. It corresponds to considering,
for all smooth functions φ(w),

∫

R+

Q(fi,fj)(w)φ(w)dw=

〈

∫

R
2
+

(

φ(v∗)−φ(v)
)

fi(v)fj(w)dvdw

〉

. (2.13)

3. The continuous trading limit

In general, it is rather difficult to describe analytically the behavior of the evo-
lution of the wealth densities. As is usual in kinetic theory, it is convenient to study
certain asymptotics, which frequently lead to simplified models of Fokker-Planck type.
By means of this approach it is easier to identify steady states while retaining impor-
tant information on the microscopic interaction at a macroscopic level. To this end,
we study the continuous trading limit (γ→0 and σ2

ij/γ =λij), following the path laid
out in [13].

The weak form of (2.11) is given by

d

dt

∫

R+

fi(w,t)φ(w)dw=

∫

R+

n
∑

j=1

1

τij
Q(fi,fj)(w)φ(w)dw, i=1,... ,n, (3.1)

where the terms on right hand side are given by (2.13). To study the situation for
large times, i.e., close to the steady state, we introduce for γ≪1 the transformation

τ =γt, gi(w,τ)=fi(w,t), i=1,... ,n. (3.2)

This implies fi,0 =gi,0 and the evolution of the scaled densities gi(w,τ) follows

d

dτ

∫

R+

gi(w,τ)φ(w)dw=
1

γ

∫

R+

n
∑

j=1

1

τij
Q(fi,fj)(w)φ(w)dw, i=1,... ,n. (3.3)

By the trading rule (2.9), it holds that

v∗−v =γ(γjw−γiv)+ηijv. (3.4)

Using a second order Taylor expansion of φ around v, we obtain

φ(v∗)−φ(v)=φ′(v)[γ(γjw−γiv)+ηijv]+ 1
2φ′′(ṽ)[γ(γjw−γiv)+ηijv]2, (3.5)

with ṽ =θv′+(1−θ)v for some 0≤θ≤1.
Inserting this expansion into the collision operators yields

d

dτ

∫

R+

gi(w,τ)φ(w)dw

=
1

γ

n
∑

j=1

1

τij

〈

∫

R
2
+

(

φ′(v)[γ(γjw−γiv)+ηijv]+ 1
2φ′′(v)[γ(γjw−γiv)+ηijv]2

)

×

×gi(v,τ)gj(w,τ)dvdw

〉

+R(γ,σij),
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where the remainder R(γ,σij) converges to zero as γ→0, provided further hypotheses
on the random variables ηij and on φ hold (cf. [13]).

Recalling that 〈ηij〉=0 and 〈η2
ij〉=λijγ, in the same limit process we obtain

lim
γ→0

1

γ

n
∑

j=1

1

τij

〈

∫

R
2
+

(

φ′(v)[γ(γjw−γiv)+ηijv]+ 1
2φ′′(v)[γ(γjw−γiv)+ηijv]2

)

×

×gi(v,τ)gj(w,τ)dvdw

〉

=

n
∑

j=1

1

τij

∫

R+

[φ′(v)(γjmj −γivρj)+
λij

2 v2ρjφ
′′(v)]gi(v,τ)dv, (3.6)

where

ρj(τ)=

∫

R+

gj(w,τ)dw, mj(τ)=

∫

R+

wgj(w,τ)dw (3.7)

denote the mass and the (scaled) mean wealth of the j-th country, respectively. This
expression is nothing but the right hand side of the weak form of the system of
Fokker-Planck equations

∂gi

∂τ
=

n
∑

j=1

[ λij

2τij

∂2

∂v2

(

v2ρjgi

)

+
1

τij

∂

∂v

(

(γivρj −γjmj)gi

)

]

, i=1,... ,n. (3.8)

To formalize the above, let us introduce some notation. Let M0 be the space of all
probability measures in R+ and let

Mp =
{

Ψ∈M0 :

∫

R+

|ϑ|pΨ(ϑ)dϑ<+∞, p≥0
}

, (3.9)

be the space of all Borel probability measures of finite momentum of order p, equipped
with the topology of the weak convergence of measures.

Let Fp(R+), p>1 be the class of all real functions h on R+ such that h(0)=
h′(0)=0 and h(m)(v) is Hölder continuous of order δ,

||h(m)||δ = sup
v 6=w

|h(m)(v)−h(m)(w)|

|v−w|δ
<∞, (3.10)

where the integer m and the number 0<δ≤1 are such that m+δ =p, and h(m) denotes
the m-th derivative of h.

Using the same ideas as [13], we obtain in this case the following theorem.

Theorem 3.1. Let the probability densities f0,i ∈Mp, where p=2+δ for some δ >0,
and let the symmetric random variables ηij have a density in M2+α with α>δ. Then,

provided σ2
ij =λijγ, as γ→0, for all φ∈F2+δ(R+) with δ <α the weak solutions of

the Boltzmann system (2.11) for the scaled densities gi(w,τ)=fi(w,t) with τ =γt
converge, up to extraction of a subsequence, to probability densities gi(w,τ). Moreover,

these densities are weak solutions of the Fokker-Planck system (3.8).

The (relatively) easy structure of the Fokker-Planck system (3.8) allows us to
study in some simple cases the evolution of the mean wealth in each community, as
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well as the steady state solution. For the sake of simplicity, we will restrict ourselves
to the case of two populations, in which τij =1 (i=1,2). Then, from system (3.8)
it follows that the densities ρi(τ) (i=1,2) do not vary with time, while the mean
wealths mi(τ) (i=1,2) satisfy the ordinary differential system

dm1

dτ
=−(γ1ρ2m1−γ2ρ1m2), (3.11a)

dm2

dτ
=+(γ1ρ2m1−γ2ρ1m2). (3.11b)

We remark that the evolution of the mean wealths do not depend on the values of the
parameters λij . System (3.11) can be solved exactly, to give

m1(τ)=a1
γ2ρ1

γ1ρ2
−a2e

−(γ1ρ2+γ2ρ1)τ , (3.12a)

m2(τ)=a1 +a2e
−(γ1ρ2+γ2ρ1)τ , (3.12b)

with

a1 =(m1,0 +m2,0)
γ1ρ2

γ1ρ2 +γ2ρ1
, a2 =m2,0−a1

and m1,0 =m1(0), m2,0 =m2(0). The role of the saving propensity in the evolution of
the mean wealth of a population can be clearly recognized as follows. From formulas
(3.12) we deduce that, with an exponential rate of convergence, the mean wealths
converge towards steady states which are inversely proportional to the γ’s (i.e., a
bigger γ produces a smaller mean wealth),

m1,∞ =(m1,0 +m2,0)
γ2ρ1

γ1ρ2 +γ2ρ1
, (3.13a)

m2,∞ =(m1,0 +m2,0)
γ1ρ2

γ1ρ2 +γ2ρ1
. (3.13b)

This effect can also be directly seen by looking at the analytic expressions of the steady
states. To this end, let ρ=ρ1 +ρ2 and m0 =m1,0 +m2,0 denote the initial mass and
momentum, and let

λi =
1

ρ

2
∑

j=1

λijρj , i=1,2. (3.14)

Then, using (3.13), we obtain that the steady states are given by

g1,∞(w)=
c1

ρ

1

w2+2γ1/λ1
exp

{

−
2γ1γ2m0

λ1(γ1ρ2 +γ2ρ1)w

}

, (3.15a)

g2,∞(w)=
c2

ρ

1

w2+2γ2/λ2
exp

{

−
2γ1γ2m0

λ2(γ1ρ2 +γ2ρ1)w

}

. (3.15b)

In (3.15) the constants ci (i=1,2) are chosen to have masses ρ1 (respectively ρ2) for
the steady states. Note that here the size of the tail of gi,∞(w) is proportional to
γi/λi. Hence, in the case where λij =λ (i=1,2), the smaller γ is, the smaller the
number of bounded moments of the steady state is. Taking into account that

∫ +∞

0

1

w2+p
exp{−c/w} dw=

Γ(p+1)

cp+1
,
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where Γ(·) is Euler’s gamma function, one can easily recover the value of the constants
ci,

ci =
ρi

Γ(1+2γi/λi)

(

2γ1γ2m0

λi(γ1ρ2 +γ2ρ1)

)1+2γi/λi

, i=1,2. (3.16)

Taking the sum of the densities in (3.15) gives the expression of the total density

g∞(w)=
1

ρ

( c1

w2+2γ1/λ1
e−d1/w +

c2

w2+2γ2/λ2
e−d2/w

)

, (3.17)

where we defined

di =
2γ1γ2m0

λi(γ1ρ2 +γ2ρ1)
, i=1,2. (3.18)

In the simplest case in which λi =λ, the two steady states have a common exponential
factor, and

g∞(w)=
1

ρ

( c1

w2+2γ1/λ
+

c2

w2+2γ2/λ

)

exp

{

−
2γ1γ2m0

λ(γ1ρ2 +γ2ρ1)w

}

. (3.19)

The analysis of the steady density (3.17) reveals that, depending of the values of the
various parameters involved, one can have the formation of a bimodal distribution.
In the simplified situation in which λi =λ, one can recover a more precise behavior of
the steady state. In this case in fact, using (3.16), the steady state (3.19) results in a
(nonnegative) function of the form

ψ(w)=

(

a2cp+1

wp+2Γ(p+1)
+

b2cq+1

wq+2Γ(q+1)

)

exp{−c/w}, (3.20)

where a2 +b2 =1. With the substitution x=w/c, we obtain for (3.20) the simpler
form

Ψ(x)=
1

c

(

a2x−(p+2)

Γ(p+1)
+

b2x−(q+2)

Γ(q+1)

)

exp{−1/x}. (3.21)

The extrema of (3.21) are located in the points that are solutions of the equation

(

−
a2(p+2)x−(p+3)

Γ(p+1)
−

b2(q+2)x−(q+3)

Γ(q+1)
+

a2x−(p+4)

Γ(p+1)
+

b2x−(q+4)

Γ(q+1)

)

e−1/x =0. (3.22)

Clearly, x=0 is an extremum (a minimum). If x>0, and p<q, the remaining extrema
are located in the points that are solutions of the equation

Φ(x)=−
a2(p+2)xq−p+1

Γ(p+1)
−

b2(q+2)x

Γ(q+1)
+

a2xq−p

Γ(p+1)
+

b2

Γ(q+1)
=0. (3.23)

On the other hand, since Φ(0)>0, while Φ(+∞)=−∞, the curve y =Φ(w) touches
the axis y =0 either in a single point, or in three points. In this last case, we have two
maxima and one minimum outside w=0, and consequently a bimodal distribution.
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4. A model for distributed trading propensity

The Fokker-Planck system (3.8) can be easily generalized to the case in which
the trading rate is randomly distributed on the interval (0,1), with distribution Γ(s),
where

Γ(s)=

∫

R+

g0(v,s)dv, 0<s<1

is the s-marginal of the initial density of wealth. In this case, the unknown densities
gi(v,τ) (i=1,... ,n) are substituted by g(v,s,τ), while

∑n
j=1gi move to

〈g(v,s)〉s =

∫ 1

0

g(v,s)ds.

Note that here and below we will denote

〈Φ(s)〉s =

∫ 1

0

Φ(s)ds.

If we assume that λij =λ, τij =1 (i=1,... ,n) in (3.8), the corresponding Fokker-
Planck equation with a continuous varying trading rate reads

∂g(v,s)

∂τ
=

λ

2

∂2

∂v2

(

v2〈ρ(s,τ)〉s g(v,s)
)

+
∂

∂v
((sv〈ρ(s,τ)〉s−〈sm(s,τ)〉s)g(v,s)). (4.1)

Taking into account that the total mass is preserved, 〈ρ(s)〉s =1, while the distribution

Γ(s,τ)=

∫

R+

g(v,s,τ)dv

does not depend on time, i.e., Γ(s,τ)=Γ(s), equation (4.1) simplifies to

∂g(v,s)

∂τ
=

λ

2

∂2

∂v2

(

v2g(v,s)
)

+
∂

∂v

(

(sv−〈sm(s)〉s)g(v,s)
)

. (4.2)

A related Boltzmann type model, based on the binary trades with distributed saving
propensities introduced by Chakrabarti, Chatterjee and Manna [9], has been recently
analytically investigated in [26]. In particular, necessary conditions on the distri-
bution Γ(s) to guarantee convergence towards a steady state have been discussed,
together with the steady state stability. It could certainly be interesting to investi-
gate if a similar analysis could be done for the Fokker-Planck model (4.2), to verify
in particular if a bimodal distribution can result for particular choices of the distri-
bution Γ. This would give a theoretical basis to the numerical experiments of Gupta
[21], who remarked that one still gets a two-peak distribution even when the two
saving propensities γ1 and γ2 are drawn from narrow distributions centered around
two widely separated values (one large and one small).

5. Numerical results

To illustrate the relaxation behavior and to study the influence of the different
model parameters, we have performed a series of kinetic Monte Carlo simulations
for the Boltzmann model presented in the previous section. We will focus on the
situation of two countries, i.e., n=2. It will be straightforward, however, to extend
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the following to the general situation of an arbitrary number of countries. Hence, let
us consider

∂

∂t
f1(w,t)=

1

τ11
Q(f1,f1)(w)+

1

τ12
Q(f1,f2)(w),

∂

∂t
f2(w,t)=

1

τ22
Q(f2,f2)(w)+

1

τ21
Q(f2,f1)(w).

Here, Q(f1,f1) and Q(f2,f2) represent the collision operators which describe the
change of density due to binary domestic trades, while Q(f1,f2), Q(f2,f1) are the
collision operators which describe the change of density due to binary international

trades.
Generally, in these kinds of simulations, known as direct simulation Monte Carlo

(DSMC) or Bird’s scheme, pairs of agents are randomly and non-exclusively selected
for binary collisions, and exchange wealth according to the trading rule under consid-
eration. To extend this procedure to the present situation, we pursue the following
approach. Let us denote by Ni (i=1,2) the number of traders of the two countries we
consider in our simulation. Assume without loss of generality that N1≥N2. One time

step in our simulation corresponds to N1 interactions. Since we have to perform trade
events for both groups, each of these interactions has two stages, which are described
in the following.

In the first stage, select randomly an agent from group 1. Then select randomly
a trading partner from the whole population, where the probabilities for each agent
to be selected depend on τ11, τ12. For example, if the trading frequency in group 1 for
domestic trades is twice as high as for international trades, the probability to select
a trade partner from group 1 has to be twice the probability to select a trade partner
from group 2. Once the trade partner is selected, the trade takes place and wealth is
exchanged according to the trading rule (2.9).

In the second stage, we need to perform trades for group 2. Since N2≤N1, we
only perform a trade for group 2 in every k-th interaction, where k = ⌈N1/N2⌉. If a
trade is carried out, it is done similarly as for group 1: select randomly an agent from
group 2 and a partner from the whole population, where the probabilities for an agent
to be selected as a partner depend on τ21, τ22. Then, carry out the trade according to
the trading rule (2.9).

In all our experiments, every agent possesses unit wealth initially. The relaxation
in the CPT model occurs exponentially fast [15]. Hence, to compute a good approx-
imation of the steady state it suffices to carry out the simulation for about 104 time
steps, and then average the wealth distribution over another 1000 time steps. In every
experiment, we average over M =100 such simulation runs.

We consider two groups with N1 =N2 =5000 agents. We investigate the relaxation
behavior when the random variables ηij , i,j∈{1,2}, attain values ±µ with probability
1/2 each. We set the coefficient γ =1. Let µ=0.15 and τij =1 for i,j∈{1,2}. If
we choose γ1 =γ2 =0.125 and γ1 =γ2 =0.01, respectively, the system reduces to the
standard CPT model. The probability density for both cases is plotted in figure 5.1.
The cumulative distribution functions show a Pareto tail; see figure 5.2. The Pareto
index α of the tail is determined by the non-trivial root of (2.6) — strictly speaking,
this holds for the limit N1,2→∞ —, which is given by 28.068 and 1.875, respectively.
These tail indices are indicated in figure 5.2 by a thick line.

Now, we choose γ1 =0.125 and γ2 =0.01 and keep µ=0.15 and τij =1 for i,j∈
{1,2}. The probability density for the whole population is plotted in figure 5.3 (left
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Fig. 5.1. Histogram of steady state distribution for γ1 =γ2 =0.125 (left) and for γ1 =γ2 =0.01
(right).
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Fig. 5.2. Cumulative wealth distribution for γ1 =γ2 =0.125 (left) and for γ1 =γ2 =0.01 (right).

plot). It shows a bimodal shape. Comparative simulations show that the distance of
the two peaks in the distribution decreases with decreasing difference between γ1 and
γ2. This observation is consistent with the result (3.13) for the mean wealth of the
steady state in the Fokker-Planck limit. Such bimodal distributions (and a polymodal
distribution, in general) are also reported with real data for the income distributions
in Argentina [20, 21]. This distribution features transport of wealth from one group
to the other, which makes it different from the probability distribution for the union
of two groups with the same parameters which do not interact; see figure 5.3 (right
plot).

The associated cumulative distribution functions are shown in figure 5.4. Both
curves are dominated by the tail behavior of the second group with smaller γ and
show a Pareto tail of the respective index. The distribution and the cumulative
distribution functions for the two groups are shown in figures 5.5 and 5.6. For
comparison we plot the same Pareto tail index lines as in figure 5.2. Apart from a
‘kink’ in the tail for the first group which represents a finite-size effect, the cumulative
distributions show Pareto tails with the respective index. This is in nice agreement
with the theoretical results of section 3 for the steady state in the Fokker-Planck limit.

To illustrate the influence of the risk parameter ηij , we perform simulations with
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Fig. 5.3. Histogram of steady state distribution for γ1 =0.125 and γ2 =0.01 (left) in comparison
with the histogram for the union two disjoint populations with the same parameters (right).
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Fig. 5.4. Cumulative wealth distribution for γ1 =0.125 and γ2 =0.01 (left) in comparison with
the cumulative wealth distribution for the union two disjoint populations with the same parameters
(right).
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Fig. 5.5. Cumulative wealth distribution for group 1 with γ1 =0.125 (left) and group 2 with
γ2 =0.01 (right).



1056 INTERNATIONAL AND DOMESTIC TRADING AND WEALTH DISTRIBUTION

10^−3 10^−2 10^−1 10^0 10^1
0.00

0.02

0.04

0.06

0.08

Wealth w

P
ro

ba
bi

lit
y

10^−4 10^−2 10^0 10^2 10^4
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Wealth w

P
ro

ba
bi

lit
y

Fig. 5.6. Wealth distribution for group 1 with γ1 =0.125 (left) and group 2 with γ2 =0.01 (right).

increased and decreased risk for international trades, i.e., we choose η12 =η21 =±0.075
and η12 =η21 =±0.225, respectively, while we keep the other parameters unchanged.
The wealth distributions are shown in figure 5.7. For η12 =η21 =±0.075, the bimodal
profile is more pronounced, while the additional diffusion in the case η12 =η21 =±0.225
tends to blur the bimodal shape.
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Fig. 5.7. Influence of ηij : Wealth distribution with γ1 =0.125, γ2 =0.01 with η12 =η21 =±0.075
(left) and η12 =η21 =±0.225 (right). η11 =η22 =±0.15 in both cases.

6. Conclusions

We introduced and discussed a nonlinear kinetic model for a simple market econ-
omy which is built of a number of countries or social groups. The evolution of wealth
is described by a system of Boltzmann-like equations in which collisions describe bi-
nary exchanges of wealth and speculative trading, and different social groups are
characterized by a personal saving rate. Following the ideas of [13] we showed that at
suitably large times, in the presence of a large number of trades in which agents ex-
change small amounts of wealth, the nonlinear system of Boltzmann-type equations is
well-approximated by a system of linear Fokker-Planck type equations, which admit a
stationary steady state with Pareto tails. Convergence towards a similar steady state
is shown numerically for the solution of the kinetic model. In the case of two groups of
agents, both the numerical simulation on the kinetic model and the analytical study
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of the underlying Fokker-Planck system reveal formation of a bimodal distribution,
giving a theoretical framework to previous works on the subject [21, 24], where the
appearance of bimodal distributions has been observed only numerically.
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