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Abstract. In this paper, we state a convergence result for an L
1-based finite element approxi-

mation technique in one dimension. The proof of this result is constructive and provides the basis for
an algorithm for computing L

1-based almost minimizers with optimal complexity. Several numerical
results are presented to illustrate the performance of the method.
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1. Introduction

This paper is concerned with the approximation of first-order PDEs using finite
element–based best L1-approximations. This type of approximation technique has
been introduced by Lavery [13, 14] and further explored in Guermond [8]. Numerical
tests reported in these references suggest that L1-based minimization techniques can
compute the viscosity solutions of some first-order PDEs. This fact has been proved
in one space dimension for linear first-order PDEs equipped with ill-posed boundary
conditions in Lavery [14] and Guermond and Popov [11]. The proofs in the two above
references are quite technical and rely essentially on explicit computations of the
minimizers. The technicalities therein are such that it is difficult to really understand
from these two proofs why the L1-minimizer performs so well. The first objective of the
present work is to revisit [11] and to give a very simple proof of the above statement.
The key argument is to show that the L1-minimizer selects the up-wind solution. To
the best of our knowledge, the present paper is the first showing that L1-minimization
techniques automatically introduce up-winding on linear transport problems. Based
on the constructive argument from the new proof, the second objective of the paper
is to propose a fast algorithm for computing L1-minimizers. This algorithm involves
O(N) operations where N is the number of degrees of freedom.

The paper is organized as follows. In Section 2 we revisit the one-dimensional
ill-posed model problem considered in Guermond and Popov [11], and we give an
elementary proof of the fact that L1-minimizers converge to the unique viscosity
solution of this problem. The key to this result is that local L1-minimization selects
the up-wind information as proved in Lemma 2.1. Based on the local minimization
argument unveiled in Lemma 2.1, we construct in Section 3 a fast algorithm for solving
the L1-minimization problem associated with the one-dimensional ill-posed model
problem. The algorithm is tested on an ill-posed problem and on a transport problem
with discontinuous velocity. In Section 4 we generalize the algorithm to nonlinear
one-dimensional first-order PDEs. We essentially focus our attention on stationary
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Hamilton-Jacobi equations. The algorithm is illustrated on various nonlinear test
cases. Concluding remarks are reported in Section 5.

2. The one-dimensional linear model problem

In this section we restrict ourselves to a model one-dimensional differential equa-
tion equipped with a set of ill-posed boundary conditions which has been considered
in [11]. Lemma 2.1, which is the main result of this section, will be the basis for the
algorithm developed in Section 3.

2.1. The continuous problem. Let Ω=(0,1), f ∈L1(Ω), β∈C1(Ω), and
solve for the unique viscosity solution u∈W 1,1(Ω) of

{

u(x)+β(x)u′(x)=f(x) in Ω,

u(0)=0, u(1)=0.
(2.1)

The boundary conditions are to be understood in the entropy sense as defined by
Bardos–le Roux–Nédélec, [1]. We recall that the viscosity solution to (2.1) is obtained
by regularizing the PDE by adding −ǫu′′, i.e., it is the limit as ǫ→0 of the sequence
(uǫ)ǫ>0 defined by

{

uǫ(x)+β(x)u′
ǫ(x)−ǫu′′

ǫ (x)=f(x) in Ω,

uǫ(0)=0, uǫ(1)=0.
(2.2)

Despite its appearance, the problem (2.1) is not purely formal. It arises when
one tries to approximate (2.2) on meshes that are not refined enough. For instance,
consider a mesh of typical size h and assume that ǫ/h2≪‖β‖L∞/h (i.e., the mesh
is not fine enough to resolve boundary layers). Then the discrete counterpart of the
second-order term is dominated by the first-order one and the discrete system does not
really see the diffusion −ǫu′′

ǫ (x). Approximating (2.2) in these circumstances amounts
to trying to solve (2.1) with the boundary conditions understood in the classical sense
instead of the entropy sense.

To avoid unnecessary technicalities we further assume that

0< inf
x∈Ω

β(x), (2.3)

sup
x∈Ω

β′(x)<1. (2.4)

The condition β′≤1 is the one-dimensional counterpart of the condition ∇·β≤1,
which is standard for the multidimensional version of (2.1). The assumption (2.3)
implies that the flow associated with β has characteristics flowing from left to right.
This in turns implies that the viscosity solution satisfies only the boundary condition
u(0)=0; the other boundary condition is discarded. The uniqueness of a viscosity
solution to (2.1) in W 1,1(Ω) is well known even under weaker assumptions on β and
f . To simplify the notation we define the linear operator

L :W 1,1(Ω)∋v 7−→v+βv′∈L1(Ω). (2.5)

2.2. The discrete problem. Let Th =∪n
i=0Ii be a mesh of Ω composed of

n+1 cells Ii, i=0,... ,n. Let x0,x1,...xn+1 be the vertices of this mesh and assume
that the enumeration is such that x0 =0, xn+1 =1 and each cell Ii is defined by
Ii =[xi,xi+1]. The midpoint of each cell is denoted by xi+ 1

2
= xi+1+xi

2 . We set hi =
xi+1−xi >0, i=0,1,... ,n, and we define h=maxihi.
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To construct an approximation to (2.1), we introduce the approximation space

Xh ={vh ∈C0(Ω); vh|Ii
∈P1,∀Ii ∈Th; vh(0)=vh(1)=0}, (2.6)

where P1 denotes the set of polynomials of degree at most one. Note that the functions
in Xh are zero at both ends of the interval Ω; i.e., both boundary conditions in (2.1)
are enforced. Upon defining the functional

J(vh)=

∫ 1

0

|L(uh)(x)−f(x)|dx, (2.7)

we consider the following finite element L1-minimization problem: Seek uh ∈Xh such
that

J(uh)= min
vh∈Xh

J(vh). (2.8)

To simplify things a little bit more, we use the midpoint rule to approximate the
integral over each mesh cell. We then replace the functional J by the functional

Jh(vh) :=
n

∑

i=0

hi

∣

∣

∣
L(vh)(xi+ 1

2
)−fi

∣

∣

∣
, (2.9)

where we have set fi :=h−1
i

∫

Ii
f(x)dx and βi :=β(xi+ 1

2
). Similarly, for every v∈Xh,

we denote vi :=v(xi). Problem (2.8) is then replaced by the following one: Seek
uh ∈Xh such that

Jh(uh)= min
vh∈Xh

Jh(vh). (2.10)

It is shown in [11] that the sequence (uh)h>0 solving (2.10) converges to the
viscosity solution of (2.2) in W 1,1

loc [0,1), and the rate of convergence is O(h) if f is in
BV (Ω). We want now to offer a new proof of this fact which is significantly simpler
than that in [11].

2.3. Convergence analysis. We start with a definition. With each cell Ii

we associate the residual over that cell as follows:

ri(r,s)=hi

(

1
2 (r+s)+βih

−1
i (s−r)−fi

)

, (2.11)

so that by setting Ri(v)= ri(vi,vi+1) for all v∈Xh, we have

Jh(v)=

n
∑

i=0

|Ri(v)|. (2.12)

Let i be an arbitrary integer in {0,... ,n}. Define the maps ti,l, l∈{i,i+1} so that
for every r∈R, ti,i(r) and ti,i+1(r) are the unique real numbers solving

ri(r,ti,i(r))=0, ri(ti,i+1(r),r)=0. (2.13)

The role of these maps is clarified by the following lemma.

Lemma 2.1. Assume (2.3),(2.4). Then, there exists h0 :=2infx∈Ωβ(x) so that for all
h<h0, for all i∈{1,...n}, and for all r,s∈R

|ri(ti−1,i−1(r),s)|=min
z∈R

[|ri−1(r,z)|+ |ri(z,s)|], (2.14)
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and the minimum is strict if ri(ti−1,i−1(r),s) 6=0.
Proof. Define Ji−1,i(z)= |ri−1(r,z)|+ |ri(z,s)|. The graph of Ji−1,i(z) is convex

and composed of three linear branches (see Figure 2.1). The functional reaches its
minimum at one of the two angular points of the graph, say z− and z+ where z− and
z+ are defined so that ri−1(r,z−)=0 and ri(z+,s)=0. Note that z− = ti−1,i−1(r) and
z+ = ti,i+1(s). Let us set

ωi−1 = 1
2 +βi−1h

−1
i−1, ωi =

1
2 +βih

−1
i ,

ω′
i−1 = 1

2 −βi−1h
−1
i−1, ω′

i =
1
2 −βih

−1
i .

With this set of notation we rewrite ri−1(r,z)=hi−1(ωi−1z+ω′
i−1r−fi−1) and

ri(z,s)=hi(ωis+ω′
iz−fi), which implies

z− =ω−1
i−1(fi−1−rω′

i−1), z+ =ω′
i

−1
(fi−sωi).

To determine whether the minimum of Ji−1,i is Ji−1,i(z−) or Ji−1,i(z+), we must com-
pare Ji−1,i(z−)= |ri(z−,s)| with Ji−1,i(z+)= |ri−1(r,z+)|. Using the above definitions,
we infer

ri−1(r,z+)=hi−1ω
′
i

−1
((fi−sωi)ωi−1 +ω′

iω
′
i−1r−ω′

ifi−1),

ri(z−,s)=hiω
−1
i−1((fi−1−rω′

i−1)ω
′
i +ωi−1ωis−ωi−1fi).

If ωi−1ωis−ω′
i−1ω

′
ir+fi−1ω

′
i−ωi−1fi =0, then ri−1(r,z+)=0= ri(z−,s) and

min
z∈R

Ji−1,i(z)=min(|ri−1(r,z+)|,|ri(z−,s)|)=0≥|ri(z−,s)|,

thus proving the claim. Note in passing that ωi−1ωis−ω′
i−1ω

′
ir+fi−1ω

′
i−ωi−1fi =0

if and only if z+ =z−, and in this case the functional Ji−1,i(z) has only two branches
(see Figure 2.1) and at the minimum ri−1(r,z+)=0= ri(z−,s). If ωi−1ωis−ω′

i−1ω
′
ir+

fi−1ω
′
i−ωi−1fi 6=0 (or equivalently z+ 6=z−), we then infer

|ri−1(r,z+)|=hi−1|ω
′
i|
−1

h−1
i ωi−1|ri(z−,s)|,

and we have to examine the ratio hi−1ωi−1/(hi|ω
′
i|). Observe first that (2.3) implies

that if h<h0, then ω′
i is negative. Then the above ratio is larger than 1 if we can

establish that hi−1ωi−1 +hiω
′
i is positive. The above definitions together with the

one-sided bound (2.4) yield

hi−1ωi−1 +hiω
′
i =

1
2hi−1 + 1

2hi +βi−1−βi =
1
2 (hi−1 +hi)−

∫ x
i+ 1

2

xi−1/2

β′(x)dx

≥ 1
2 (1− sup

x∈Ω
β′(x))(hi−1 +hi)>0.

This immediately implies |ri−1(r,z+)|> |ri(z−,s)|, thus confirming the claim.
Assume now that ri(z−,s) 6=0. Then ωi−1ωis−ω′

i−1ω
′
ir+fi−1ω

′
i−ωi−1fi 6=0, and

the above argument implies that

Ji−1,i(z−)= |ri(z−,s)|< |ri−1(r,z+)|=Ji−1,i(z+),

i.e., the graph of Ji−1,i is strictly monotone on the interval [z−,z+]. It is clear also
that the graph of Ji−1,i is strictly monotone on the two other branches that go to
−∞ and +∞. As a result the minimum of Ji−1,i at z− is strict.
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z+ z− z+ =z− zz

Ji−1,i(z)Ji−1,i(z)

Figure 2.1. Notation for the proof of Lemma 2.1

Remark 2.1. The conditions (2.3)–(2.4) on the field β imply that the flow associated
with β has characteristics flowing from left to right. It is remarkable that the solution
to the minimization problem (2.14) is obtained by enforcing the upwind residual to be
zero. In some sense, the local L1-minimizer naturally selects the upwind information.

Let us now construct uh ∈Xh as follows:











uh(0)=0,

uh(xi)= ti−1,i−1(uh(xi−1)), 1≤ i≤n,

uh(xn+1)=0.

(2.15)

In other words, uh is the unique element of Xh such that Ri(uh)=0 for all i=0,... ,n−
1. The following holds:

Theorem 2.2. Let h<2infx∈Ωβ(x) and uh be defined by (2.15). Then, uh uniquely
solves the minimization problem (2.10).

Proof. Let v an arbitrary member of Xh. Assume that v is different from uh. Since
(2.15) uniquely defines uh, there is i∈{1,... ,n} such that v(xi) 6= ti−1,i−1(v(xi−1)),
i.e., ri−1(vi−1,vi) 6=0. Let us define ṽ∈Xh so that ṽl =vl for all l 6= i and set ṽi =
ti−1,i−1(vi−1). Then observe that

Jh(v)−Jh(ṽ)= |ri−1(vi−1,vi)|+ |ri(vi,vi+1)|−|ri(ṽi,vi+1)|.

If ri(ṽi,vi+1)=0, then Jh(v)−Jh(ṽ)≥|ri−1(vi−1,vi)|>0. If ri(ṽi,vi+1) 6=0, then
Lemma 2.1 implies Jh(v)>Jh(ṽ). In both cases, v is not a minimizer of (2.10).
The result is proved.

For completeness, let us finally recall the following result:

Theorem 2.3 (Convergence). Let u be the viscosity solution to (2.1). Let uh

solve (2.10). Then limh→0‖u−uh‖W 1,1(0,xn) =0 for all f in L1(Ω), and there is c
independent of h such that

‖u−uh‖W 1,1(0,xn)≤ ch‖f‖BV[0,1]

for all f ∈BV[0,1].

Proof. See Guermond and Popov [11, Thoerem 7].



204 FAST ALGORITHM FOR AN L
1-FINITE ELEMENT METHOD

2.4. Sparsity and L1 versus L2. Let us interpret the result of Theorem 2.2
and put it in perspective. Observe that the functional Jh as defined in (2.9) is the sum
of n+1 residuals. According to (2.15), one striking property of the L1-minimizer (as
defined in (2.10)) is that the residuals r0(u0,u1),... ,rn−1(un−1,un) are zero. That is,
among the n+1 residuals composing Jh, the L1-minimizer sets n of those to zero. The
residual vector (r0(u0,u1),... ,rn−1(un−1,un),rn(un,un+1)) is extremely sparse since
only the (n+1)-th entry, rn(un,un+1), is non zero. This sparsity property has been
recognized by Donoho [6, 5] in a more general context and can be used to recover
signals from incomplete and inaccurate measurements, cf. Candès, Tao [3], Candès,
Romberg, Tao [2]. If instead of computing the L1-minimizer we compute the L2-
minimizer (say by minimizing Kh(v)=

∑n

i=0h−1
i ri(vi,vi+1)

2), then it is a general fact
that the L2-minimizer yields a dense residual vector, i.e., none of the residual is zero
in general. In particular, if there should be a sharp boundary layer in one particular
cell (say the last one for instance), then instead of committing a large error in this
cell (which the L1-minimizer would do), the L2-minimizer spreads out the error over
all the cells.

Let us finally recall also that, as proved in Guermond [8], the Least Squares ap-
proximation to the ill-posed problem (2.1) does not converge to the viscosity solution
in general (see also Section 3.3.1 for a counter-example).

3. A fast algorithm for solving (2.10) in the linear case

The objective of this section is to show how the result of Lemma 2.1 can be used
to construct a fast algorithm for solving (2.10).

3.1. Short review. The main difficulty we encounter for solving (2.10) is that
this is a linear programming problem. To see this we define the (n+1)×n matrix A
and the vector b∈R

n+1 so that for all k∈{1,... ,n+1}, l∈{1,... ,n}

bk :=hk−1fk−1 and Akl :=











hk−1w
′
k−1 If l=k−1,

hk−1wk−1 If l=k,

0 Otherwise.

(3.1)

Then (2.10) can be recast as follows: Seek u∈R
n+1 and x∈R

n so that

(u,x)←− min
v∈Rn+1

y∈Rn

n
∑

i=1

vi subject to

{

Ay−b−v≤0,

−Ay+b−v≤0.
(3.2)

This problem can be solved by the simplex method, but since the late 1980’s more
efficient methods, collectively known as interior point methods, have been developed,
see e.g., Nocedal, Wright [17] for a review. This type of technique is used by Yong,
Shu-Cherng, and Lavery [18] to solve large scale multi-variate L1-spline interpolation
problems. This is also the approach used by Candès, Tao, Romberg [2] to solve signal
recovery problems using ℓ1-minimization.

Another technique used in Guermond [8] consists of regularizing the absolute

value function x 7−→|x| by ψε(x)= x2

|x|+ε
, where ε>0. Then upon introducing the

regularized functional

Jε(vh)=

n
∑

i=0

hiψε(Lh(vh)(x1+ 1
2
)−f(x1+ 1

2
)), (3.3)
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problem (2.10) is replaced by the following: Seek uε
h so that

Jε(u
ε
h)= min

vh∈Eh

Jε(vh). (3.4)

Owing to the regularization, Jε is twice differentiable (in the Fréchet sense), and the
first-order optimality condition for (3.4) is

n
∑

i=0

hiDψε(Lh(uε
h)(x1+ 1

2
)−f(x1+ 1

2
))Lh(vh)(x1+ 1

2
)=0, ∀vh ∈Eh. (3.5)

The algorithm described in Guermond [8] consists of solving (3.5) using Newton’s
method and iteratively driving the parameter ε to zero.

The main drawback we see in the above two methods (interior point methods
and regularization) is that they are all based on Newton iterations requiring solving
large symmetric linear systems. Although efficient algorithms like conjugate gradient
can be applied, the overall complexity does not scale linearly with the size of the
system, since the matrices change at each Newton iteration and thus are difficult to
precondition efficiently. A possible way out could be to use multigrid preconditioning,
but we have not explored this path further.

One possible source of the difficulty mentioned above is that by looking at the
algebraic problem (3.1), one loses sight of the PDE origin of the problem, and one
does not use the hyperbolicity which is revealed by Theorem 2.2. We explore this
venue in the rest of the paper.

3.2. Definition of the algorithm. In view of Lemma 2.1, we propose the
following algorithm for solving (2.10):

Algorithm 1 L1-minimization for (2.10).

1: Initialize v(0 :n+1)←0; initialize array visited(1:n) ← false

2: Initialize cell list list: Put cells 0 and n in cell list

3: Initialize node list list: Put nodes 0 and n+1 in node list

4: while (cell list not empty) do

5: Take c from cell list list; Take i from node list list
6: if (c has no adjacent cell opposite to i) then

7: Remove c and i from cell list and node list respectively
8: else

9: Let c′ be the cell adjacent to c and opposite to i
10: Let k be the common vertex to c and c′; Let j be the other node of c′

11: Compute v− = tc,i(vi) and v+ = tc′,j(vj)
12: Remove c and i from cell list and node list respectively
13: if (|rc′(v−,vj)|≤ |rc(vi,v+)|) then

14: if (|rc′(v−,vj)|= |rc(vi,v+)|) and (visited(k) = true) then

15: stop
16: end if

17: Put cell c′ in cell list; put node k in node list

18: vk ←v−; visited(k) ← true

19: end if

20: end if

21: end while
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10 ii jjk k n+1

c cc′c′

v+
v+

v−

v−

Figure 3.1. Notation and schematic representation of Algorithm 1.

Recall that the mesh is composed of cells Ii =[xi,xi+1], i∈{0,... ,n}, and the
nodes are the points xl, l∈{0,... ,n+1}. Algorithm 1 proceeds from the left and the
right boundary to the interior of the domain. The algorithm is initialized by setting
the approximate solution to zero. If nonzero boundary conditions are prescribed, then
one has to change v0 and vn+1 to the appropriate values. The list node list contains
the (at most) two nodes where the approximate solution has been last updated. This
list is initialized by the boundary conditions, i.e., it initially contains the indices of
nodes x0 and xn+1. The list cell list contains at most two cells and it initially
contains the indices of cells I0 and In. The purpose of this list is to update the
numerical solution using local L1-minimization. Let c be one cell from cell list

and i be the corresponding node from node list (i could be the left of right vertex
of cell c). We denote by c′ the cell which is adjacent to c and opposite to i. The
common node to c and c′ is denoted by k; the other node of c′ is denoted by j. (See
Figure 3.1 for details.) The algorithm then consists of using Lemma 2.1. If tc,i(vi)
minimizes the local L1-residual functional, then vk is updated to the value tc,i(vi),
and cell c is replaced in the list cell list by c′ and node i is replaced in the list
node list by k. Otherwise, c and i are just removed from the lists cell list and
node list respectively. The algorithm stops when either the list cell list is empty
or every node has been visited and it is not possible to reduce the local L1-residual.

Note that owing to Lemma 2.1, the if-statement testing |ri1(v−,vk1
)|≤

|ri0(vk0
,v+)| in line 13 of Algorithm 1 is not needed if we assume (2.3)–(2.4). But

this test is actually needed if we replace the restrictive set of assumptions (2.3)–(2.4)
by the following:







0< inf
x∈Ωl

β(x),

sup
x∈Ωl

β′(x)<1,
and







sup
x∈Ωr

β(x)<0,

−1< inf
x∈Ωr

β′(x),
(3.6)

where Ωl =(0,α), Ωr =(α,1) is a (possibly trivial) partition of Ω, with α∈ [0,1].

Proposition 3.1. Algorithm 1 stops in O( 3
2n) steps and gives the solution to (2.10).

Proof. The most unfavorable case occurs when both cells from cell list move
forward until they collide (n

2 + n
2 operations); at the collision moment the upwind

cell wins owing to Lemma 2.1; thereafter the upwind cell undoes what the other one
has done (n

2 operations). When the only cell left in cell list reaches the downwind
boundary, the algorithm stops, and, owing to Theorem 2.2, the output is the minimizer
of (2.10).
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The most favorable case occurs when, due to lucky initialization, the downwind
cell (i.e., that moving in the upwind direction) stops at the first test; then only the
upwind cell moves forward and the algorithm finishes in n steps.

Remark 3.1. Note that the algorithm does not refer to the upwind/downwind notion
per se. The local L1-minimization takes care of that naturally.

3.3. Numerical results. To illustrate the above algorithm, we apply it to
(2.1). Two situations are considered. In the first one the velocity field is continuous,
and in the second one it is discontinuous. The unit interval [0,1] is divided into cells
of constant size, and P1 finite elements are used.

3.3.1. Constant advection: ill-posed problem. We set β := 1
2 and f :=1

on [0,1]. As already mentioned above, the system (2.1) is ill-posed but nevertheless
has a unique viscosity solution. As β is positive, this viscosity solution is obtained
by solving the ODE u+ 1

2u′ =1 using u(0)=1 as initial condition. The viscosity
solution is uvisc(x)=1−e−2x. The least-squares solution to this problem solves the
two-point boundary value problem uLS−

1
4u′′

LS =1, uLS(0)=0, uLS(1)=0. Clearly

uLS(x)=ae2x +be−2x +1, where a=− 1−e−2

e2−e−2 and b=− e2−1
e2−e−2 , and uLS 6=uvisc.

0 1
0

1

 

0

1

0 1
0

1

 

0

1

Figure 3.2. Constant advection: L
1-solution with 30 mesh cells (Left); least-squares solution

uLS (Right).

We compare in Figure 3.2 the L1-solution and the least-squares solution. The
L1-solution is computed using Algorithm 1 on a mesh composed of 30 uniformly
distributed cells. Clearly the L1-solution approximates the viscosity solution, and in
spite of the irrelevant right-hand boundary condition, it is accurate everywhere in
the domain but in the rightmost cell. The L1-minimization recognizes the left-hand
boundary condition to be the correct one and propagates it continuously in the interior
of the domain. The discontinuity created in the last cell does not perturb the solution
anywhere else. Indeed, no oscillations or instabilities of any kind are generated. By
contrast, the least-squares solution suffers from the ill-posedness of the problem and
yields an erroneous solution. All these observations confirm the theoretical analysis
from Guermond and Popov [11].

3.3.2. Linear discontinuous advection: shock. To mimic what happens
when a shock occurs in nonlinear conservation laws, we now consider the following
discontinuous advection field:

β =

{

0.1 if 0≤x≤ 1
2 ,

−1 if 1
2 <x≤1.
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The characteristic lines associated with this flow are entering the domain at both
boundaries, creating a shock at the middle of the domain, cf. Figure 3.3. As above,
the L1-algorithm propagates continuously the boundary conditions from both bound-
aries to the interior of the domain, and, therefore, the shock is non-oscillatory and
supported in one cell. Note that this phenomenon is independent of the number of
cells partitioning the domain (the result for 30 cells is shown on the left of the figure
and the result for 100 cells is shown on the right). This validates our method for
discontinuous velocity advection problems.

0 1
0

1

 

0

1

0 1
0

1

 

0

1

Figure 3.3. L
1 solution for linear discontinuous advection: 30 cells (Left); 100 cells (Right).

4. A fast algorithm for nonlinear problems

In this section, we extend Algorithm 1 to nonlinear problems. The main difficulty
we have to deal with is non-uniqueness of solutions, which possibly lead to multiple
numerical local minimizers. We propose a new algorithm to address this issue, and
we illustrate its performance on stationary Hamilton-Jacobi equations.

4.1. A model problem. As in the linear case, we want to use a local
minimization argument, but to avoid possible non-uniqueness issues we have to invoke
an entropy selection mechanism. To clarify this point let us illustrate it on an example.

Consider the following stationary Hamilton-Jacobi equation:

H(x,u,u′)=0, in (a,b), with u(a)=α, u(b)=β, (4.1)

where [a,b] is a bounded interval, and assume that the Hamiltonian H satisfies the
following properties:

|q|≤ cs (|H(x,v,q)|+ |v|+1) ∀(x,v,q)∈ [a,b]×R×R, (4.2)

H(x,v,q) is uniformly Lipschitz on [a,b]×[−R,R]×B(0,R) for all R>0. (4.3)

We assume that (4.1) has a unique viscosity solution u in W 1,∞(a,b) which is semi-
concave. A typical example is the eikonal equation or any Hamilton-Jacobi equations
derived from scalar conservation laws with convex flux, see Evans [7], Kružkov [12],
or Lions and Souganidis [16].

It is shown in Guermond and Popov [10] that this problem can be solved by means
of a minimization technique in L1. More precisely, let p>1 be a fixed real number.
Define the following functional:

J(v)=

∫ b

a

|H(x,v,v′)|dx+

n
∑

i=0

hi

∫

Ii

(v′′(x))p
+dx+

n
∑

i=1

h2−p

i+ 1
2

([[v′(xi)]]+)
p
, (4.4)
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where hi+ 1
2
= 1

2 (hi−1 +hi). The symbol (z)+ denotes the positive part, i.e., (z)+ :=
1
2 (|z|+z). The jump across cell interfaces is defined by [[φ(xi)]] := limǫ→0φ(xi +ǫ)−
φ(xi−ǫ). The two extra terms in the right-hand side of (4.4) are referred to as the
volume entropy and the interface entropy, respectively. It is shown in Guermond
and Popov [10] that the function in Xh that minimizes Jh converges in W 1,1(Ω) to
the unique viscosity solution of (4.1). Actually, the result proved therein holds for
piecewise polynomial approximations of degree one and higher.

We now propose to simplify J and to specialize it to piecewise linear approxima-
tion by using the midpoint quadrature rule and by modifying the interface entropy.
The new fully discrete functional that we henceforth consider is

Jh(v) :=
n

∑

i=0

Ri(v)+h2−2p

n
∑

i=1

Ei(v), (4.5)

where we use the notation

Ri(v)=hi|H(xi+ 1
2
,vi+ 1

2
,v′

i+ 1
2

)|, (4.6)

Ei(v)=ωi(v)
(

v′
i+ 1

2

−v′
i− 1

2

)p

+
. (4.7)

The ωi function is defined as follows:

ωi(v)=hp
i−1S(v′

i− 1
2

,v′
i+ 1

2

)+hp
i S(v′

i+ 1
2

,v′
i− 1

2

), (4.8)

S(a,b)= 1
2 (sgn(|a|−|b|)+1), where sgn is the sign function. (4.9)

Note that S(a,b) returns 1 if |a|> |b|, 1
2 if |a|= |b|, and 0 otherwise. Therefore, the ωi

function returns hp
i−1 if the absolute value of v′

i− 1
2

is larger than the absolute value of

v′
i+ 1

2

. When the mesh is uniform, i.e., hi =h for all i∈{0,... ,n}, ωi(v)=hp and the

entropy term in Jh(v) reduces to Ei(v)=(vi+1−2vi +vi−1)
p
+ and coincides with the

entropy term of J(v). If the mesh is not uniform, but quasi-uniform, the entropies
from J(v) and Jh(v) are equivalent.

The discrete problem on which we now focus our attention is the following: Seek
uh ∈Xh so that

Jh(uh)= min
vh∈Xh

Jh(vh). (4.10)

4.2. Definition of the algorithm. We start by defining the local residual

ri(z,s)=hiH(xi+ 1
2
, 1
2 (z+s),h−1

i (s−z)), ∀z,s∈R. (4.11)

Then we define the multi-valued nonlinear functions ti,l, i∈{0,... ,n}, l∈{i,i+1} so
that ri(z,ti,i(z))=0 and ri(ti,i+1(s),s)=0. Note that due to the possible nonlinear
character of the Hamiltonian H, ti,i(z) and ti,i+1(z) are sets and that these sets may
be empty.

The algorithm that we propose to solve (4.10) is composed of two phases: (i)
initialization; (ii) minimization. Due to the nonlinearity of the Hamiltonian, problem
(4.10) is no longer convex. The initialization process now becomes important in order
to avoid being trapped in local minimums. Initialization can be done in many ways.
For instance, one could think of a hierarchical or adaptive algorithm that proceeds by
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successive refinements of the grid. Then the initialization could be done by projecting
the coarse solution onto the new grid. Another possibility could be to roughly solve
the problem (4.1) using a more standard L2-based approximation and to use this
approximate solution as initialization. As an alternative, we propose a stand-alone
L1-based technique in Algorithm 2.

(i) The initialization proceeds from the boundary to the interior and on the way
selects a guess of minimal entropy. The steps describing the initialization
process are detailed in Algorithm 2.

(ii) The minimization is done locally and is based on Lemma 2.1. This stage re-
produces what is done in Algorithm 1. The details are reported in Algorithm
3.

Algorithm 2 L1-initialization for (4.10).

1: Define u init large enough; Set v0 =vn+1 =0 and define v−1 =vn+2 =0
2: Initialize array updated(1:n) ← false

3: Initialize cell list; Put cells of index 0 and n in cell list

4: Initialize node list; Put nodes of index 0 and n+1 in node list

5: while cell list not empty do

6: Take c∈ cell list; Take i∈ node list; Let j 6= i be the other node of c
7: Let c′ 6= c be s.t. c′∩c={xj}; Let k 6= j be the other node of c′

8: Let c′′ 6= c′ be s.t. c′′∩c′ ={xk}; Let l 6=k be the other node of c′′

9: if (updated(j)=true) then

10: Store v and cell index cbreak← c; Stop
11: end if

12: ṽ←v; ṽj ←u init; ṽk ←u init; ṽl ←u init

13: Jold←|Rc(ṽ)|+ |Rc′(ṽ)|+h2−2p(Ei(ṽ)+Ej(ṽ)+Ek(ṽ))
14: Compute the set tc,i(vi)
15: Remove cell c from cell list; Remove node i from node list

16: if (set tc,i(vi) not empty) then

17: ṽ←v; ṽj ← tc,i(vi); ṽk ←u init; ṽl ←u init

18: Pick v̄∈ ṽ with smallest residual |Rc′(v̄)|+h2−2p(Ei(v̄)+Ej(v̄)+Ek(v̄))
19: Jnew←|Rc′(v̄)|+h2−2p(Ei(v̄)+Ej(v̄)+Ek(v̄))
20: if (Jnew≤Jold) then

21: vj ← v̄j ; updated(j) ← true

22: Put cell c′ in cell list; Put node j in node list

23: end if

24: end if

25: if (cell list list empty) then

26: Breakdown; Problem is ill-posed; Stop
27: end if

28: end while

At the end of Algorithm 2, we have a field v that satisfies ri(vi,vi+1)=0 for all
i∈{0,... ,n}\{cbreak}. The goal of Algorithm 3 is to move around the breakdown cell
cbreak by performing local L1-minimization until the functional Jh cannot be further
minimized. A detailed analysis of Algorithm 2 and Algorithm 3 and a convergence
proof is reported in [9].
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Algorithm 3 L1-minimization for (4.10).

Start with initial guess from Algorithm 2: v and cbreak

loop

Let C be the list of the two cells adjacent to cbreak

for all (c∈C) do

Let j be the node of cbreak∩c
Let i 6= j the other node of cbreak; Let k 6= j be the other node of c
Jold←|Rcbreak

(v)|+h2−2p(Ei(v)+Ej(v)+Ek(v))
Compute the set tcbreak,i(vi); nothing done ← true

if (set tcbreak,i(vi) not empty) then

ṽ←v; ṽj ← tcbreak,i(vi)
Jnew←|Rc(ṽ)|+h2−2p(Ei(ṽ)+Ej(ṽ)+Ek(ṽ))
Pick v̄∈ ṽ with smallest functional (i.e., v̄ =argminJnew)
if (Jnew(v̄)<Jold) then

v← v̄; cbreak← c; nothing done ← false; Exit loop on C
end if

nothing done ← true

end if

end for

if (nothing done=true or #loop ≥n) then

Done; Stop
end if

end loop

As pointed out in [10], it is not really important to compute the exact minimizer
of (4.10). Actually, in the terminology of [10], computing an almost minimizer is
sufficient. An almost minimizer is any sequence (vh)h>0 for which there exists a
constant c>0, uniform in h, so that Jh(vh)≤ ch. Almost minimizers are known to
converge to the unique viscosity solution of (4.1), see [10]. It can be proved that under
reasonable assumptions on the Hamiltonian, Algorithm 2 and Algorithm 3 delivers a
sequence of almost minimizers to (4.10), (see [9]).

4.3. Numerical results in the nonlinear case. In this section we give four
examples to illustrate the efficiency of Algorithms 2 and 3. The first three examples
are stationary Hamilton-Jacobi equations. The last example features a Burgers-like
steady-state equation with a redefined entropy functional.

4.3.1. Example 1: Eikonal equation. We consider the eikonal equation in
one space dimension on the interval Ω=(0,1):

|u′|=1 u(0)=0, u(1)=0. (4.12)

the unique viscosity solution is u(x)= 1
2 −|x− 1

2 |. We show in the left panel of Figure
4.1 the result obtained using Algorithm 2 and Algorithm 3 with 19 uniformly dis-
tributed cells. We see that the residual is zero in all cells but the middle one where
the derivative of the solution is discontinuous. Actually, since the viscosity solution
is piecewise linear, the approximation obtained with 19 uniform cells coincides with
the exact solution on [0, 1

2 −
1
38 ]∪ [ 12 + 1

38 ,1]. Whether the mesh is uniform or not,
Algorithm 2 and Algorithm 3 always gives the exact solution to (4.12) if there is a
mesh interface at 1

2 .
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Figure 4.1. Solution to (4.12) using different resolutions. Left: n+1=19; Right: n+1=20.

4.3.2. Example 2: quadratic Hamiltonian. We now consider the following
problem introduced in Cockburn and Yenikaya [4]:

1
π2 (u′)2 +u+ |cos(πx)|−sin(πx)2 =0, u(0)=−1, u(1)=−1, (4.13)

whose viscosity solution is u(x)=−|cos(πx)|. The results obtained using piecewise
linear approximation on uniform grids are reported in Figure 4.2. The results for
n+1=9, 19, and 39 cells are shown in the left panel and those obtained with n+1=
10, 20, and 40 cells are shown in the right panel. In all cases the cells are uniformly
distributed. The cell where the residual is not zero is clearly apparent when using an
odd number of cells.

0 1
−1

0

X−Axis

−1

0

0 1
−1

0

X−Axis

−1

0

Figure 4.2. Solution to (4.13) using different resolutions. Left: n+1=9, 19, 39; Right:
n+1=10, 20, 40.

Convergence tests for (4.13) are reported in Figure 4.3. The convergence order in
the W 1,1-norm is 1 independently of the number of cells. The method is second-order
in the L1-norm independently of the number of cells. We observe super-convergence
in the maximum-norm when the number of cells is even. This is due to the fact that
the breaking point of the graph of the solution coincides with a mesh interface when
the mesh is uniform and the number of cells is even.

4.3.3. Example 3: degenerate eikonal equation. In order to illustrate
how the algorithm behaves with respect to the initialization process we now consider
the following equation:

1
2π

|u′(x)|−|cos(2πx)|=0, u(0)=0, u(1)=0. (4.14)
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Figure 4.3. Solution to (4.13) using different resolutions. Left: n+1=9, 19, 39; Right:
n+1=10, 20, 40.

This is a Hamilton-Jacobi equation with multiple semiconcave solutions. Its only
positive viscosity solution is given by

u(x)=



















sin(2πx), 0≤x≤ 1
4 ,

2−sin(2πx), 1
4 ≤x≤ 1

2 ,

2+sin(2πx), 1
2 ≤x≤ 3

4 ,

sin(2πx), 3
4 ≤x≤1.

(4.15)

To test the robustness of the algorithm with respect to symmetry breaking, we modify
Algorithm 2 so that the initialization process starts from cell 0 and moves inward
until breakdown, then restarts from cell n+1 and moves inward until collision. Two
tests are reported in Figure 4.4 using n+1=100 cells. In the first case we start the
initialization process by setting u init=2.5, and in the second case we start with
u init=4. The results obtained from Algorithm 2 are shown in the top left and top
right panels of Figure 4.4. These two initialization fields are clearly different and are
discontinuous; the discontinuity occurs in the breakdown cell. These two fields are
then fed into Algorithm 3, which then produces the result shown in the bottom panel of
Figure 4.4. This solution is independent of u init, provided u init it is large enough.
More precisely, systematic tests show that if we set u init≥2=max0≤x≤1uvisc(x),
then Algorithm 3 always produces the viscosity solution. The observations reported
in this sections have been investigated theoretically and are reported in [9].

4.3.4. Example 4: Stationary Burgers’ Equation. We finish with a sim-
ple but very challenging problem. Consider the stationary inviscid Burgers equation:

u+
d

dx

(u2

2

)

=0; u(0)=−1, u(1)=1. (4.16)

A similar example is considered in Lavery [14] to illustrate the capability of L1-based
techniques to capture shocks. Two-dimensional versions of this problem are considered
in Lavery [15] and Guermond [8]. This problem is ill-posed in many respects. To
hopefully select a meaningful solution we (arbitrarily) introduce an entropy functional
proportional to the total variation,

Ei(v)=hi− 1
2
(vi−vi−1)+ +hi+ 1

2
(vi+1−vi)+, i∈{1,... ,n}, (4.17)
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Figure 4.4. Solution to (4.14) using n+1=100. Top left: initial guess delivered after ini-
tialization using ustart =2.5; Top right: initial guess delivered after initialization using ustart =4;
Bottom: solution delivered by Algorithm 3 whatever ustart, provided ustart≥2.

with obvious modifications at i=0 and i=n+1. We want to minimize the following
functional:

Jh(v)=

n
∑

i=0

hi+ 1
2
|12 (vi +vi+1)+h−1

i+ 1
2

(vi−vi)|+

n+1
∑

i=0

Ei(v). (4.18)

The approximate minimizer obtained using Algorithm 2 and Algorithm 3 with n+1=
100 cells is shown in the left panel of Figure 4.5. The solution exhibits a shock at
x= 1

2 . This result is consistent with those from [8, 14, 15]. It is clear that the method
does not introduce any artificial viscosity since the shock is sharp and supported in
one cell only.

Unfortunately, this solution is not the viscosity solution to (4.16). Actually, the
algorithm performs exactly as it should, but the entropy that we have chosen (4.17)
is not that which yields the viscosity solution. We have not yet figured out which
entropy should be used to select the viscosity solution, but by analyzing the limit
of the viscous-regularized problem, one infers that an approximation of the viscosity
solution should look like what is shown in the right panel of Figure 4.5. In other
words, the viscosity solution is

uvisc(x)=0 ∀x∈ (0,1). (4.19)

This solution exhibits two boundary layers at both ends of the interval [0,1]. Although
(4.16) looks hyperbolic at first sight, uvisc is the result of an internal equilibrium that
accounts for two boundary layers. As a result, uvisc cannot be obtained by solving
initial value problems starting from the boundary of Ω. In some sense, this problem
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resembles more an elliptic problem than a hyperbolic one. In other words, even with
the correct entropy, we conjecture that it is impossible to minimize Jh(v) in two
sweeps involving only local operations. Any minimization technique for solving this
problem should involve global exchange of information.

This problem opens new questions that we are currently exploring.
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Figure 4.5. Stationary Burgers’ equation. (Left): L
1-solution with entropy (4.17); (Right):

Approximate viscosity solution, 100 cells.

5. Conclusion

We have given a simple proof of the fact that L1-minimization selects the vis-
cosity solution of the linear first-order PDE (2.1) equipped with ill-posed bound-
ary conditions. The new approach helped us to construct a O(N) algorithm for
computing global L1-minimizers (or almost minimizers) using sequences of local L1-
minimizations. We have extended the algorithm to stationary Hamilton-Jacobi equa-
tions. In these cases an appropriate entropy must be added to the functional to
ensure convergence to the viscosity solution. The functional to be minimized is then
non-smooth and non-convex. Our numerical results show that the algorithm is able
to select the viscosity solution of Hamilton-Jacobi equations under appropriate as-
sumptions on the Hamiltonian. That this is indeed the case has been proved in [9].
Extensions of the method proposed in the present paper to higher dimensions is the
topic of ongoing research.
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