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THE CONTINUUM LIMIT AND QM-CONTINUUM

APPROXIMATION OF QUANTUM MECHANICAL MODELS OF

SOLIDS∗

WEINAN E† AND JIANFENG LU‡

Abstract. We consider the continuum limit for models of solids that arise in density func-
tional theory and the QM-continuum approximation of such models. Two different versions of QM-
continuum approximation are proposed, depending on the level at which the Cauchy-Born rule is
used, one at the level of electron density and one at the level of energy. Consistency at the interface
between the smooth and the non-smooth regions is analyzed. We show that if the Cauchy-Born
rule is used at the level of electron density, then the resulting QM-continuum model is free of the
so-called “ghost force” at the interface. We also present dynamic models that bridge naturally the
Car-Parrinello method and the QM-continuum approximation.
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1. Introduction

The present paper discusses two related topics: The continuum limit of the quan-
tum mechanical models of solids and the QM-continuum approximation of such mod-
els. We will discuss models that arise from density functional theory (DFT), namely
the Kohn-Sham DFT models and the Thomas-Fermi-von Weiszacker model [20]. Our
derivation of the continuum limit in this paper is formal, and we will leave rigorous
treatment to future papers. However, we think this formal treatment is important
since it reveals some crucial insights of this limiting process. For example, it gives
a procedure for finding high order approximations to the solutions of these models
in the continuum limit. These approximations are useful in other contexts such as
numerical computations. Indeed, our work here is partly motivated by the desire for
developing efficient numerical algorithms for these models.

Our other main objective is to formulate coupled continuum-quantum mechanical
models that use continuum models in part of the domain and the original quantum
mechanical models in the rest of the domain. Such an approach is analogous in
spirit to the quasi-continuum approximation or coupled atomistic-continuum methods
[2, 9, 22]. Our main interest is to see whether additional errors arise at the interface
between the continuum and QM regions. More specifically, we will study the size of
the “ghost force”, the force exerted on the atoms when they are in the equilibrium
configuration, as a result of the coupling. In particular, we will formulate two different
levels of QM-continuum approximation, one at the level of the electron density only,
and the other at the level of both the electron density and the energy. We will show
that there are no “ghost forces” in the first formulation.

These models form the basis on which we will develop efficient numerical algo-
rithms that couple continuum and quantum models, as part of a joint project with
Carlos Garćıa-Cervera and Jingfang Huang.
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680 QM-CONTINUUM MODELS AND CONTINUUM LIMITS

The thermodynamic limit of the Thomas-Fermi type of model was considered
before in [17], as well as [4]. The continuum limit of the Thomas-Fermi type of
models was considered in [1]. The continuum limit of tight-binding models was con-
sidered in [10]. The quasi-continuum approximation of solids in the classical setting
was proposed in [22], and has been extended by many people since then. Coupled
continuum-atomistic approaches for the modeling of solids have also been discussed
by many authors [2, 9]. For a review, see [8]. The problem of “ghost force” for the
quasi-continuum approximation in the classical setting was studied in [12, 21]. Great
effort has gone into developing numerical algorithms for Kohn-Sham density functional
theory. For a review, see [18]. Accurate numerical methods for orbital-free density
functional theory were developed in [14]. Alternative methods for the Thomas-Fermi-
von Weiszacker model were presented in [16]. Attempts to construct algorithms in
the spirit of the quasi-continuum approximation have been made in [15, 19]. Related
algorithms that combine quantum mechanical and classical models were presented
in [7].

2. Setup for the continuum limit of atomistic models

Given a fixed domain Ω in R
3 and a fixed lattice L with unit cell Γ, we consider

a system of crystalline solids whose atoms are located at xi∈εL∩Ω,i=1,... ,N in
equilibrium. Here ε is the lattice constant. Hence, the unit cells in the reference state
are chosen to be εΓ+xi. It is easy to see that the total number of atoms in the system
is N = |εL∩Ω|, where |·| denotes the cardinal number of a set. We assume that each
atom in the system has n valence electrons. Therefore, the total number of valence
electrons in the system is n|εL∩Ω|.

In continuum theory, the deformation of a solid is described as a displacement
field u :Ω→R3 defined on the reference (undeformed) configuration. The position of
a material point or an atom after deformation is located at y=y(x)=(I+u)(x) where
x is the position in the reference configuration. x is normally called the Lagrangian
coordinate and y is called the Eulerian coordinate. One of the problems we face
when considering the continuum limit of electronic structure models of solids is the
conflict between these coordinates: Continuum theory of solids such as elasticity
theory naturally uses Lagrangian coordinates and electronic structure theory naturally
uses Eulerian coordinates. As a result, we will have to specify carefully the variable
with respect to which we carry out differentiation. This inevitably complicates the
notation a bit.

In elasticity theory, we model the deformation of solids through a stored energy
functional of the type

∫

Ω

W (∇u(x))dx, (2.1)

where W is the stored energy density. A key question is to find the function W . We
will discuss how to find W using electronic structure models. For notational ease, we
denote by A(x)=∇u(x) the Jacobian of u at x.

3. Quantum mechanical models of solids

Under the Born-Oppenheimer approximation, the potential energy of a system
is given entirely by the positions of the atoms, since the electronic structure is de-
termined by the positions of the atoms. In principle, one can solve the many-body
Schrödinger equation to find the electronic structure of the system from first prin-
ciples. In practice, this is quite unfeasible. Therefore various approximate models
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involving fewer degrees of freedom are proposed. Among these models, three classes
are most popular: the tight-binding (TB) models, orbital-free density functional the-
ory (OFDFT) and Kohn-Sham (orbital-based) density functional theory (KSDFT).
In this paper, we will focus on the KSDFT model and the Thomas-Fermi-von Weisza-
cker (TFW) model which belongs to the OFDFT class. At zero temperature, these
models are formulated as variational problems.

Given the positions of the atoms, the charge distribution contributed by the ions
of the system is given by

m(y)=
∑

xi∈εL∩Ω

ma
ε(y−y(xi)). (3.1)

Here ma
ε is the rescaled charge distribution of one ion ma

ε(y)=ma
0(y/ε)/ε

3, given
either by a Dirac distribution or a smooth pseudo-potential [18].

In KSDFT models, the energy functional of the system is a sum of the contribu-
tions from the kinetic energy of the electrons, the exchange-correlation energy, and
the Coulomb interaction:

Iε({ψk})=ε2
∑

k

∫

R3

|∇ψk(y)|
2 dy+

∫

R3

ǫxc(ρ)ρ(y) dy

+
ε

2

∫∫

R3×R3

(ρ−m)(y)(ρ−m)(y′)

|y−y′|
dydy′. (3.2)

The energy per atom of the system is then determined by the variational problem

Eε=
1

|εL∩Ω|
inf
{ψk}

Iε({ψk}). (3.3)

Here {ψk(y)} is a collection of orthonormal wave functions
∫

R3

ψ∗
j (y)ψk(y) dy= δjk. (3.4)

The total number of these wave functions is equal to the number of occupied states
(half the number of valence electrons due to Pauli exclusion principle), i.e., n|εL∩Ω|/2
(for simplicity, assume n is an even number). ρ is the electron density corresponding
to the wave functions given by

ρ(y)=2
∑

k

|ψk(y)|
2. (3.5)

Since {ψk} are orthonormal wave functions with total number n|εL∩Ω|/2, we have
∫

R3

ρ(y) dy=n|εL∩Ω|. (3.6)

In (3.2), ǫxc is the exchange-correlation potential for which we have adopted the local
density approximation. We assume

ǫxc(ρ)= ǫxc,0

( 1

ε3
ρ
(y

ε

))

, (3.7)

so that the exchange-correlation energy scales properly when the lattice constant ε
changes.
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The Thomas-Fermi-von Weiszacker (TFW) model can be regarded as a simplifi-
cation of the KSDFT models. While the Coulomb interaction part is retained, the
kinetic part is approximated by functionals that depend only on the density (but not
the orbitals):

ε2
∫

R3

ρ(y)5/3 dy+ε2
∫

R3

|∇
√

ρ(y)|2 dy. (3.8)

To simplify the notation, we take ν(y)=
√

ρ(y) as the variable for the TFW model.
Therefore the energy functional becomes

Iε(ν)=ε2
∫

R3

ν10/3 dy+ε2
∫

R3

|∇ν|2 dy

+
ε

2

∫∫

R3×R3

(ν2−m)(y)(ν2−m)(y′)

|y−y′|
dydy′. (3.9)

The TFW functional is minimized under the normalization constraint:
∫

R3

ν(y)2 dy=n|εL∩Ω|.

In order to prepare for the study of the continuum limit of these models, we have
expressed them in a form that is properly scaled with ε.

4. Asymptotic analysis of the continuum limit

4.1. Thomas-Fermi-von Weiszacker model. We start the analysis with the
TFW model. Consider the rescaled TFW energy functional:

Iε(ν)=ε2
∫

R3

ν10/3 dy+ε2
∫

R3

|∇ν|2 dy

+
ε

2

∫∫

R3×R3

(ν2−m)(y)(ν2−m)(y′)

|y−y′|
dydy′. (4.1)

The associated Euler-Lagrange equations are

−ε2∆ν+
5

3
ε2ν7/3−φν+λν=0; (4.2)

−∆φ=4πε(m−ν2), (4.3)

where λ is a Lagrange multiplier for the normalization constraint and φ is the Coulom-
bic potential generated by the electrons and the ions.

There are two scales in this problem: The scale of the displacement field, which
is O(1), and the scale of the electron density, which is O(ε). To represent these two
scales, we take the ansatz

ν=ν
(

y,
x

ε

)

=
1

ε3/2
ν0

(

y,
x

ε

)

+
1

ε1/2
ν1

(

y,
x

ε

)

+ε1/2ν2

(

y,
x

ε

)

+ ··· (4.4)

φ=φ
(

y,
x

ε

)

=φ0

(

y,
x

ε

)

+εφ1

(

y,
x

ε

)

+ε2φ2

(

y,
x

ε

)

+ ··· (4.5)

and also

λ=λ0 +ελ1 +ε2λ2 + ··· , (4.6)
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where x=x(y)=(I+u)−1(y) is the Euler-Lagrange map: It gives the Lagrangian
coordinate corresponding to y. ν(y,z) and φ(y,z) are functions defined on R

3×Γ and
periodic in the second variable on Γ. Note that we use the Eulerian coordinate for the
first variable and the Lagrangian coordinate for the second variable. This is because
we will impose periodicity in the second variable with a fixed period which is going
to be the unit cell Γ in the equilibrium configuration. Similarly, we have:

m=m
(

y,
x

ε

)

=
1

ε3
m0

(

y,
x

ε

)

+
1

ε2
m1

(

y,
x

ε

)

+
1

ε
m2

(

y,
x

ε

)

+ ··· . (4.7)

For example, we calculate

m0(y,z)=
∑

zi∈L

ma
0((I+A)(x)(z−zi)), (4.8)

where A=∇u is evaluated at x=x(y).
We now have

−∆f
(

y,
x

ε

)

=−∆1f
(

y,
x

ε

)

−
1

ε
∇x

2 ·∇1f
(

y,
x

ε

)

−
1

ε
∇1 ·∇

x
2f

(

y,
x

ε

)

−
1

ε2
∆x

2f
(

y,
x

ε

)

.

Here operators like ∇1 take the derivative with respect to the first variable and ∇2 the
second. We define ∇x

2 =(I+∇u(x))−T∇2 and ∆x
2 =∇x

2 ·∇
x
2 to simplify the notation.

The factors (I+∇u(x))−T arise as a result of transformation between the Eulerian
and Lagrangian coordinates.

Expanding the Euler-Lagrange equations, we get the leading order equations:

−∆x
2ν0 +

5

3
ν

7/3
0 −φ0ν0 +λ0ν0 =0; (4.9)

−∆x
2φ0 =4π(m0−ν

2
0). (4.10)

The next order equations are

−∆x
2ν1−∇1 ·∇

x
2ν0−∇x

2 ·∇1ν0

+
35

9
ν

4/3
0 ν1−φ1ν0−φ0ν1 +λ1ν0 +λ0ν1 =0; (4.11)

−∆x
2φ1−∇1 ·∇

x
2φ0−∇x

2 ·∇1φ0 =4π(m1−2ν0ν1). (4.12)

The leading order equations (4.9)–(4.10) are a set of equations for functions de-
fined on the unit cell Γ, with A=∇u(x) as parameters.

Define the periodic Thomas-Fermi-von Weiszacker functional

IA(ν)=

∫

Γ

ν10/3(z;A) dz+

∫

Γ

|(I+A)−T∇ν(z;A)|2 dz

+
1

2

∫∫

Γ×Γ

(ν2−mCB)(z;A)G(z−z′;A)(ν2−mCB)(z′;A) dzdz′, (4.13)

where mCB(z;A(x))=m0(y,z)=
∑

zi
ma

0((I+A)(x)(z−zi)) and G(z;A) is the peri-
odic Coulombic kernel [17] which is the solution of

−((I+A)−T∇) ·((I+A)−T∇)G(z;A)=4π

(

δ(z)−
1

|Γ|

)

in Γ (4.14)
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with periodic boundary condition and lim
z→0

(

G(z;A)−1/|(I+A)z|
)

=0.

It is easy to see that the Euler-Lagrange equation of IA(ν) are the same as (4.9)–
(4.10) with A=∇u(x). The second order equations (4.11)–(4.12) give the next order
approximation which we omit here. Define the stored energy density W (A,ν) as

W (A,ν)=
det(I+A)

|Γ|
IA(ν) (4.15)

Therefore the minimizer νCB(z;A) of the variational problem

WCB(A)= inf
ν
W (A,ν(·;A)) (4.16)

with normalization constraint
∫

Γ

ν2(z;A) dz=
n

det(I+A)
. (4.17)

gives the leading order approximation of ν(y,z)=νCB(z;∇u(x)), where y=(I+u)(x).
We call νCB the Cauchy-Born (square root of) electron density and WCB the Cauchy-
Born stored energy density.

We conclude that the continuum limit of energy in the TFW model is given by

E=

∫

Ω

WCB(∇u(x)) dx. (4.18)

Rigorous analysis for the TFW model can be found in [1, 4, 17].

4.2. Kohn-Sham density functional theory. Next, we consider the con-
tinuum limit for models from Kohn-Sham density functional theory. As discussed in
Section 3, the major difference between the KSDFT models and the TFW model is
in the kinetic energy part as well as the exchange-correlation energy. As we will see
below, the analysis of the KSDFT models, while similar to the TFW model, contains
some new insights.

The rescaled energy functional for the Kohn-Sham density functional theory
model is

Iε({ψk})=ε2
∑

k

∫

R3

|∇ψk(y)|
2 dy+

∫

R3

ǫxc(ρ)ρ(y) dy

+
ε

2

∫∫

R3×R3

(ρ−m)(y)(ρ−m)(y′)

|y−y′|
dydy′. (4.19)

The associated Euler-Lagrange equations are

−ε2∆ψk+Vxc(ρ)ψk−φψk+
∑

k′

λkk′ψk′ =0; (4.20)

−∆φ=4πε(m−ρ). (4.21)

Here the λ’s are the Lagrange multipliers for the orthonormality constraints, φ is the
Coulombic potential generated by the electrons and the ions, and Vxc(ρ)= ǫxc(ρ)+
ǫ′xc(ρ)ρ.

The orbitals {ψk} are far from unique. We will assume that the collection {ψk}
can be chosen as {ψα(yi,(x−xi)/ε)}, where α ranging from 1 to n/2 is the index for
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the occupied states. ψα(y,·) is localized at 0, i.e., it decays away from the origin. Thus
ψα(yi,(x−xi)/ε) is localized at the atom position xi. If the system is in equilibrium or
under homogeneous deformation, {ψα(yi,(x−xi)/ε)} can be chosen as the well-known
Wannier function [23] of the α-th energy band centered at xi.

Similar to the case of the TFW model, we take the following ansatz:

ψα(y,z)=
1

ε3/2
ψα,0(y,z)+

1

ε1/2
ψα,1(y,z)+ε1/2ψα,2(y,z)+ ··· , (4.22)

ρ=ρ
(

y,
x

ε

)

=
1

ε3
ρ0

(

y,
x

ε

)

+
1

ε2
ρ1

(

y,
x

ε

)

+
1

ε1
ρ2

(

y,
x

ε

)

+ ··· , (4.23)

φ=φ
(

y,
x

ε

)

=φ0

(

y,
x

ε

)

+εφ1

(

y,
x

ε

)

+ε2φ2

(

y,
x

ε

)

+ ··· . (4.24)

As discussed above, ψα(y,z) decays when z becomes large, and ρ(y,z) and φ(y,z) are
periodic in z as in the TFW model. Recall that

ρ(y)=2
∑

α

∑

xj∈εL∩Ω

∣

∣

∣

∣

ψα

(

yj ,
x−xj
ε

)
∣

∣

∣

∣

2

.

In the limit as ε→0, by the decay property, we obtain at leading order

ρ0(y,z)=2
∑

α

∑

zj∈L

|ψα,0(y,z−zj)|
2. (4.25)

Note that ψα,0(y,·−zj) is a translation of ψα,0(y,·−zk) with translation vector zj−zk.
Similarly, for the orthonormality constraint, we have in the limit

∫

R3

ψ∗
α,0(y,z−zi)ψα′,0(y,z−zj) dz= δαα′δij/det((I+∇u)(x)). (4.26)

Taking these into consideration and expanding the Euler-Lagrange equations, we
get the leading order equations:

−∆x
2ψα,0(y,z)+Vxc,0(ρ0)ψα,0(y,z)−φ0(y,z)ψα,0(y,z)

+
∑

α′,zj∈L

λαα′,zj
ψα′,0(y,z−zj)=0; (4.27)

−∆x
2φ0(y,z)=4π(m0−ρ0)(y,z). (4.28)

Here the λ’s are Lagrange multipliers.
Define the functional

IA({ψ})=
∑

α

∫

R3

|(I+A)−T∇ψα(z;A)|2 dz+

∫

Γ

ǫxc,0(ρ(z;A))ρ(z;A) dz

+
1

2

∫∫

Γ×Γ

(ρ−mCB)(z;A)G(z−z′;A)(ρ−mCB)(z′;A) dzdz′, (4.29)

where mCB(z;A(x))=m0(y,z)=
∑

zi
ma

0((I+A)(x)(z−zi)) and G(z;A) is the peri-
odic Coulombic kernel as in (4.14). The stored energy density W (A,{ψ}) is given
by

W (A,{ψ})=
det(I+A)

|Γ|
IA({ψ}). (4.30)
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Similar asymptotics as in the TFW model showsthat the minimizer ψCB,α of the
variational problem

WCB(A)= inf
{ψ}

W (A,{ψα(·;A)}) (4.31)

with orthonormality constraints

∫

R3

ψ∗
α,0(z−zi;A)ψα,0(z−zj ;A) dz= δαα′δij/det(I+A). (4.32)

gives the leading order approximation of ψα(y,z). We call ψCB,α the Cauchy-Born
wave functions and WCB the Cauchy-Born stored energy density.

Note that for KSDFT, the cell problem is not formulated as a periodic problem
over the unit cell, but rather a problem over the whole space, as shown in (4.29). The
wave function, although localized, is also defined on the whole R

3.

We further remark that, although (4.29) is derived from assumptions of periodic-
ity, it takes a form that is quite different from the usual formulation of periodic models
when wave functions are included (e.g., for the Hartree and Hartree-Fock model as
in [6, 5]). Our formulation (4.29) is in real space, not in k-space where the Bloch
boundary condition is used [18]. Because of this, we have chosen a localized repre-
sentation (Wannier functions) for the electronic states since they are more naturally
associated with each individual atom or electron. For numerical computation, the
real space formulation might be more advantageous than the k-space representation.
This point will be further discussed in future publications.

The asymptotic analysis reveals something that may seem surprising at a first
sight, namely that the problem becomes effectively local: all terms in the asymptotic
expansion are determined by solving differential equations in the fast variables; the
slow variables enter only as parameters. In the language of fiber bundles [11], all
terms are determined by solving PDEs on the fibers—differentiation with respect to
the variables on the base manifold only enters in the source terms. Indeed given the
displacement field, the leading order terms become independent for different values of
the slow variable.

5. Analysis of the QM-continuum approximation

We next consider the QM-continuum approximation of the energy functional. We
will formulate a QM-continuum model based on the philosophy of domain decompo-
sition. The domain Ω is decomposed into two regions, the non-smooth region Ωns
and the smooth region Ωs, according to the smoothness of the displacement field. In
the smooth region, the deformation is locally close to being homogeneous; therefore,
we can adopt the Cauchy-Born rule. The non-smooth region might contain defects.
Thus the original model is kept.

The Cauchy-Born rule gives us information for both electron density and energy.
Accordingly, we can imagine two different strategies for using the Cauchy-Born rule.
The first is to use only the Cauchy-Born electron density. The second is to use also the
Cauchy-Born energy. We call the former Model A and the latter Model B. Their main
difference lies in the treatment of the long-range Coulomb interaction. As we have seen
above, the Kohn-Sham DFT models treat the Coulombic interaction in the same way
with the TFW model. Hence, for simplicity, we will provide the detailed analysis of
the QM-continuum approximation only for the TFW model. For the KSDFT models,
the same analysis applies with trivial modifications. We thus skip most of the details.
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5.1. QM-continuum approximation of the TFW model: Model A. Ac-
cording to the philosophy of domain decomposition, we write the electron density as
a sum of the smooth and non-smooth terms:

ν(y)=νs(y)1y(Ωs) +νns(y)1y(Ωns). (5.1)

In the smooth region, we approximate the electron density by the Cauchy-Born rule:

νs(y)=νCB

(x

ε
;∇u(x)

)

, (5.2)

where x=x(y) is the Euler-Lagrange map. The non-smooth electron density νns
satisfies the boundary condition

νns(y)=νs(y) on ∂y(Ωns), (5.3)

in order to guarantee that the electron density is continuous at the interface.
Substituting (5.1) into the energy functional (4.1), we get

IAε (νns)= Ins(νns)+ε2
∫

y(Ωs)

ν10/3
s dy+ε2

∫

y(Ωs)

|∇νs|
2 dy

+
ε

2

∫∫

y(Ωs)×y(Ωs)

(ν2
s −m)(y)(ν2

s −m)(y′)

|y−y′|
dydy′. (5.4)

Here Ins(νns) is given by

Ins(νns)=ε2
∫

y(Ωns)

ν10/3
ns dy+ε2

∫

y(Ωns)

|∇νns|
2 dy

+
ε

2

∫∫

y(Ωns)×y(Ωns)

(ν2
ns−m)(y)(ν2

ns−m)(y′)

|y−y′|
dydy′

+ε

∫∫

y(Ωs)×y(Ωns)

(ν2
s −m)(y)(ν2

ns−m)(y′)

|y−y′|
dydy′. (5.5)

The energy of the system is given by

EAε =inf
νns

IAε (νns). (5.6)

The associated Euler-Lagrange equations of Ins are

−ε2∆νns+
5

3
ε2ν7/3

ns −(φns+φs)νns+λνns=0, (5.7)

−∆φns=4πε(m−ν2
ns)1y(Ωns), (5.8)

where φs is the Coulombic potential generated by the charges in the smooth region
(taking the Cauchy-Born approximation).

We now examine the accuracy of this QM-continuum model. For this purpose,
we consider the situation when the crystal is under homogeneous deformation. In
this case, the Cauchy-Born rule is exact. We assume that Ω=R

3 and y(x)=(I+A)x
with A fixed. In this case, the minimizer for the whole system is ν0(y)=νCB(x/ε;A),
from the definition of νCB. Note that if νns is an arbitrary electron density function
satisfying the boundary condition (5.3), ν=νs1y(Ωs) +νns1y(Ωns) is then a possible
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electron density function for the whole system. If we take ν0
ns(y)=νCB(x/ε;A) in

y(Ωns), which certainly satisfies (5.3), we have

IAε (ν0
ns)= Iε(ν

0)≤ Iε(ν)= IAε (νns).

Hence ν0
ns is the minimizer of (5.6). This means that model A yields the correct

minimizer in the homogeneous case.
To calculate the force, it is more convenient to use the Lagrangian coordinates.

The energy functional (5.4) rewritten in Lagrangian coordinates is

IAε =ε2
∫

Ωs

ε2ν10/3
s (y)det(I+A) dx+ε2

∫

Ωs

|∇νs(y)|
2
det(I+A) dx

+
ε

2

∫∫

Ωs×Ωs

(ν2
s −m)(y)(ν2

s −m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′

+ε2
∫

Ωns

ν10/3
ns (y)det(I+A) dx+ε2

∫

Ωns

|∇νns(y)|
2det(I+A) dx

+
ε

2

∫∫

Ωns×Ωns

(ν2
ns−m)(y)(ν2

ns−m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′

+ε

∫∫

Ωs×Ωns

(ν2
s −m)(y)(ν2

ns−m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′,

where for notational ease, we have used y, y′, A, and A′ as shorthand for y(x), y(x′),
A(x) and A(x′) respectively. The variational derivative (in the Gateaux sense) is:

δ

δu
EAε [h]

=
10

3
ε2

∫

Ωs

ν7/3
s

δνs
δAij

∂hi
∂xj

det(I+A) dx

+2ε2
∫

Ωs

δ∇νs
δAij

∂hi
∂xj

·∇νsdet(I+A) dx

+ε

∫∫

Ωs×Ω

(2νs
δνs

δAij

∂hi

∂xj
)(y)(ν2−m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′

−ε

∫∫

Ω×Ω

( δmδu [h])(y)(ν2−m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′

+ε2
∫

Ω

ν10/3 ∂det(I+A)

∂Aij

∂hi
∂xj

dx+ε2
∫

Ω

|∇ν|2
∂det(I+A)

∂Aij

∂hi
∂xj

dx

+ε

∫∫

Ω×Ω

(ν2−m)(y)(ν2−m)(y′)

|y−y′|

∂det(I+A)

∂Aij

∂hi
∂xj

det(I+A′) dxdx′

−ε

∫∫

Ω×Ω

(ν2−m)(y)(ν2−m)(y′)

|y−y′|3
(y−y′) ·h(x)det(I+A)det(I+A′) dxdx′. (5.9)

The first three terms on the right hand side are contributions from the dependence
of νCB on the deformation; the next one represents the dependence of the ion charge
distribution on the deformation; the last four terms are from the coordinate change.

One of the most important issues for this type of multi-scale model is the existence
of the “ghost force”: When the system is in equilibrium, the force is not equal to
zero due to the coupling. The existence of the “ghost force” characterizes the loss of
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accuracy at the interface between smooth and non-smooth regions [12]. To see whether
“ghost force” exists for the QM-continuum model under discussion, let us consider
the equilibrium state: y(x)=x and take Ω=R

3 (Ωs=R
3\Ωns) to avoid effects at

the boundary of the whole system, since we care only about the behavior at the
interface between smooth and non-smooth regions caused by the coupling. Under
these assumptions, (5.9) becomes

δ

δu
EAε [h]=

10

3
ε2

∫

Ωs

ν7/3
s

δνs
δAij

∂hi
∂xj

dx+2ε2
∫

Ωs

δ∇νs
δAij

∂hi
∂xj

·∇νs dx

+ε

∫∫

Ωs×Ω

(2νs
δνs

δAij

∂hi

∂xj
)(x)(ν2−m)(x′)

|x−x′|
dxdx′

−ε

∫∫

Ω×Ω

( δmδu [h])(x)(ν2−m)(x′)

|x−x′|
dxdx′

+

∫

Ω

ε2ν10/3 ∂det(I+A)

∂Aij

∂hi
∂xj

dx+ε2
∫

Ω

|∇ν|2
∂det(I+A)

∂Aij

∂hi
∂xj

dx

+ε

∫∫

Ω×Ω

(ν2−m)(x)(ν2−m)(x′)

|x−x′|

∂det(I+A)

∂Aij

∂hi
∂xj

dxdx′

−ε

∫∫

Ω×Ω

(ν2−m)(x)(ν2−m)(x′)

|x−x′|3
(x−x′) ·h(x) dxdx′. (5.10)

Here ∂det(I+A)/∂Aij is evaluated at A=0; hence it can be taken out of the integral.
Moreover, ν and m are periodic with respect to the unit cell Γ, since the system is in
equilibrium.

Without loss of generality, we assume that h corresponds to a trial displacement
of the atom located at 0, i.e., h is supported in the cube [−ε,ε]3, tri-linear (linear in
each dimension) and symmetric with respect to each coordinate plane. The sum of
the first three terms in (5.10),

10

3
ε2

∫

Ωs

ν7/3
s

δνs
δAij

∂hi
∂xj

dx+2ε2
∫

Ωs

δ∇νs
δAij

∂hi
∂xj

·∇νs dx

+ε

∫∫

Ωs×Ω

(2νs
δνs

δAij

∂hi

∂xj
)(x)(ν2−m)(x′)

|x−x′|
dxdx′ ,

vanishes since νCB is the minimizer of the periodic problem. The remaining terms
vanish due to symmetry. For example, let us consider the term

∫

Ω

ν10/3(x)
∂hi
∂xj

(x) dx. (5.11)

Due to symmetry, we have

∂hi
∂xj

(x1,x2,x3)=−
∂hi
∂xj

(−x1,x2,x3),

ν10/3(x1,x2,x3)=ν10/3(−x1,x2,x3).

It is easy to see that the integral (5.11) is equal to zero. It follows from a similar
analysis that the other remaining terms also vanish.

We conclude that for model A, no “ghost force” appears. Hence, model A is first
order uniform accurate as discussed in [12]. This is natural since we include explicitly
the long range interaction in the approximated energy functional (5.6).
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5.2. QM-continuum approximation of the TFW model: Model B. For
model B, we further simplify (5.6) by using the Cauchy-Born energy for the smooth
region:

IBε (νns)= Ins(νns)+

∫

Ωs

WCB(∇u(x)) dx, (5.12)

with Ins given by

Ins(νns)= inf
νns

ε2
∫

y(Ωns)

ν10/3
ns dy+ε2

∫

y(Ωns)

|∇νns|
2 dy

+
ε

2

∫∫

y(Ωns)×y(Ωns)

(ν2
ns−m)(y)(ν2

ns−m)(y′)

|y−y′|
dydy′

+ε

∫∫

y(Ωns)×y(Ωs)

(ν2
ns−m)(y)(ν2

s −m)(y′)

|y−y′|
dydy′. (5.13)

The energy of the system is given by

EBε =inf
νns

IBε (νns). (5.14)

We see that in contrast to (5.4), in (5.12), WCB is explicitly used. While for the short
range interaction, (5.4) and (5.12) are equivalent, they treat long range interaction
differently.

The associated Euler-Lagrange equations are

−ε2∆νns+
5

3
ε2ν7/3

ns −(φns+φs)νns+λνns=0; (5.15)

−∆φns=4πε(m−ν2
ns)1y(Ωns), (5.16)

where φs is the Coulombic potential generated by charges in the smooth region (taking
the Cauchy-Born approximation).

Again, to calculate the force, we rewrite (5.12) in Lagrangian coordinates:

IBε =

∫

Ωs

WCB(∇u(x)) dx

+ε2
∫

Ωns

ν10/3
ns det(I+A) dx+ε2

∫

Ωns

|∇νns|
2det(I+A) dx

+
ε

2

∫∫

Ωns×Ωns

(ν2
ns−m)(y)(ν2

ns−m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′

+ε

∫∫

Ωs×Ωns

(ν2
s −m)(y)(ν2

ns−m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′,

where y, y′, A, and A′ are understood as y(x), y(x′), A(x), and A(x′) respectively.
We compute the derivative (in the Gateaux sense) as:

δ

δu
EBε [h]=

∫

Ωs

∂WCB

∂Aij
(A(x))

∂hi
∂xj

dx
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+ε

∫∫

Ωs×Ωns

(2νs
δνs

δAij

∂hi

∂xj
)(y)(ν2

ns−m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′

−ε

∫∫

Ωs×Ωns

( δmδu [h])(y)(ν2
ns−m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′

+ε

∫∫

Ωs×Ωns

(ν2
s −m)(y)(ν2

ns−m)(y′)

|y−y′|

∂det(I+A)

∂Aij

∂hi
∂xj

det(I+A′) dxdx′

−ε

∫∫

Ωs×Ωns

(ν2
s −m)(y)(ν2

ns−m)(y′)

|y−y′|3
(y−y′) ·h(x)det(I+A)det(I+A′) dxdx′

+ε2
∫

Ωns

ν10/3
ns

∂det(I+A)

∂Aij

∂hi
∂xj

dx+ε2
∫

Ωns

|∇νns|
2 ∂det(I+A)

∂Aij

∂hi
∂xj

dx

−ε

∫∫

Ωns×Ω

( δmδu [h])(y)(ν2−m)(y′)

|y−y′|
det(I+A)det(I+A′) dxdx′

+ε

∫∫

Ωns×Ω

(ν2
ns−m)(y)(ν2−m)(y′)

|y−y′|

∂det(I+A)

∂Aij

∂hi
∂xj

det(I+A′) dxdx′

−ε

∫∫

Ωns×Ω

(ν2
ns−m)(y)(ν2−m)(y′)

|y−y′|3
(y−y′) ·h(x)det(I+A)det(I+A′) dxdx′.

(5.17)

Comparing (5.17) with (5.9), we see that the interactions within the smooth regions
are substituted by the derivative of the Cauchy-Born energy density. In some sense,
model B fails to capture the long range interaction in the smooth region: since the
Cauchy-Born approximation is used at the energy level, the energy functional only
sees local terms in the smooth region.

For this reason, we expect that the model will generate “ghost force”. To see this,
we assume that the system is at equilibrium and Ω=R

3. By similar arguments as
those for Model A, we get:

δ

δu
EBε [h]=ε

∫∫

Ωs×Ωns

(2νs
δνs

δAij

∂hi

∂xj
)(x)(ν2

ns−m)(x′)

|x−x′|
dxdx′

−ε

∫∫

Ωs×Ωns

(∂mCB

∂Aij

∂hi

∂xj
)(x)(ν2

ns−m)(x′)

|x−x′|
dxdx′

+ε

∫∫

Ωs×Ωns

(ν2
s −m)(x)(ν2

ns−m)(x′)

|x−x′|

∂det(I+A)

∂Aij

∂hi
∂xj

dxdx′

−ε

∫∫

Ωs×Ωns

(ν2
s −m)(x)(ν2

ns−m)(x′)

|x−x′|3
(x−x′) ·h(x) dxdx′. (5.18)

However, now the integrands in (5.18) do not possess the symmetry property anymore.
Hence in general they do not vanish, resulting in the generation of “ghost force” and
the loss of uniform accuracy.

5.3. QM-continuum approximation of the KSDFT models. The QM-
continuum approximation for the KSDFT models can be developed in a similar fash-
ion. Again, there are two different levels of Cauchy-Born approximation, resulting in
two different QM-continuum models: Model A and Model B. Model A is free of “ghost
forces” and in general, Model B generates “ghost forces”. We will only describe these
models, omitting other details.
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The wave functions associated with the smooth region are given by the Cauchy-
Born rule {ψCB,α(x−xi

ε ;∇u(xi))}; the wave functions associated with the non-smooth
region are {ψns,k}. For the electron density, we define

ρs(y)=ρCB(y;∇u(xi))=
∑

zj∈L

∑

α

∣

∣

∣
ψCB,α

(x

ε
−zj ;∇u(xi)

)∣

∣

∣

2

, (5.19)

for y∈ (I+u)(εΓ+xi);

ρns(y)=
∑

k

|ψns,k(y)|
2 +

∑

xi∈εL∩Ωs

∑

α

∣

∣

∣

∣

ψCB,α

(

x−xi
ε

;∇u(xi)

)
∣

∣

∣

∣

2

. (5.20)

Note that, in the smooth region, the electron density given by the Cauchy-Born rule
is defined differently in each unit cell.

The energy functional for model A is then

IAε =ε2
∑

xi∈εL∩Ωs

∑

α

∫

R3

∣

∣

∣

∣

∇ψCB,α

(

x−xi
ε

;∇u(xi)

)
∣

∣

∣

∣

2

dy

+

∫

y(Ωs)

ǫxc(ρs)ρs dy+
ε

2

∫∫

y(Ωs)×y(Ωs)

(ρs−m)(y)(ρs−m)(y′)

|y−y′|
dydy′

+ε2
∑

k

∫

R3

|∇ψns,k|
2 dy+

∫

y(Ωns)

ǫxc(ρns)ρns dy

+
ε

2

∫∫

y(Ωns)×y(Ωns)

(ρns−m)(y)(ρns−m)(y′)

|y−y′|
dydy′

+ε

∫∫

y(Ωs)×y(Ωns)

(ρs−m)(y)(ρns−m)(y′)

|y−y′|
dydy′. (5.21)

Similarly, we have for Model B:

IBε =

∫

Ωs

WCB(∇u(x)) dx

+ε2
∑

k

∫

R3

|∇ψns,k|
2 dy+

∫

y(Ωns)

ǫxc(ρns)ρns dy

+
ε

2

∫∫

y(Ωns)×y(Ωns)

(ρns−m)(y)(ρns−m)(y′)

|y−y′|
dydy′

+ε

∫∫

y(Ωs)×y(Ωns)

(ρs−m)(y)(ρns−m)(y′)

|y−y′|
dydy′. (5.22)

6. Dynamic QM-continuum model

In this section, we study the dynamics of the system under QM-continuum ap-
proximation. We start with a new formulation for the smooth region in the QM-
continuum model based on the idea of fiber bundle dynamics [11]. We then consider
the dynamics of the non-smooth region, which can be regarded as a generalization of
the Car-Parrinello method [3]. We conclude with the discussion of dynamics for the
whole system.

6.1. Fiber bundle structure of the smooth region. The smooth region in
the QM-continuum model is most naturally described using a fiber bundle structure.
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Let us first recall the fiber bundle structure for such a multi-scale problem [11]: The
macro-scale problem is the elastodynamics formulated in terms of the deformation
gradient A on the domain Ω; the force field in the elastodynamics is given by the
micro-structural variables that live on the fibers. Using the terminology of fiber bundle
dynamics [11], we associate each point x∈Ω with a parametrization fiber γx=R

3n/2.
The state base manifold is R

3×3 ={A,A∈R
3×3}, the space of deformation gradients.

The micro-state fibers ΓA={ψ1(·;A),... ,ψn/2(·;A)}, where {ψα}
n/2
α=1 are the wave

functions.

The fiber bundle dynamics is given by







































ρ0∂
2
tA=∇(∇·F (A)),

δ

δψ∗
α

W (A,{ψ(·;A)})=
∑

α′,zj∈L

λαα′,zj
ψα′(z−zj ;A),

∫

ψ∗
α(z−zi;A)ψα′(z−zj ;A) dz= δαα′δij/det(I+A),

F (A)=∇AW (A,{ψ}).

(6.1)

Here ρ0 is the density of the solid, W (A,{ψ}) is given by (4.30) and the λ’s are
Lagrangian multipliers for the normality constraints. The micro-structural electronic
structure problem gives the model inputs F (A) to the macro-scale model. Notice that
the micro-dynamics on the fiber bundle is no longer the micro-scale dynamics for the
original problem, in particular, we have rescaled the lattice constant from ε to 1.

The set of equations (6.1) corresponds to the Born-Oppenheimer adiabatic ap-
proximation, since {ψ} is taken to minimize W (A,{ψ}) and so is assumed to be
the ground state given by the displacement field. In the spirit of the Car-Parrinello
method [3], we introduce a Car-Parrinello type of dynamics for the micro-structure
fibers:































































ρ0∂
2
tA=∇(∇·F (A)),

µ∂2
t ψα(·;A)+η∂tψα(·;A)=−

δ

δψ∗
α

W (A,{ψ})

+
∑

α′,zj∈L

λαα′,zj
ψα′(z−zj ;A),

∫

ψ∗
α(z−zi;A)ψα′(z−zj ;A) dz= δαα′δij/det(I+A),

F (A)=∂AW (A,{ψ})−
∑

α

λαα,0(I+A)−1/det(I+A).

(6.2)
Here µ is the artificial mass for the electrons and η is a relaxation parameter. The
expression for F (A) is derived from a generalized Hellman-Feynman theorem [11], and
the second term comes from the dependence of the orthonormality constraints on the
deformation gradient A.

6.2. Dynamics in the non-smooth region. The dynamics for the non-
smooth region can be given by a Car-Parrinello type of dynamics. The QM-continuum
energy functional (5.21) or (5.22) is used to derive the dynamics for the non-smooth
region. For the non-smooth region, we keep explicitly the atomic positions yj . The
energy for the non-smooth region in the QM-continuum model, following (5.21) and
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(5.22), is given by

Ens({yj},{ψns})=ε2
∑

k

∫

R3

|∇ψns,k|
2 dy+

∫

y(Ωns)

ǫxc(ρns)ρns dy

+
ε

2

∫∫

y(Ωns)×y(Ωns)

(ρns−m)(y)(ρns−m)(y′)

|y−y′|
dydy′

+ε

∫∫

y(Ωs)×y(Ωns)

(ρs−m)(y)(ρns−m)(y′)

|y−y′|
dydy′. (6.3)

Here ρs and ρns are defined as in (5.19) and (5.20). The energy depends on the
displacement field u in the smooth region and also the wave functions in the smooth
region given by the Cauchy-Born rule.

Given the energy, the extended Lagrangian for the non-smooth region is

Lns=
∑

j

Mj |ẏj |
2 +

∑

k

∫

R3

µ|ψ̇ns,k|
2 dy−Ens({yj},{ψns}). (6.4)

Here Mj are the masses for the atoms and m is the artificial mass for the electrons
as in the original Car-Parrinello method. The extended Lagrangian is the same with
the original Car-Parrinello molecular dynamics, except that Ens is given by the QM-
continuum model. From the extended Lagrangian, it is standard to write down the
dynamics for the atomic positions and wave functions

Mj∂
2
t uj =−

δEns({uj},{ψns})

δuj
, (6.5)

µ∂2
t ψns,k=−

δEns({uj},{ψns})

δψ∗
ns,k

+
∑

k′

Λnsk,k′ψns,k′ +
∑

α,xi∈εL∩Ωs

Λsk,α,xi
ψs,α,xi

. (6.6)

Here the Λ’s are Lagrangian multipliers for the orthonormality conditions and ψs,α,xi

is the α-th wave function localized at (I+u)(xi) in the smooth region. The derivative
of Ens with respect to ψns can be calculated explicitly as

−
δEns({uj},{ψns})

δψ∗
ns,k

=ε2∆ψns,k−Vxc(ρns)ψns,k+φ(y)ψns,k. (6.7)

6.3. Dynamics of the whole system. For the dynamics of the whole system
with the QM-continuum model, we couple together the fiber bundle dynamics for the
smooth region and the generalized Car-Parrinello dynamics for the non-smooth region.
We make several remarks about the coupling.

Recall that for the smooth region, we use the continuum displacement field u,
while for the non-smooth region, we keep explicitly the atomic positions yj . Therefore,
we need to determine the boundary condition of u at the interface between smooth
and non-smooth regions. The boundary condition can be given by the locations of
atoms in the non-smooth region through an operator which we denote as P:

us(x)=P({uj}), x on ∂Ωns. (6.8)

The reconstruction operator P is in general an interpolation operator.
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Another source of coupling between the smooth and non-smooth regions is that,
in the non-smooth energy (6.3), we need the wave functions {ψs} from the fiber bundle
dynamics in the smooth region. Hence, we need to construct them on the physical
space through the corresponding micro-state variables on the fibers. More specifically,
what we have are ψα(z;A(xi)) on the fiber over A(xi); however, we need on the
physical space ψs,α,xi

(y), which are the α-th wave functions localized at (I+u)(xi),
with variable y on the physical space (not the fiber). One natural way to do the
reconstruction is to set

ψs,α,xi
(y)=ψα

(

x(y)−xi
ε

;A(xi)

)

; (6.9)

that is, we rescale ψα and patch them together on the physical space to give the wave
functions in the smooth region. Of course, in practice, the elastic dynamics in the
smooth region is discretized. We do not have the information of ψα on fiber γx for
every x∈Ω, since the grid size is generally much larger than the lattice constant ε.
However, the ψs,α,xi

(y) can still be reconstructed using interpolation.
The dynamics in the smooth region is as described in Section 6.1. We impose the

boundary condition of u (6.8) at the interface between the smooth and non-smooth
regions. The dynamics in the non-smooth region is as described in Section 6.2 with
wave functions in the smooth region reconstructed through the information on the
micro-structure fibers. The coupled dynamics can be used to study the dynamics of
the system under the QM-continuum approximation.

7. Conclusion

We discussed the continuum limit of DFT models for crystalline solids. The
treatment here is formal. However, it provides much important information for un-
derstanding these models and for analyzing the coupling of the original models with
models coming from continuum theory. Through the analysis of two different levels
of QM-continuum approximation of these models, we conclude that Model A is more
accurate since it does not induce “ghost forces” at the interface between the smooth
and the non-smooth regions, in contrast to Model B.

We also introduced a new formulation for the dynamical QM-continuum approx-
imation based on the fiber bundle structure for the smooth region. This allows us to
extend naturally the Car-Parrinello method to the QM-continuum setting. The new
formulation also provides an alternative perspective for the QM-continuum model
which is useful in numerical computations.

Finally, since the arguments in this paper are quite formal, let us comment briefly
on their validity and more generally the usefulness of these results. Concerning the
TFW model, since there is already a well-established mathematical theory, we believe
it should be possible, although quite tedious, to establish the validity of the asymp-
totic analysis presented here. Indeed, the results of Blanc et al. [1] can already be
viewed as a partial justification of the leading order asymptotics. Higher order re-
sults are also useful, particularly for numerical purposes [14]. For KSDFT, however,
mathematical results are rather sparse. In particular, as was observed by one of the
referees, the KSDFT functional is non-convex; therefore we do not expect uniqueness
for the solutions. Nevertheless, this does not preclude the possibility of establishing
the validity of the asymptotic results using local arguments, along the lines in [13].
This is indeed one strategy that we are pursuing.
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